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Abstract

The growing field of movement ecology uses high resolution movement data to analyze animal 

behavior across multiple scales: from individual foraging decisions to population-level space-use 

patterns. These analyses contribute to various subfields of ecology—inter alia behavioral, disease, 

landscape, resource, and wildlife—and facilitate facilitate novel exploration in fields ranging from 

conservation planning to public health. Despite the growing availability and general accessibility 

of animal movement data, much potential remains for the analytical methods of movement 

ecology to be incorporated in all types of geographic analyses. This review provides for the 

Geographical Information Sciences (GIS) community an overview of the most common movement 

metrics and methods of analysis employed by animal ecologists. Through illustrative applications, 

we emphasize the potential for movement analyses to promote transdisciplinary GIS/wildlife-

ecology research.
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1. Introduction

The study of movement as a sub-discipline within the geographic information sciences is 

developing rapidly, driven by advances in localization technologies used to collect 

movement data (Dodge et al. 2016, Yuan 2017). Parallel to this expansion is the emergence 

of the field of movement ecology, which seeks to answer questions regarding where, how, 

and why individual animals move, placed within the context of diverse and varying natural 

environments (Nathan et al. 2008). In movement ecology, the movement pathway of an 

individual (or a group of individuals) is often the central feature studied.These pathways, 

considered within the heterogeneous landscapes they cross, expose individuals to various 

environmental elements that may positively or negatively impact long-term processes like 

reproduction and survival (Edelhoff et al. 2016). For example, an individual’s movement 

decisions, moving them toward or away from a resource-rich area, will directly impact their 

foraging success and, hence, fitness (Getz et al. 2015, 2016). At a broader scale, emergent 

spatial processes and patterns (e.g. the distribution of resources, disease transmission, and 

human-wildlife conflict) are all influenced by the movement decisions of animals. In this 

sub-field of ecology, the rapid technological advances driving data collection are facilitated 

by a conceptual framework for considering animal movements (the movement ecology 

paradigm of Nathan et al. 2008) and catalyzed by the development of new metrics and 

analytical tools.

Where movement ecology has a limited focus and specific ecological applications, research 

within the GIScience community into the quantitative analysis of movement takes a broader 

view, and in many cases has developed or adapted similarly powerful methods for the 

exploration of movement, both with and without specific ecological application. In 

movement ecology, multiple recent reviews have been written that explore the development 

of individual analyses or metrics of space use (e.g., home ranges, proximity/social networks, 

selection functions; see Cumming and Cornélis 2012, Pinter-Wollman et al. 2013, and Lele 

et al. 2013, respectively). In the same period, several special issues in the GIS community 

have been published on the topic of quantitative movement analysis and spatial ecology 

(Skidmore et al. 2011, Laffan et al. 2012, 2014, 2016, Dodge et al. 2016). Despite these 

domain-specific reviews and broader special issues, an exposition that provides an broad 

overview of metrics and tools used to analyze animal movement data is still needed. Our 

intention here is to provide such an exposition by reviewing metrics and methods of analysis 

that are widely used in the movement ecology field, emphasizing their applications beyond 

animal ecology into more general geospatial analysis. Throughout, we attempt to highlight 

similar metrics already adopted or developed by researchers in GISscience and the advances 

made in the field of movement research more broadly. For the most part, our review will 

emphasize methods most useful for analyzing high-resolution (also referred to as fine-scale) 

spatio-temporal location data from GPS tags (on collars, harnesses, or secured by other 

means), often paired with data from accelerometer, proximity, and physiological (e.g., 

temperature) sensors. While we acknowledge the significant contribution of additional 

localization technologies (e.g. acoustic arrays, light-based geolocators, VHF/radio data, 

ARGOS, and the upcoming ICARUS initiative, as in Pennisi 2011) to the recent expansion 
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of movement research, the metrics developed for these pipelines are, for the most part, 

outside the scope of this review.

We begin our exposition by organizing movement ecology metrics according to whether 

they summarize one- (i.e. having only the dimension of length) or two-dimensional (i.e. 

having the dimensions of area) objects. This approach reflects Smouse et al.’s (2010) 

dichotomy of statistical analyses of relocation data in terms of Lagrangian methods focusing 

on discrete-step, time-interval, and turning-angle constructs (i.e., a one-dimensional view of 

movement pathways) and Eulerian methods focusing on emergent space-use constructs (i.e. 

a two-dimensional view of movement pathways). Within this dichotomy, we distinguish 

metrics by whether or not they have an environmental covariate context and whether they 

pertain to individuals or groups of individuals. The methods we discuss represent the range 

of questions movement ecologists generally address, from inferring animal behavior to 

understanding the structure and characteristics of the landscape. The first set of metrics is 

associated with one-dimensional objects: those metrics intended to derive descriptive 

statistics from individual movement trajectories and to investigate individual behavioral 

states across a trajectory. The second set are applied to two-dimensional objects: those meant 

to describe the frequency with which an individual or multiple individuals occur in a given 

area or to predict spatial usage patterns for an entire population of a particular species, rather 

than a single individual. These latter analyses inform researchers about the relationship 

between landscape structure and animal behavior. Throughout the review, we use data from 

a single zebra to demonstrate reproducible examples of selected metrics across scales. See 

Zidon et al. (2017) for details on the zebra population from which these data were collected, 

as well as Appendix A for specific details on individual AG256, the zebra data used here.

2. Trajectory Analyses

The improvement of modern tracking devices has led to a considerable increase in the 

amount of movement data available for analysis, specifically in the form of lengthy 

timeseries of discrete relocations in two or three dimensional space (Tomkiewicz et al. 
2010). The level of correspondence between these relocations and the actual movement of 

the animal will vary, depending on the spatial and temporal resolution of the trajectory, but 

several metrics can be derived from the path to describe the general, usually statistical, 

tendencies of individual animals (Table 1).

2.1. Path-level analyses

Path-level analyses rely on several straightforward metrics that can be easily extracted from 

consecutive relocations in a time series of geographical points. These metrics are broadly 

referred to to as stepwise characteristics and can be split into primary and secondary metrics. 

Primary metrics, such as step length and turning angle (Table 1) are directly derived from 

relocations at each time step. However, they are highly sensitive to the spatial and temporal 

resolution at which the data were collected (Codling and Hill 2005, Gautestad 2012). 

Secondary metrics may be summary statistics derived from primary metrics (Edelhoff et al. 
2016) or they may be computed from the trajectory at coarser spatio-temporal scales than 

represented by the raw data. These coarser scale metrics include net squared displacement 
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(NSD) (Bunnefeld et al. 2011), which under a pure diffusive movement process scales 

linearly with time (Börger and Fryxell 2012), and residence time (Table 1). They may used, 

as in the case of NSD, to characterize the functional mode of a movement path (i.e., 

migratory vs. territorial; Bastille-Rousseau et al. 2016). The coarser-scale at which they are 

calculated makes them less sensitive to the spatio-temporal resolution of the data, provided 

the scale of the raw data is sufficiently fine (i.e., an order of magnitude finer than these 

secondary measures).

Metrics have been developed to describe structural aspects of movement trajectories that 

include many twists and turns. Two of these are the straightness index and tortuosity: both 

measure the degree to which movement trajectories deviate from straight lines (Table 1). A 

third is a trajectory’s fractal dimension: informally, it has a value between one and two, and 

is a measure of the extent to which a one-dimensional trajectory fills two-dimensional space, 

as an individual meanders around the landscape (values close to 2 represent trajectories that 

are more “space filling” than those with dimensions close to 1). These three structure-

characterizing metrics are calculated across a series of steps (i.e. consecutive locations in 

space), typically using computer algorithms, although the fractal dimensions of earthworms 

moving in vegetated versus unvegetated landscapes have been computed by hand (Rice et al. 
1998)!

2.2. Path Segmentation Analyses

One of the most active areas of research within movement ecology (see Edelhoff et al. 2016) 

is the development of methods to infer the behavioral state of individuals from relocation 

data. Some of these methods seek to segment movement paths into different behavioral 

phases (also known as canonical activity modes—see Getz and Saltz 2008), such as 

distinguishing between active and resting phases (van Beest and Milner 2013) or between 

foraging and traveling phases (Dzialak et al. 2015). Segmentation methods may be based on 

threshold concepts (Gutenkunst et al. 2007, Sur et al. 2014) or clustering methods (Van 

Moorter et al. 2010); or they may be based on geometric or periodic properties of the 

trajectory, as in recursion (Bar-David et al. 2009) and wavelet (Wittemyer et al. 2008) 

analyses, respectively (Table 1).

One set of methods—change point analyses (Table 1)—are designed to detect changes in the 

movement behavior of individuals, and then relate these to environmental covariates 

(Garstang et al. 2014) as possible causes for the behavioral shifts. These methods frequently 

use time-series analyses to identify notable shifts in the autocorrelations of the sequential 

values of primary or secondary metrics (Gurarie et al. 2009, 2016). Another set of methods

—state space modeling approaches (Table 1)—are designed to identify a set of states 

(hopefully with a behavioral interpretation) underlying variations in movement behavior 

and, within the same analysis, determine the probabilities of switching among states. These 

methods attempt to assign “hidden behavioral states” to each location point, as well as a 

probability transition matrix that specifies the probability of an individual switching from 

one state to any other as the individual moves to the next location point. Essentially, the 

method produces a stochastic walk model, called a Hidden Markov Model (HMM; Patterson 

et al. 2009). HMM movement trajectory models are complicated generalizations of random 
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walks (Morales et al. 2004), where movement elements (step size and turning angle) depend 

on the current behavioral state, as does the probability of changing behavioral state when 

reaching the next location. To demonstrate the HMM method, we have analyzed the 

trajectory of a zebra using the moveHMM package (Michelot et al. 2016) in the statistical 

analysis program R (version 3.4.3; R Core Team 2017). The results obtained constitute the 

most probable decomposition of all of the 10,600 steps into a “two-state no-covariate 

model”. The distributions of step lengths and turning angles associated with this model are 

depicted in Fig. 1.

Path or trajectory segmentation methods are one area of research common to both GIScience 

and movement ecology, with the GIS community supporting significant research on pattern-

oriented, cross-scale, and cross-type segmentation methods (Dodge et al. 2009, Ahearn and 

Dodge 2018). In a study designed to explore the role of uncertainty in trajectory and 

segmentation analyses, Laube and Purves (2011) fitted 10 cows with GPS collars taking sub-

second fixes to investigate questions of scale, granularity, and uncertainty when working 

with GPS data to assess movement parameters. The results of this work should be of great 

interest to ecologists, who typically collect much coarser fix data and then either invoke a 

straight-line assumption about the nature of paths between any two consecutive points in 

their data or assume Gaussian diffusion, often relying on a Brownian Bridge method for 

constructing likely trajectories between such points (Horne et al. 2007).

Often limitations regarding the temporal resolution of movement data may require analysis 

at somewhat broader scales. Even at this higher level of abstraction, however, behavioral 

classification may still be powerful. Indeed, Abrahms et al. (2017) identified “movement 

syndromes” across 13 diverse taxa (marine and terrestrial) using five standard metrics (mean 

turning angle correlation, mean residence time, mean time-to-return, volume of intersection, 

and mean net squared displacement) and a principle components analysis. Although the 

trajectories studied varied in movement mode (e.g. flying, walking, swimming) and taxon, 

the analysis successfully differentiated among migratory, nomadic, central place foraging, 

and territorial behaviors from GPS data alone.

Alongside the development of analyses to derive behavioral states from GPS data, new tags 

and collars fitted with tri-axial accelerometers (and, often, additional sensors for light, 

barometric pressure, temperature, etc.—see Wilson et al. 2008) increasingly allow for direct 

observation of the dynamic behavioral states of free-ranging animals (Shepard et al. 2008, 

Wang et al. 2015). Using various machine learning algorithms, accelerometer data (in the 

form of three-dimensional movement generally at a 20–40Hz resolution) can be processed to 

classify basic behaviors (e.g. sitting, walking, diving, running, resting, foraging) across 

multiple taxa with high accuracy (Nathan et al. 2012, Bidder et al. 2014, Fehlmann et al. 
2017). Although these algorithms require high resolution training data, often relying upon 

intensive observation of captive animals, this technology used in combination with GPS 

relocations can aid in the exploration of links among the biomechanical, behavioral, and 

ecological processes that influence whole-animal movement and contribute to a unified field 

of movement ecology (Nathan et al. 2012).
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2.3. Interactions

Although the majority of path trajectory analyses do not rely upon environmental covariates, 

often the results and interpretation of these metrics can be enhanced by assessing their 

environmental context. For example, taking account of the environmental context at a 

behavioral change-point can help researchers infer why an animal is changing behavior or 

what behaviors are being exhibited. Similarly, examining the environmental context 

alongside measures of first-passage time or residence time can be useful for understanding 

how animals relate to and behave in different environments. Inherently, the one-dimensional 

metrics we have highlighted here are applied only to individuals’ trajectories. However, 

when aggregated across a group of animals, their results can be useful in distinguishing 

individual heterogeneity in a population or variation across species, just as done by Abrahms 

et al. (2017) in their study of movement syndromes.

Emerging technologies, such as proximity collars, are advancing the study of conspecific 

interactions (and those among heterospecifics as well) along movement trajectories. The 

consideration of contacts among individuals moving across a given landscape can be vital 

for understanding the implications for resource use, competition, and disease transmission. 

Often interaction between two animals is assessed using point-based measures rather than 

integrating proximity across path segments, as in assessments of association coefficients or 

proximity analyses (Long et al. 2014). Recent advances in the GIS community, however, 

have led to improved methods for analyzing dynamic interactions (i.e. interactions that occur 

both in space and time using path-based metrics Long and Nelson 2013a). Often these 

interactions are translated into and analyzed as contact networks (an application of graph 

theory). However, since the majority of network analyses do not ask questions explicit to 

movement, we direct readers to alternative reviews of this growing area of research (e.g 

Croft et al. 2008, 2011, Pinter-Wollman et al. 2013, Silk et al. 2017).

3. Space-Use Analyses

When scaling up from path-level to space-use analyses, movement ecologists employ a 

variety of metrics designed to evaluate how an individuals’ movements, when viewed in the 

aggregate, partition the landscape in meaningful ways. Such two-dimensional constructions 

can explore how and when individuals use or share a given area or habitat in space or time 

with or without the consideration of the underlying environment. Below we explore these 

methods in two sections. First, we highlight methods based purely on movement metrics, 

irrespective of environmental context. These are generally used for characterizing the size 

and shape of animal home ranges. Second, we describe a suite of methods that combine 

movement locations with environmental covariates to make inference about habitat selection 

and the influence of landscape factors on space use.

3.1. Feature-independent analyses

Metrics analyzing the frequency of relocations across space regardless of environmental 

covariates broadly include the various methods for home-range estimation. These simple 

measures of animal space use (see Table 2) are applied widely, even with low-resolution 

data: though daily fix rates may prohibit fine-scale analyses such as behavioral state 
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extraction, the aggregation of points at this resolution (over appropriate temporal spans) can 

easily inform the general size and shape of an animal’s home range (Worton 1989, Fieberg 

and Kochanny 2005, Fieberg and Börger 2012).

Several alternative methods for describing the home range of an animal exist, ranging in 

complexity from the construction of the minimum convex polygon containing the movement 

trajectory to a construction of a utilization distribution (Van Winkle 1975) that can be used 

to estimate the probability of finding an individual in selected areas inside the home range; 

see Fig. 2 for a comparison across three common methods for home-range construction. 

Most commonly, utilization distributions (UDs) are derived using kernel density estimators, 

now widely incorporated in many spatial analysis packages (Worton 1989). Subsequent 

development of other methods, based on Brownian movement models (Horne et al. 2007) 

and Local Convex Hull unions (Getz and Wilmers 2004, Getz et al. 2007, Lyons et al. 2013, 

Dougherty et al. 2017), as well as autocorrelated kernel methods (Fleming and Calabrese 

2017) have enabled more realistic or robust estimates of the utilization distribution. In order 

to delineate areas of most consistent use or offer conservative estimates of an animal’s 

typical home range, researchers often include isopleths on maps of utilization distributions 

to identify the areas associated with a given percentage of relocations (e.g., 50%, 80%, or 

95%). Utilization distributions can be calculated over any time interval of interest to 

delineate the space use of an animal over that time (e.g. a single month, a particular season, 

an entire year, etc.). By assessing the volume of intersection or overlap of successive short-

term UDs for a particular individual, researchers can evaluate broad-scale site fidelity and 

ultimately the stability of an animal’s home range (Fieberg and Kochanny 2005, Millspaugh 

et al. 2004, Clapp and Beck 2015; Table 2). Additionally, these same metrics can be used 

across individuals to estimate concurrent or shared space use, which can be important for 

understanding social structure, disease transmission, or competition for resources.

Within the utilization distribution, ecologists often define a “core area” of use. Core area 
methods refer to any one of a group of analyses that seek to identify the most intensely used 

areas from individuals’ relocations histories. In their simplest form, these areas are defined 

as the smallest area incorporating some subjective percentage of relocations, generally 30–

50%. Although widely used, the selection of the 30% or 50% isopleth is ad-hoc. In an 

attempt to make this selection more rigorous, Vander Wal and Rodgers (2012) propose 

researchers fit an exponential model to the rate at which home-range area increases for each 

percent increase in isopleth value; they define the core area as the point at which the slope of 

this exponential curve is 1. Other approaches involve integrating time-use patterns into the 

spatial analysis of movement data. In the simplest time-use metrics, researchers evaluate the 

time to return and the return rate (frequency of returns) to pre-defined areas in the home 

range, given some prescribed minimum time between “returns” (Seidel and Boyce 2015, 

Van Moorter et al.2016). More elaborate methods incorporate time-use into the construction 

of the utilization distributions themselves (Benhamou and Riotte-Lambert 2012). The T-

LoCoH method (implemented in R through the tlocoh package; (Lyons et al. 2013)), for 

example, allows users to evaluate revisitation (a measure of separate visits) and average 

duration of visits (Table 1) to all local hulls within an animal’s home range. These analyses 

can help elucidate spatial patterns in time strategies: teasing out not only what habitats 
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animals are using, but also separating those they used in repeated short visits from those 

used for infrequent but extended visits.

In the GIS community, the competition in and for space and time that ecologists study as 

habitat selection or home range analysis, has often been considered as an extension of 

classic time geography (Demšar et al. 2015, Long 2016). Various methods for illuminating 

space-time prisms, which map the potential movements of an object in both geographic 

space and time given information about its movement capabilities (e.g. travel velocity), can 

account for the time and sequentiality of measurements along movement paths. Extensions 

of these space-time prisms has resulted in methods for constructing 3-dimensional elements 

used to estimate the probability that an object was located at some location at some 

particular time. This approach offers a sophisticated technique for understanding the 

movements and activities (and potentially interactions) of animals at fine temporal and 

spatial scales (Downs et al. 2014).

All simple home-range estimators that ignore the temporal autocorrelation inherent in 

movement trajectories may be applied either to a single animal’s trajectory or to a combined 

dataset across multiple individuals. Estimation methods that use the temporal nature of 

movement trajectories (e.g., autocorrelated kernel density methods, Brownian bridges, T-

LoCoH), however, must be applied first to individual trajectories independently and 

subsequently combined if population space use is of interest.

3.2. Feature-dependent analyses

Methods used to construct resource selection functions (RSFs; Boyce and McDonald 1999) 

are arguably the most utilized among spatially-explicit methods that incorporate 

environmental covariates (see Table 2). RSFs are typically employed to infer the probability 

of use of any given resource unit within the range of an individual or population, and 

thereby, represents the primary procedure for evaluating the selection of resources by both 

individuals and populations (Boyce and McDonald 1999, Manly et al. 2002). Within the 

genre of habitat selection analysis, step selection functions (SSFs) function in a similar 

manner to RSFs, but are constructed at a much finer scale. These models compare habitat 

attributes at points along a given trajectory and estimate resource selection by comparing the 

environmental structure of the next point along the trajectory to other possible points 

available to the animal (taking into account step length and turning angle distributional 

structure). Thus, in short, SSFs offer a finer-scale approximation of habitat selection along 

movement paths rather than the aggregate assessment yielded by a traditional RSF (Thurfjell 

et al. 2014; see Fig. 3); however, we note that SSFs are sensitive to the frequency at which 

data are collected (Gautestad 2012). In fact, consideration of behavioral state, data 

collection, and fix interval (i.e., sampling frequency) is crucial to accurate representation of 

both habitat selection and connectivity (Abrahms et al. 2016a, 2017). For example, when 

considering behavioral state in the evaluation of resource selection by African wild dogs, 

Abrahms et al. (2016a) demonstrated that the response of wild dogs to roads varied 

significantly depending on both the behavioral and landscape context in which roads were 

encountered.
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Beyond estimating the probability of use of any given resource in space, ecologists and 

conservation biologists often want to evaluate the connectivity of a landscape for movement, 

both within and between populations. Metrics for assessing landscape connectivity are 

expansive, but the most common approaches involve various landscape pattern indices 

which serve to evaluate structural connectivity, a characteristic inherent to the landscape (see 

Tischendorf and Fahrig 2000, Calabrese and Fagan 2004, Fagan and Calabrese 2006). 

Functional connectivity can be calculated directly using movement trajectories (Abrahms et 
al. 2016b,a) or estimated indirectly using capture-recapture data (Royle et al. 2013). For 

example, least-cost modeling, a popular analytical approach familiar to movement ecology 

and GIS alike, generates simulated paths based on estimates of the efficiency with which an 

individual could move between two points. Efficiency can be a function of distance, time, or 

any other weighted resistance layer. Traditionally, maps of landscape resistance have been 

generated from a mix of expert opinion, previous studies, species presence locations, habitat 

suitability indices (often also derived by expert opinion), and radio-telemetry points (Sawyer 

et al. 2011). More recently, these maps have been generated using circuit theory (McRae et 
al. 2008) or by using the inverse of selection functions, thereby integrating actual movement 

paths into the assessment of landscape permeability (Chetkiewicz and Boyce 2009, Zeller et 
al. 2016).

Often in the study of movement, dynamics within a population of animals, rather than those 

of a single individual, are of primary interest. As such, although both landscape connectivity 

and habitat selection analyses can be run on single trajectories, it is most common to run 

these analyses on groups of individuals to infer population-wide behaviors. Of course, 

without comprehensive tracking of all individuals in a population, general conclusions can 

be difficult to draw or, when formed from empirical observation on a subset of the 

population, biased due to individual and environmental heterogeneity (especially with small 

sample sizes). However, as GPS technology has become more costeffective and widely 

available, researchers with appropriate sampling schemes and investigating data from 

multiple individuals within a population can begin to draw conclusions about general space 

use and effectiveness of management strategies for a population or species.

4. Bridging Perspectives

4.1. In Ecology at Large

As a sub-discipline within ecology, movement ecology often has a somewhat narrow focus, 

considering foundational questions such as when, where, how, and why animals move 

(Nathan et al. 2008). Indeed, despite its interdisciplinary origins, movement ecology tools 

are often used for ‘basic’ science (i.e., addressing research questions without specific 

applications beyond the creation of new knowledge about a system) in contrast to 

GIScience’s often more applied focus. But the methods of movement ecology draw on 

several disciplines, including physics, biomechanics, behavioral ecology, landscape ecology, 

and GIScience. Moreover, at its core, movement ecology is a means of cutting across scales, 

linking the mechanical and physiological basis of behavior to continental-level patterns in 

animal distributions. That cross-scale nature allows movement ecology to be adaptable and 

flexible for solving real-world problems in human-dominated landscapes.
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In conservation biology, movement tools have clear and well-tested applications for both 

policy making and wildlife management. In particular, movement ecology provides an 

invaluable framework for understanding, measuring, and predicting human-wildlife conflict. 

For instance, Mountrakis and Gunson (2009) used kernel density estimation to evaluate 

spatiotemporal hotspots where the risk of moose-vehicle collisions may be high. Further, in 

a study investigating the space-use behavior of leopards in human-dominated landscapes, 

Odden et al. (2014) found that home-range size was markedly smaller and movement 

patterns (as defined by step-length distributions) more nocturnal for leopards ranging closer 

to human settlements, results that reflect a behavioral shift that may reduce conflict. 

Movement tools can also be used to plan and optimize mitigation efforts, like highway 

overpasses and conservation corridors, and provide a means to evaluate the success of 

management decisions. Indeed, policy for dealing with conflict can be expensive and 

retaliatory (McManus et al. 2015), resulting in the death of endangered animals in an often 

misguided attempt to prevent future conflict. In the case of leopards in India, for example, 

the common management practice of haphazard capture and relocation of problem animals 

has been shown to be counterproductive; although translocations may provide temporary 

local relief, they were found to increase the subsequent overall level of conflict (Athreya et 
al. 2011, Odden et al. 2014).

Movement research also has tremendous potential for addressing complex challenges where 

movement is only an implicit part of the problem. In recent years, movement data has 

become an increasingly valuable asset in disease ecology, with the vast majority of emerging 

human health threats connected in some way to the human-wildlife-livestock interface 

(Jones et al. 2008). Movement already plays a key role in disease ecology, with many 

researchers interested in answering clear-cut questions like whether host movement behavior 

changes their risk of disease, or whether infection alters host movements. Movement tools 

are particularly useful for illuminating aspects of individual heterogeneity that may directly 

influence exposure and transmission processes; effective incorporation of such knowledge 

into existing (or adapted) epidemiological models may result in a framework that offers 

more accurate predictions of spatiotemporal disease dynamics (Dougherty et al. 2018). In an 

example of this, research into the spatial organization of badgers (Meles meles) has 

demonstrated that culling, a widespread government control method for tuberculosis, can 

have an adverse effect—and actually increases contact between badgers and cattle 

(Woodroffe et al. 2006). In the future, more real-time applications may become increasingly 

prevalent not only in forecasting but also in surveillance, for example, in efforts to prevent 

spillover of bat-borne viruses like Ebola and Nipah.

Further, although our focus here has been on analyses for GPS relocation data, in most cases 

the metrics and methods presented may be used to assess other kinds of geospatial data. In 

fact, many of the tools explored here have applications outside movement ecology and 

beyond the conservation and disease ecology considered here. These tools have considerable 

potential for facilitating cross-disciplinary research. For example, cluster analyses used in 

movement ecology to identify, inter alia, kill sites and foraging patches (Tambling et al. 
2010, Seidel and Boyce 2015, Webb et al. 2008) were originally developed by researchers to 

identify disease hotspots from disease-incidence records (Kulldorff et al. 1998). In the same 
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vein, resistance mapping and network analyses have clear implications for assessing 

transportation and traffic flow.

4.2. Outside Ecology

Many of the questions and methods used in movement ecology are not unique to animal 

behavior. As the digital traces on human lives have multiplied (e.g., via mobile phones, geo-

tagged social media), the field of human mobility analysis (HMA) has become an 

increasingly important part of sociology and human geography (Chen et al. 2016). 

Movement ecology may be able to learn from the experience of GIS and HMA communities, 

as the streams of passive data available from mobile phone records and social media have 

already eclipsed those available to ecologists by several orders of magnitude. Models and 

techniques used in HMA and movement ecology often ask similar questions (e.g. can we 

infer activity or behavior from movement patterns?) and are motivated by a shared 

foundation in physics and mathematics (e.g. diffusion models and stochastic processes; 

Gonzalez et al. 2008).

Although the two fields often approach these questions at different scales, with different 

applications and impact, and using different nomenclature, movement ecologists can learn as 

much from this realm as geographers may take from movement ecology, especially as the 

resolution of available animal movement data increases to match that of HMA. In the future, 

both of these fields will face challenges to develop new methods and metrics to handle the 

proliferation of “big data” as movement tracking becomes lighter, easier, and cheaper to 

implement, and involuntary data collection becomes more ubiquitous for human mobility 

(Kitchin 2013). Further, the historical frameworks in transportation research for active data 

collection, using surveys and GPS loggers, can offer powerful means for validating new 

models and methods that would be unavailable in wildlife research (Chen et al. 2010).

It is worth noting in this context that quantitative models and approaches can only go so far, 

and behavior—human or animal—has limited predictability (Song et al. 2010a,b). 

Qualitative data and systems to collect and analyze them—a realm that has been advanced 

by human geographers and political ecologists who seek to document and understand the 

spatial nature of institutions and policy—can help to fill in some of the gaps and bring 

greater understanding to the motivations and patterns behind movement and human behavior 

more generally. In this vein, the application of qualitative data is yet another area where 

movement ecology can benefit from an integration with GIS. As there are no landscapes that 

remain untouched by humans, qualitative data and perspectives should be considered crucial 

not only to human research but also to the understanding of ecological systems. Research at 

the interface of ecology and human geography has the potential to enhance our 

understanding of both the social and ecological impacts of global change (e.g. Hardy and 

Hauer 2018).

The shared questions and challenges facing GIS and movement ecology may help facilitate 

fruitful collaboration in the future, especially if undertaken with a shared commitment to 

open science and its infrastructure, open data, and the development of open source tools on 

both sides. Though proprietary software, such as ESRI ArcGIS, is regularly used by 

ecologists, the community is moving toward open source solutions. Many of these tools are 
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developed and maintained by the GIS community’s own open geography advocates and 

organizations (OsGeo); open source GIS software packages like GRASS and QGIS and 

spatial libraries in R and Python are becoming more developed and widely used. However, 

open data sharing is often a bottleneck in both fields. Political, legal, and privacy issues with 

sharing data, especially when human subjects are involved, generally limits open data 

availability (DeLyser and Sui 2014, Sui 2014). However even in movement ecology, data 

archival or sharing has been slow to take hold, even with the existence of community-

specific infrastructures, such as Movebank, developed for the purpose (Wikelski and Kays 

2018). Continued investment on both sides of GIScience and movement ecology can help 

guide wider dissemination of these tools and the successful integration of the two fields.

5. Discussion

Today, movement data are collected at increasingly high resolutions of time and space. This 

explosion of data demands new methods and techniques to analyze them efficiently (Long 

and Nelson 2013b). Likewise, improvements in technology for tracking animal movements 

has increased demand for toolkits able to extract the behavioral and ecological factors 

behind animal movement and space use. Here we have outlined a selection of methods for 

exploring movement data of free-ranging animals that can answer animal behavior questions 

across scales, particularly as they may relate to conservation and wildlife disease issues.

As has been noted, GIS is fundamentally based on the study of geographic information in 

the context of processes that enhance spatial knowledge and support decision making, often 

on a global scale (Yuan 2017). It thus follows that GIS and movement ecology overlap 

where environmental and landscape factors are considered in the context of space use by 

individuals and populations. Although we have limited our review to applications of single 

population or community analyses, studies of whole species distributions or long term range 

shifts (Elith et al. 2010; Araújo and Peterson 2012) are representative of active areas of 

research in ecology. These distributions are rarely linked to movement ecology even though 

they naturally emerge from animals’ individual movement decisions (Jønsson et al. 2016). 

No matter how climate suitability shifts over time, the ability of species to track changing 

climates ultimately depends on their dispersal ability—but in global change biology, this is 

most commonly reduced to a single maximum upper rate (Trisos et al. 2018). Movement 

ecology is on track to play an increasingly important role, not just in refining those 

predictions, but also in tracking species’ actual responses in real time.

In short, many of the questions addressed in movement ecology overlap with those being 

asked throughout the broader GIS community: questions relating to geospatial data analyses 

that address the behavior of individuals, the demography of populations, and the structure of 

landscapes in the face of global change. Given this overlap, we are confident this review will 

help stimulate further transdisciplinary and interdisciplinary research among ecologists and 

geographers.
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Figure 1. 
Results of a “2-state, no-covariate” behavioral model of zebra “AG256” using the 

moveHMM package in R (see supplementary files for data and code). This analysis assumed 

2 distinct behavioral states and included only an intercept term, no environmental or other 

physiological covariates were included. Panels (a) & (b) show the empirical distributions of 

step lengths and turning angles respectively, using yellow and blue lines to depict the 

estimated distributions in each behavioral state. Panel (c) displays the particular trajectory 

used to produce distributions (a) and (b), with each color-coded with respect to their 

predicted behavioral state: yellow for state 1 and blue for state 2. Data exploration and 

biological knowledge of the observed individual is necessary to determine whether a model 

with more than two states clarifies or muddies interpretation of what each state is likely to 

represent. In our example, it seems probable, given the relatively uniform distribution of 

turning angles and the high density of short steps, that State 1 represents bouts of foraging 

while State 2 represents more directed movement behavior (e.g., travel; notice the apparently 

unbiased distribution of turning angles and larger step sizes).
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Figure 2. 
Comparative home range estimates for zebra “AG256” (using only the data that pertains to 

the western part of its total range—cf. Panel (c) in Fig. 1) across 3 static (i.e., time-

integrated) techniques. The simplest technique, a minimum convex polygon (MCP), 

displayed in Panel (a), defines the extent of a home range as the smallest convex polygon 

fitting a given percentage of points. Though still used widely, MCPs are criticized as poor 

estimators of an animal’s true home range because they often contain large areas unused, 

and potentially unavailable, to the observed individual, as evident in the upper-center of our 

trajectory. Panel (b) displays a common alternative: the 95% kernel utilization distribution. 

This method was developed to more rigorously quantify an animals actual space use and 

ultimately defines an animal’s home range as a bivariate probability density function, 

calculating the probability of relocating an animal in any given location (Worton 1989). 

Panel (c) offers a non-parametric approach, calculating the home range of the zebra using a-

LoCoH, the adaptive local convex hull method developed by Getz et al. (2007) that 

constructs kernels at each relocation using all points within a total distance a such that the 

distances of all neighboring points to the reference point sum to a value less than or equal to 

a. In our example, we used a = 75000 m, which provided a contiguous range that trades-off 

fewer false positives at the expense of more false negatives than the other two methods. 

There is much debate and continued development in the area of home-range estimation and 

researchers must be conscious of the differences across metrics, because results often vary 

widely and may offer different biological interpretations (e.g., defining the extent of the 
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habitat available to the animal for selection versus the area traversed in daily activity; see 

Fieberg and B¨orger 2012). For more detail on the construction of these three home range 

measures, see Appendix B.
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Figure 3. 
Predicted habitat selection using a step-selection function for zebra “AG256”. 

Fundamentally, selection functions calculate the selection ratio of any given resource unit by 

comparing characteristics of “used” units to those “available” to the animal, typically using a 

logistic regression framework. Step-selection functions differ from traditional RSFs by 

defining what is “available” according to randomly drawn steps from each point rather than 

a simple random sample of the home range as a whole. Here we display AG256’s predicted 

selection ratio for a portion of Etosha National Park according to 4 environmental layers: 

distance to primary roads, distance to functional water sources, mean greenness, and mean 

wetness. On top of the predicted selection layer, the original trajectory is plotted in black. 

Note that only the western part of the trajectory, which occurs during the wet season (Zidon 

et al. 2017), is used to construct the home ranges depicted in Fig. 2). For a complete 

discussion of the regression and details regarding the selection of available steps and the 

environmental layers used, please see Appendix B.
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Table 1.

Path Metrics & Ensuing Methods

Metrics Description Suggested References

Step size (length) The displacement between two consecutive coordinate 
fixes

Calenge et al. 2009, Turchin 1998

Heading (or absolute angle) The direction of heading relative to some standard (e.g., 
initial direction, compass North)

Calenge et al. 2009, Turchin 1998

Turning angle The change in heading from one step to the next Calenge et al. 2009, Turchin 1998

Displacement The straight-line distance from the beginning to the end 
point of a path

Calenge et al. 2009, Turchin 1998

Net squared displacement (NSD) The square of the straight-line distance between the start 
of the trajectory and the current location

Calenge et al. 2009, Turchin 1998

Persistence velocity The speed of movement in the direction of heading Gurarie et al. 2009

First passage time The time taken to exit a circle of prescribed radius r from 
a relocation point at the center of this circle

Fauchald and Tveraa 2003, McKenzie et 
al. 2009

Straightness index The ratio of NSD to the path length (sum of the step 
sizes) of the trajectory segment of interest

Benhamou 2004

Tortuosity The level of convolution in a movement path relative to a 
straight line

Benhamou 2004

Residence time The amount of time spent within a selected area Barraquand and Benhamou 2008

Return time (inter-visit gap) The amount of time it takes an individual to return to a 
particular area after its last departure

Lyons et al. 2013

Revisitation (or return) rate The rate at which an individual returns to a particular area, 
where distinct visits are based on a minimum return time 
tr

Lyons et al. 2013, Van Moorter et al. 2016

Mean duration The average amount of time spent per visit over a number 
of visits to a selected area

Lyons et al. 2013

Time to return The duration of time between consecutive visits to a 
selected area

Bar-David et al. 2009

Overall dynamic body acceleration 
(ODBA)

The sum of the absolute values of three orthogonal locally 
time-averaged accelerations

Gleiss et al. 2011, Qasem et al. 2012

Behavioral state Association of one of several discrete modes of behavior 
with each point on the trajectory

Getz and Saltz 2008

Methods (in the context of movement ecology)

Cluster analyses Methods for grouping trajectory points (or segments) that 
represent the same behavioral state (or syndrome)

Van Moorter et al. 2010 (or Abrahms et al. 
2017)

Change-point analyses Methods for detecting points on a trajectory where 
switches in behavioral states occur

Gurarie et al. 2009

State-space analyses (hidden 
Markov models)

Methods for detecting underlying behavioral states and 
estimating state transition probabilities

Patterson et al. 2009

Accelerometry visualization Using tri-axial accelerometer data (e.g., OBDA) to 
evaluate behavioral states

Shepard et al. 2008

Wavelet analysis Method for detecting periodically varying movement and 
behavior patterns across all temporal scales

Polansky et al. 2010

Recursion analyses Methods for detecting movement trajectory recursions 
(returns to prior locations)

Berger-Tal and Bar-David 2015
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Table 2.

Space-Use Metrics & Methods (in the context of movement ecology)

Featureless Landscapes Description Suggested References

Home range estimation The estimation of habitually-used areas with function-dependent 
boundaries (e.g. summer range, defended territory, core territory). 
Most commonly accomplished using densities of use calculated 
from estimates of the animals’ locations across a landscape

Powell and Mitchell 2012, Fieberg 
and Borger 2012

Utilization distribution Relative frequency distributions of an animal’s location over 
space for a specified period of time

Worton 1989

Home range fidelity Measures of home-range overlap among individuals (e.g., 
volumes of intersection) and home-range stability over time

Fieberg and Kochanny 2005, 
Millspaugh et al. 2004

Core area methods Analyses for identifying areas of most consistent use/selection 
from individuals’ relocation histories

Vander Wal and Rodgers 2012

Conspecific proximity methods Methods for estimating and characterizing the interactions among 
and impact of conspecifics on movement trajectories

Delgado et al. 2014

Featured Landscapes

Resource selection functions 
(RSFs)

Statistical models producing values proportional to the probability 
of use of a resource unit. RSFs are often constructed using a 
logistic regression framework comparing points used by an animal 
to those “available” to it within its home range

Manly et al. 2002, Boyce and 
McDonald 1999

Step selection functions (SSF) A model of resource selection that includes movement behavior to 
constrain selection and availability. In an SSF, each step at time t 
is paired with one or more random steps with the same starting 
point drawn at random from a distribution of step lengths and 
turning angles.

Thurfjell et al. 2014

Landscape resistance Measure of the relative difficulty (e.g., energy used per unit 
distance moved) for individuals to move as a function of 
topography and environmental features

Zeller et al. 2012

Least cost methods Analyses for finding the least difficult (least energy expended) 
path between two points. May be extended to avoid risks of 
encountering competitors, predators, etc.

Walker and Craighead 1997, 
Adriaensen et al. 2003

Circuit theory An application of electrical circuit theory to model landscape 
connectivity and resistance through graph and random walk 
theories

McRae et al. 2008
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