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Abstract

Making cancer treatment more effective is one of the grand challenges in our health care system. 

However, many drugs have entered clinical trials but so far showed limited efficacy or induced 

rapid development of resistance. We urgently need multi-targeted drug combinations, which shall 

selectively inhibit the cancer cells and block the emergence of drug resistance. The book chapter 

focuses on mathematical and computational tools to facilitate the discovery of the most promising 

drug combinations to improve efficacy and prevent resistance. Data integration approaches that 

leverage drug-target interactions, cancer molecular features, and signaling pathways for predicting, 

understanding, and testing drug combinations are critically reviewed.
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1 Introduction

1.1 The State of the Art in Cancer Drug Discovery

Aberrant alteration of protein kinases plays fundamental signaling transduction roles in 

human cancer progression. Over the last decade, the overall efforts in cancer drug discovery 

have made a clear shift to focus on targeted drugs directed toward those deregulated kinases 

in cancers but not in normal tissue. Drugs that aim at selectively inhibiting deregulated 

kinases have shown unprecedented promise for effective cancer treatment with minimal 

toxicity. However, we are seeing that hundreds of such targeted drugs have entered clinical 

trials but have most often had disappointing efficacy due to varying treatment responses. 

This is most likely because we do not have sufficient understanding on which patient 

subpopulations are the expected responders and what the predictive biomarkers for treatment 

efficacy are.

To achieve the ultimate objective for precision medicine, large numbers of patient-derived 

samples with a wide range of molecular and clinical data are critical. The emergence of 

next-generation sequencing has enabled us to read the whole genome or the exome of cancer 

cells, sparking great expectation to identify novel protein targets for more effective and 

selective treatment opportunities. An example of such large-scale efforts is The Cancer 

Genome Atlas (TCGA), where genome sequencing data has been made available for more 

than 10,000 patient samples of 33 major types and subtypes of cancer [1]. These studies 

have revealed not only a remarkable degree of genetic heterogeneity between and within 

tumors but also enormous loads of passenger alterations confounded with often less obvious 
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driver alterations [2]. To make matters worse, even when driver alterations can be found, 

they do not necessarily link to their expected treatment responses due to the rewiring of 

signaling pathways, such as the unresponsiveness to B-Raf proto-oncogene (BRAF) 

inhibition in many cancers including melanoma [3]. Furthermore, many known driver genes 

are not pharmacologically druggable as there is a lack of available drugs in the clinics [4]. 

How to best utilize the existing chemical probes to design a more potent drug has thus 

become a pressing task in medicinal chemistry. Taken together, it is clear that we still have a 

major gap between our understanding of the cancer genome and the in vivo behavior of 

cancers. As more and more cancer genome sequence data from tumors is generated, we will 

discover novel links, but to effectively make the links between cancer genomes, epigenomes, 

and cancer therapeutics, we will need powerful functional screening and profiling 

methodologies. The functional profiling techniques include high-throughput drug screening, 

RNA-based interference (RNAi), and more recently CRISPR-Cas9 genome-editing 

approaches. By the analysis of how tumor cells respond to the genetic or pharmacological 

perturbations, one may identify the therapeutic targets which are functionally related to the 

driver mutations while avoiding targets associated with unwanted side effects. The 

availability of functional screening and molecular profiling for the same patient samples, 

together with a comprehensive understanding of drug-target interactions and cancer 

signaling pathways, should dramatically improve our ability to develop data integration and 

modeling approaches to fill the knowledge gap between molecular biology and 

pharmacological response of a cancer, to achieve the ultimate goal being the rational design 

of targeted therapies given the disease profiles of individual patients [5, 6].

1.2 Need for Rational Designs of Drug Combinations

However, multiple clinical studies have shown that even when there is a dramatic initial 

treatment response, cancer cells with high mutational potential and functional redundancy 

can easily develop drug resistance by emerging activation of compensating or bypassing 

pathways [7, 8]. In fact, acquired resistance to therapy is not only common but also expected 

to be responsible for the poor prognosis of most cancers. Compared to standard 

chemotherapy, the progression-free survival rates remain poor for targeted therapies despite 

the improvements in the initial responses; for lung cancer patients receiving gefitinib, an 

epidermal growth factor receptor (EGFR) inhibitor; and for melanoma patients receiving 

vemurafenib, a BRAF (V600E) inhibitor [9, 10]. It is now widely acknowledged that 

effective cancer treatments need to go beyond the traditional “one disease, one drug, one 

target” paradigm, which is often too simplistic for the understanding and treatment of many 

complex diseases [11]. Polypharmacology, on the contrary, focuses on developing multi-

targeted drugs or drug combinations, which has recently been introduced as an alternative 

paradigm to drug discovery showing great promises to reach effective and sustained clinical 

responses [12–14]. A combination of targeted drugs can potentially reduce the chances of 

resistance by inhibiting redundant pathways. Effective drug combinations allow for reduced 

dosages and therefore also minimize the toxicity and other side effects associated with high 

doses of single drugs. On the other hand, systematic exploration of targeted-drug 

combinations has also revealed functional links between drug efficacies and cancer genetic 

dependencies and thus supports the feasibility of using chemical probes to identify novel 

synthetic lethal and synergistic interactions as biomarkers for cancer diagnosis and treatment 
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[15, 16]. However, despite the emerging possibilities for perturbing gene functions with a 

wide spectrum of RNAi/CRISPR libraries or using diverse compound collections, 

synergistic interactions between genes and/or drugs have remained extremely rare, posing 

challenges for developing more efficient search strategies for the discovery of drug 

combinations [17].

Similar to single drugs, the identification of drug combinations is largely driven by 

serendipity or a trial-and-error process using high-throughput screening [18]. However, such 

a brute-force search strategy becomes quickly infeasible, as the number of possible drug 

combinations may go up exponentially beyond what any automated experimentation can 

handle. Furthermore, the heterogeneity of cancer genomics makes drug combination 

discovery a rather daunting task as there are more than 200 subtypes, each of which is 

characterized by a unique profile of molecular alterations that may requires very specific 

treatment options to achieve sustainable efficacy [19]. Therefore, a rational design that could 

make the best use of the existing knowledge to prioritize the most promising drug 

combinations has the potential to greatly speed up the currently rather suboptimal drug 

screening efforts. Despite the pressing needs for such rational design strategies, there is a 

lack of systematic experimental-computational approaches that offer the possibility to 

predict and prioritize the most potential drug combinations warranting further experimental 

and clinical validations for specific cancer types. Missing such system-level drug 

combination design strategies has increasingly become the major bottleneck hindering the 

future development of cancer drug discovery.

Due to the complexity in cancer biology as well as in drug-target interactions, it remains a 

highly challenging endeavor for a drug combination to reach the clinic successfully. I would 

argue that a paradigm shift in both experimental and computational frameworks is needed to 

achieve such an ambitious goal. Novel experimental designs that enable the profiling of 

pharmacological and molecular biology features from the same cancer patients are essential 

for us to understand the mechanisms of drug combinations in a specific pathological context. 

Furthermore, there has always been a critical need for more efficient and robust informatics 

tools which can maximize the knowledge discovery from the ever-increasing massive 

medicinal data [20]. The data integration at the systems pharmacology level may eventually 

help us identify the drug response biomarkers with which we can predict the treatment 

outcomes for patient subpopulations or even individual patients [21].

The remaining sections of the chapter follow closely the recent development of experimental 

and computational methods for rational design of drug combinations. Informatics and 

modeling approaches that have shown potential to facilitate our understanding of drug 

combination effects are highlighted from the perspective of drug-target identification and 

modeling of cancer signaling pathways. To understand the mechanisms of action of 

compounds, identifying the most disease-relevant drug-target interactions is essential. There 

exist quite a few major databases that host the experimental bioactivity data. We provide an 

overview of the current database resources and also highlight the challenge of knowledge 

discovery from the heterogeneous public and literature content. To predict the combination 

of drugs, many mathematical and machine learning models have been proposed. Special 

focus will be given to the latest development of network pharmacology models to link the 
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drug perturbations and molecular biology. Upon a valid informatics approach to predict the 

most potential drug combinations, experimental validation will be needed. Formal statistical 

testing methods to characterize the degree of interaction in the drug combination 

experimental data are briefly reviewed. Finally, personalize medicine strategies to apply 

these computational-experimental pipelines to integrate the drug screen data and molecular 

profiles for individual patient-derived cancer samples will be summarized.

2 Informatics Approaches to Make Sense of Drug-Target Interactions

Most drug molecules, despite initially designed to be very specific, often produce 

therapeutic and adverse effects by modulating multiple cellular targets [22]. Kinase 

inhibitors, in particular, are often competing with the high concentrations of adenosine 

triphosphate (ATP) for binding of the targets and therefore result in promiscuous interactions 

with many targets that share similar ATP-binding sites. The efficacy and toxicity of such a 

compound is usually arising from the interplay between the multiplexed drug-target 

interactions and the dynamic responses of the biological systems. Improved understanding 

of such polypharmacological effects is thus crucial for the development of more effective 

and safe drug treatments. To predict a drug or drug combination response, there is a clear 

need to obtain more comprehensive and context-dependent drug-target interaction data on a 

proteome-wide scale. Public drug-target interaction databases, such as ChEMBL [23] and 

PubChem [24], contain the vast majority of experimental bioactivity data curated from the 

literature. However, these deposited bioactivity values often lack sufficient annotations on 

the underlying experimental conditions, making it difficult to evaluate the reliability of the 

derived drug-target relationships when comparing multiple studies done usually in different 

assay formats [25]. On the other hand, computational methods have been utilized to infer 

novel drug-target interactions from existing experimental data. The predictive features that 

were identified from chemical or proteomic fingerprints have provided useful information to 

guide the design of more specific and potent compounds. However, how to leverage these 

predictive features derived from single drug-target interactions for the optimization of multi-

targeted drugs remains largely unknown.

2.1 Information Retrieval from the Literature and Databases Resources

Targeted drugs such as kinase inhibitors are promiscuous, with multiple on-target and off-

target binding contributing to both the drugs’ efficacy and side effects. Therefore, it is of 

ultimate importance to confirm the therapeutic significance of a drug-target interaction by 

measuring its binding affinity, the change of enzymatic activity of the target protein, and its 

downstream effectors in the signaling pathways. Recent technological advances have led to 

an explosion of rapid and cost-effective bioactivity assays to probe the drug-target 

interactions for kinase inhibitors. These bioassays can be generally classified into three 

major categories: binding assays, functional assays, and cellular assays [26]. Binding assays 

and functional assays often rely on recombinant or purified enzymes, which make it suitable 

to screen a large number of kinase inhibitors against a wide coverage of human kinome in 

vitro. For example, the KINOMEscan bioassay platform has been developed to generate 

binding affinity data for over 80 kinase inhibitors across more than 400 kinases including 

their disease-relevant mutants [27–30]. Metz and colleagues have applied functional assays 
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to collect the enzymatic inhibition profiles across 172 kinases for 1493 publically available 

compounds [31]. In the same year, another major large-scale functional profiling was 

reported for 178 kinase inhibitors and 300 wild-type kinases, where the enzymatic activities 

were measured at 500 nM of the compounds in the presence of 10 μM ATP [32]. A more 

recent functional screen using the same assay format has been focused on 76 clinically 

important mutant kinases and 183 compounds [33]. Despite the differences in the binding 

and functional assays, the overall consistency of these studies seems reasonably good, 

indicating that the binding affinity of a drug-target interaction can predict its inhibition of 

catalytic activity [25, 34]. On the other hand, cellular assays measure the drug-target 

interactions in the living cells and thus allow for the confirmation of inhibition activity in the 

native biological systems. The trade-off, however, is the low-throughput compared to 

biochemistry-based binding and functional assays. One recent breakthrough of this kind is 

the use of heat shock protein 90 (HSP90) chaperone to effectively detect ligand binding to 

kinases in living cells, which led to the target profiling of 30 kinase inhibitors against more 

than 300 kinases [35]. Compared to binding and inhibition assays, cellular assays often 

utilize native kinases in a particular cellular context and thus are expected to reflect more the 

actual kinase function and regulation in the biological systems [36].

These kinase profiling data have revealed a much higher level of target promiscuity for many 

compounds previously thought to be very specific. The unexpected drug-target interactions 

may potentially lead to the discovery of new therapeutic indications for many existing 

compounds, especially if the drugs are Food and Drug Administration (FDA) approved for 

which the safety profiles have already been established. For example, a compound axitinib 

was originally approved as a specific vascular endothelial growth factor receptor (VEGFR) 

inhibitor for renal cancer but recently has been shown in the KINOMEscan platform to bind 

strongly to the T315I mutant of breakpoint cluster region (BCR)-Abelson murine leukemia 

viral oncogene homolog 1 (ABL1) fusion gene, which confers acquired imatinib resistance 

in leukemia. Treating of a chronic myeloid leukemia patient with axitinib resulted in a rapid 

clearance of BCR-ABL1(T315I)-positive cells from the bone marrow, providing further 

clinical evidence for axitinib’s potential to be “repositioned” as an effective drug for 

leukemia [37]. In the more recent screening of 183 kinase inhibitors against 76 mutant 

kinases, an FDA-approved EGFR inhibitor erlotinib has been shown to inhibit the T674I 

mutant of platelet-derived growth factor receptor alpha (PDGFRα) which also induces the 

imatinib resistance in many cancers [33].

With drug-target profiling at the kinome scale being increasingly reported, there have been 

extensive efforts to deposit those bioactivity data from the literature into public repositories 

to facilitate the knowledge sharing. PubChem Bioassay and ChEMBL are currently the two 

major databases, where a vast amounts of experimental drug-target interaction data are 

curated and updated regularly. In PubChem Bioassay, the majority of the data is uploaded by 

a list of data providers including various research organizations and other databases 

including ChEMBL. In contrast, ChEMBL is utilizing a top-down strategy by manually 

curating the published data from the main medicinal chemistry journals, many of which have 

been annotated with detailed experimental conditions and source information. However, 

caution should be taken when one needs to extract relevant data for drug-target interactions, 

as a target by the definition in ChEMBL could mean a single protein or protein complex, or 
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in some cases, it may refer to a cell, a tissue, or a whole organism. Both PubChem Bioassay 

and ChEMBL provide a number of web tools to facilitate the queries. For example, 

PubChem Bioassay provides an identifier exchange program to mapping compound IDs 

between different systems. ChEMBL provides a similar web service called UniChem for 

cross-reference [38]. These ID mapping systems will greatly expand the search space of 

drug interactions into many related database resources to facilitate the integration of 

molecular biology and pharmacology data. Other major databases such as BindingDB [39] 

and GtoPdb [40] contain a less number of data points, but with a higher level of expert 

curation and annotation.

Utilizing the bioactivity data from these major databases, more focused data curation efforts 

for kinase drug-target interactions have also been made. For example, by applying a model-

based method called KiBA, Tang and colleagues have compiled a drug-target interaction 

matrix of 52,598 compounds with 467 kinases by integration of multiple bioassay types 

extracted from ChEMBL [25]. The DrugKiNET database has manually curated the 

bioactivity data for over 800 compounds against 413 kinases from multiple sources, based 

on which it provides the in silico predictions of 200,000 drug-target interactions. Table 1 

provides a brief summary of the aforementioned bioactivity databases and, as a comparison, 

also lists several less quantitative databases such as DrugBank, TTD, and MATADOR, 

where the names of commonly known primary targets are given but often missing their 

corresponding experimental bioactivity values.

2.2 Computational Methods for Predicting Drug-Target Interactions

Despite the increasing availability of high-throughput kinase profiling, the number of drug 

targets that are confirmed in such an experiment is still very limited compared to the vast 

majority of unknowns. In light of high-quality experimental data, in silico prediction 

methods aim to capture important chemical or molecular features that may predict the 

likelihood of an active compoundtarget interaction. These predictive features are particularly 

needed for our understanding of kinase inhibitors, as the target promiscuity has been 

observed for many seemingly unrelated kinases. Machine learning methods such as 

RandomForest, support vector machines (SVMs), and ElasticNet have been frequently 

applied in many large-scale predictions for various classes of drug targets including kinases 

[41], ion channels [42], G-protein-coupled receptors (GPCRs) [43], and nuclear receptors 

[44]. Table 2 lists a few popular machine learning methods, their implementation in R 

(https://cran.r-project.org/), and a few recent applications for drug-target predictions. The 

readers are referred to, e.g., Ding et al. for a more comprehensive review on this topic [45]. 

A common principle of these machine learning approaches is to predict novel drug-target 

interactions based on the features that are inferred from similar compounds and targets in a 

training data. Compounds are often represented by a list of chemical descriptors which can 

be either atom-type based or structure based. Utilizing a distance metric such as the 

Tanimoto coefficient, a similarity matrix for the compounds can be derived. On the other 

hand, target similarity is often determined by the amino acid sequences or the fingerprints 

derived from the 3D structures of the proteins. A machine learning model then utilizes the 

training data to determine the importance of these compound and target features. Depending 

on the areas of applications, a prediction can be made either as a classification of active 
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versus inactive interactions or as a regression on the actual bioactivity values for novel 

compounds on untested targets.

3 Mathematical Modeling for the Prediction of Drug Combinations

Since many cancers rely on the hyperactivation of specific signaling pathways, it is no 

surprise that protein kinases have been considered as one of the most druggable classes of 

anticancer targets. Despite their fundamental roles in cancer biology, only a few kinases are 

fully functionally annotated. With the improved understanding of the up/downstream effects 

of the kinase targets in the signaling pathways, the mechanisms of action of kinase inhibitors 

can be elucidated more systematically in the context of specific cellular environments. More 

importantly, the use of signaling pathways may help also link the drug responses with the 

genetic alterations and thus facilitate the translation of the vast genomic information into 

disease diagnosis and treatment strategies. The knowledge of cancer signaling pathways, 

when incorporated into the context-dependent drug-target interaction data and molecular 

feature data, should provide a rich set of information to construct a network pharmacology 

model. Such a network modeling should provide the functional links between disease 

biomarkers and drug targets, by which the cellular response of a multi-targeted drug or drug 

combination can be predicted and tested in follow-up experiments.

Given that the drug-target interaction data of high confidence can be obtained from both 

experimental and computational methods, the next important question is how to utilize 

specific chemistry and molecular biology information to explain the observed interactions 

between the compounds and furthermore predict the drug combination effects for a new 

cellular environment? The prediction of drug-drug interactions is largely relying on our 

understanding of drug targets as well as their mechanistic links in the context of molecular 

biology. There exist multiple methods where different modeling techniques adopted. Based 

on the input data that is needed, I make a rough classification of the existing drug 

combination prediction methods into gene expression based, signaling network based, and 

drug-target based.

3.1 Gene Expression-Based Methods

Gene expression-based methods infer the drug combination effects from the cellular 

responses of drug perturbations such as the transcriptomics changes before and after drug 

treatments. One popular source of such data has been provided by the Connectivity Map 

(CMap) study, where 1309 compounds have been screened of gene expression signatures at 

the genome scale against a panel of five cell lines using the microarray techniques [51]. The 

rational of relating drugs with transcriptomics is that the mechanisms of actions of drugs 

often result in the biological processes or pathways that may be enriched in the gene 

expression profiles. The gene expression-based methods have been shown great potential in 

the DREAM7 drug combination challenge, where the participants were asked to predict the 

degrees of synergy on 91 drug pairs on a B-cell lymphoma cancer cell line [52]. The 

winning method DIGRE utilized the gene expression signatures between paired drugs to 

derive a linear regression model where the residual effect can be attributed to a drug synergy 

score [53]. Using a similar concept, the CMap data has also been applied in a Combinatorial 
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Drug Assembler model where the drug pairs with a higher overlap in their gene expression 

patterns are predicted to be more synergistic, with a certain level of experimental validations 

done for non-small cell lung cancer and triple-negative breast cancer [54].

3.2 Signaling Network-Based Methods

Signaling network-based methods annotate the cancer signaling pathways with a set of mass 

action and enzyme kinetics equations, by which one can derive the quantitative prediction of 

the dynamic changes of the cancer cells responding to drug perturbations. Therefore, 

accurate prior knowledge on the drug targets and their related proteins in the signaling 

pathways is needed for the prediction of drug combinations. Ideally, the topology of the 

signaling network and its associated kinetic parameters should be translated into a series of 

ordinary or partial differential equations (ODEs or PDEs) to capture the behaviors of the 

cellular system. The knockdown effects of a particular drug combination can be inferred by 

solving the differential equations, linking the target perturbation with the cell response 

phenotypes such as viability or toxicity. Compared to the gene expression-based methods, 

the differential equation-based methods link the drug-target interactions with the signaling 

pathways, which can provide mechanistic explanations on the observed drug interactions. 

For example, an ODE-based modeling has been applied to infer the effects of a combined 

inhibition of cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor 

(IGF1R) on the AKT signaling pathway [55]. A limitation of such a method, however, is that 

the detailed kinetic parameters for a particular cellular context are often difficult to obtain 

due to experimental complexity. For cases where the quantitate prediction is impossible, an 

alternative approach has been proposed to utilize the logical rules that are derived from the 

literature to build a Boolean network [56]. Despite the apparent oversimplification of the 

cellular dynamic systems, such a logic-based method may still allow for a binary prediction 

on the drug perturbations. Furthermore, solving the differential equations often requires 

extensive computer simulations that practically hinder the applications for large signaling 

networks. A recent methodological improvement proposed by Molinelli et al. involved a 

probabilistic algorithm called belief propagation which can efficiently estimate the output of 

the ordinary equations, so that the effects of hundreds of proteins can be modeled 

simultaneously [15].

3.3 Drug-Target-Based Methods

Signaling network-based models rely on empirical cellular dynamic models, which may not 

be directly applicable for individualized drug combination prediction since accurate kinetic 

parameters under a particular cancer cellular environment are largely unknown. Gene 

expression profiles for drug responses, on the other hand, are not yet routinely profiled in a 

typical high-throughput drug screening setup and thus may provide limited translational 

potential in clinical settings. Further, many existing computational methods often rely on the 

primary targets (i.e., intended on-targets) of a cancer drug to infer the mechanism of action. 

However, it has been increasingly recognized that targeted drugs especially kinase inhibitors 

elicit their therapeutic efficacy through not only on-targets but also unintended off-targets. 

Application of these methods on kinase inhibitors without considering the full spectrum of 

drug-target interactions might lead to insufficient understanding of the drug combination 

effects.
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Recently, there have been initial efforts to infer the drug combination effects by exploiting 

the similarity of drugs in terms of their proteome-level drug-target profiles [57, 58]. The 

main strategy is to consider a drug combination as a combination of targets, by which the 

sensitivity of a drug combination can be estimated by checking whether its targets are 

essential for cancer survival. Such a target-based approach requires two sources of input 

data, the drug-target interaction profiles, and the monotherapy drug sensitivities. Drug-target 

interaction data, as mentioned in the previous section, can be either obtained from public 

databases or from the prediction of computational methods. The monotherapy drug 

sensitivity data is then utilized to determine the essentiality of the targets. Due to the 

technical advances in high-throughput drug screening, such monotherapy drug sensitivity 

data has been increasingly available in public databases such as CTRP, CCLE, GDSC, and 

NCI-60, where a large number of compounds have been tested on a vast majority of cancer 

cell lines (Table 3). Given that the monotherapy drug sensitivities are often cell line specific, 

the target-based methods may accordingly capture the cell-specific essential targets with 

which the potential drug combinations can be predicted also at the individual cell level. This 

may potentially lead to a personalized medicine design that allows further experimental 

validation of the most promising drug combinations for a specific cancer type [59, 60].

4 Statistical Analyses for Assessing the Synergy in Experimental Drug 

Combination Data

To be able to access the clinical significance of a drug combination, high-throughput 

screening that probes the cellular responses has become the standard approach. The current 

high-throughput drug combination screening typically enables a pair of drugs tested in a 

dose-response matrix. Based on the degree of interactions, a drug combination is commonly 

classified as synergistic, antagonistic, and noninteractive (Fig. 1). A synergistic drug 

combination is expected to boost up the effects more than what a single drug can achieve 

and thus has been extensively pursued in the clinics. However, despite the increasing 

popularity of this topic, there is currently a lack of consensus on the definitions of synergy, 

which often leads to significant confusion on the interpretation of experimental data [61]. 

Further, a generally accepted guideline for the choice of appropriate experimental designs 

and formal statistical testing are largely missing. With the rapid emergence of automated 

screening platforms, there is a critical need to develop standardized statistical methods for 

evaluating the significance of the most promising combination therapies.

4.1 Reference Models for Noninteraction

To be able to assess the degree of synergy, the null hypothesis of no synergy needs to be 

clearly defined. There are three common reference models for the characterization of no 

synergy: highest single-agency model [62], Loewe additivity model [63], and Bliss 

independence model [64]. The highest single-agency (HSA) model assumes that the 

expected combination effect is the maximal effect that any individual drug can achieve, 

representing the common sense that a drug combination should produce additional efficacy 

compared to monotherapy. The synergy according to the HSA model, due to its simplicity in 

the calculation and easy interpretation as clear clinical benefits, has become the criteria of 

FDA for the approval of drug combinations. However, the use of HSA model may produce a 
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high level of false discovery rate in preclinical drug screen studies as it does not correct for 

the dose-additive effect of a drug combined with itself [65]. To make the classification 

criteria for synergy more stringent, the Loewe additivity and Bliss independence models are 

preferred in many of the drug combination screen studies. The Loewe additivity model has 

been favored in studies where individual drug dose-response curves can be fitted using 

similar parameters [66–68]. The synergy over the Loewe model might reveal a drug 

combination with common mechanisms of action (e.g., acting on the same targets or 

different targets in the same signaling pathway), which produce similar dose-response 

patterns. The Bliss independence model, on the other hand, can be justified in cases where 

two drugs are targeting different pathways and thus elicit their effects independent of each 

other [69]. The Bliss independence model may identify synergy when the dose responses for 

the two drugs are expected to be different [70, 71]. However, these case studies also 

concluded that the Loewe and Bliss models seldom agreed completely with each other, and 

there are examples where a drug combination is synergistic according to one model but 

antagonistic according to the other [72]. Recently, there have been efforts to combine the 

advantages of Loewe and Bliss models into a synergy interaction landscape model, which 

showed promises to identify more informative interaction patterns over the tested dose-

response matrices [73]. However, whether there exists a standardized guideline for choosing 

the optimal reference model is still a topics under considerable debate [61, 74–76]. As a 

summary, Table 4 listed the main assumptions of these commonly used models and the 

relevant software implementation tools.

4.2 Experimental Design and Statistical Testing

Despite the many ways of defining synergy, there is lack of common agreement on what the 

synergy is and how to statistically test it using what experiments. In line with previous 

synergy models, one may think of using the Bliss model due to its simplicity in the 

experimental design and interpretations. In a typical highthroughput drug screening setting, 

the drug combination is usually tested in a dose-response matrix format where multiple 

doses have been tested in combination, and the phenotypic readouts have been given for 

each cell in the matrix. The advantage of using doseresponse matrix is that higher resolution 

can be obtained about where and how much synergy effects can be detected. One would 

propose the use of dose-response matrix experimental data for better data analysis and more 

confident experimentation. For reliable estimation, replicates are always needed, and the 

clinical significance, for example, the dose ranges and the effect size, is always kept in mind 

for the decision-making [79].

5 Conclusions

A pressing challenge in the development of personalized cancer medicine is to understand 

how to make the most out of genomic information from a patient when evaluating treatment 

options. Compared to the current cytotoxic drugs, which typically affect both normal and 

cancerous cells, targeted-drug combinations address the fundamental challenges of drug 

resistance and clinical safety. This book chapter presents an overview on the innovative 

informatics strategies to suggest effective treatments that can lead to improved efficacy and 

reduce the number of expensive but inefficient treatments. Furthermore, the herein described 
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approaches ranging from drug-target predictions to mathematical modeling of target-disease 

signaling networks pave the way to move beyond the current trial-and-error clinical 

assessment of drug combinations toward more systematic prediction and evaluation of the 

most effective drug-target combinations for each patient. The informatics approaches for 

analyzing drug combination data will also contribute significantly to the standardization of 

the experiment protocols and in the long run should facilitate the replicability and 

interpretation of experimental results.

As a critical component in rational design of drug combinations, computational methods will 

enable us to effectively reduce the search space for determining the most promising 

combinations and prioritizing their experimental evaluation. However, to achieve its eventual 

clinical translation, identifying cancer patients who will respond to the combination therapy 

is crucially important but to date remains an unresolved issue. The state-of-the-art patient 

stratification is often done via genomic characterization of the cancer samples, but the 

genomic similarity does not necessarily predict the drug response similarity. In contrast, the 

ex vivo drug screening using patient-derived samples has shown tremendous translation 

potential, as those drug sensitivity profiles often provide more clinically relevant information 

on the possible treatment options for individual patients. Recently there have been a few 

intensive drug screening and molecular profiling campaigns for patientderived samples (e.g., 

[80]). Data integration approaches to combine the molecular profiling of tumors with 

comprehensive testing of their drug sensitivity and resistance would make it possible to 

identify novel personalized combinatorial therapies in particular for chemotherapy-resistant 

patients. By efficiently integrating the informatics approaches with the patient-derived drug 

testing and molecular profiling platforms, the cost-effective and widely applicable 

computational modeling strategies have the potential to speed up the experimental work and 

promote translational breakthrough in personalized medicine.
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Fig. 1. The quantitative scoring of drug combination screen data.
(a) A typical high-throughput drug combination screen utilizes a dose-response matrix 

design where all possible dose combinations for a drug pair can be tested. Colors in the 

dose-response matrices indicate different levels of phenotypic responses of the cancer cell. 

(b) Depending on the interaction patterns from the dose-response matrices, the drug 

combinations need to be quantified by a synergy score and depending on the distribution of 

synergy scores over the dose matrix as noninteractive, antagonistic, or synergistic
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Table 1
Major database resources for extracting drug-target interactions

Category Database (URL) Data statistics Essential features

Quantitative PubChem Bioassay (https://pubchem.ncbi.nlm.nih.gov/) >2.8 M compounds
>8 K protein targets

Data are uploaded by >50 organizations 
worldwide

Versatile web services facilitate ID 
mapping, information retrieval, and 
structural-based data analysis

ChEMBL (https://www.ebi.ac.uk/chembl/) >1.5 M compounds
>110 K targets

Data are extracted from major medicinal 
publications with a mix of automated and 
manual curation

Web interfaces enable the queries of 
compounds, targets, and documents as well 
as an easier download of the result data

The UniChem ID mapping tool produces 
cross-references between >20 different 
databases

BindingDB (https://www.bindingdb.Org/) >0.5 M compounds
>6 K protein targets

Recently a major update has been made for 
the data content and the web interface

Journals that are not covered by ChEMBL 
are further curated

Quantitative bioactivity data are extracted 
from recent US patents

GtoPdb (http://www.guidetopharmacology.org) >6 K compounds
>1.3 K protein targets

Data is produced by a group committed 
researchers with a deep level of expert 
curation and annotation

Kinase targets might be underrepresented 
compared to the other target classes such as 
GPCRs and ion channels

DrugKiNET (http://www.drugkinet.ca/) >800 compounds
>400 kinase targets

A company data curation effort focusing on 
kinase inhibitors and their targets

Links to the publication sources are 
available

KiBA (http://pubs.acs.org/doi/suppl/10.1021/ci400709d) >52 K compounds
>400 kinase targets

An informatics approach to integrate 
replicates from multiple assay formats as a 
summary bioactivity score

Data is freely available as the 
supplementary material accompanying the 
methodology publication

K-Map (http://tanlab.ucdenver.edu/kMap/) 250 kinase inhibitor
>400 kinase targets

A web-based visualization program for 
investigating kinase inhibitor target 
promiscuity

Descriptive DrugBank (http://www.drugbank.ca/) >10 K compounds
>4 K protein targets

Focusing more on the existing knowledge 
on the pharmacology, ADMET, and 
primary targets

TTD (http://database.idrb.cqu.edu.cn/TTD/TTD.asp) >30 K compounds
>2 K protein targets

Focusing on the disease pathways of the 
drug-target interactions; More than 100 
drug combinations of known mechanisms 
of action are listed

MATADOR (http://matador.embl.de/) >800 compounds
>2.9 K protein targets

Direct and indirect drug-target interactions 
are included

Methods Mol Biol. Author manuscript; available in PMC 2019 January 07.

https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/bind/index.jsp
http://www.guidetopharmacology.org/
http://www.drugkinet.ca/
https://pubs.acs.org/doi/suppl/10.1021/ci400709d
http://tanlab.ucdenver.edu/kMap/kMapv2.0/
https://www.drugbank.ca/
http://database.idrb.cqu.edu.cn/TTD/TTD.asp
http://matador.embl.de/


 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Tang Page 18

Ta
b

le
 2

R
ep

re
se

nt
at

iv
e 

ex
am

pl
es

 o
f 

si
m

ila
ri

ty
-b

as
ed

 m
ac

hi
ne

 le
ar

ni
ng

 m
et

ho
ds

 fo
r 

dr
ug

-t
ar

ge
t 

pr
ed

ic
ti

on
s

T
yp

e
M

et
ho

d
D

es
cr

ip
ti

on
So

ft
w

ar
e 

pa
ck

ag
es

 
in

 R
A

pp
lic

at
io

ns

C
la

ss
if

ic
at

io
n

N
ai

ve
 B

ay
es

A
 B

ay
es

ia
n 

cl
as

si
fi

ca
tio

n 
al

go
ri

th
m

 w
hi

ch
 le

ar
ns

 
m

od
el

 p
ar

am
et

er
s 

fo
r 

ea
ch

 f
ea

tu
re

 in
de

pe
nd

en
tly

bn
cl

as
si

fy
kl

aR
A

 m
ul

ti-
la

be
l N

ai
ve

 B
ay

es
 c

la
ss

if
ie

r 
tr

ai
ne

d 
on

 c
om

po
un

d 
fi

ng
er

pr
in

t d
at

a 
to

 
pr

ed
ic

t p
ri

m
ar

y 
ta

rg
et

s 
fo

r 
>

15
6 

K
 c

om
po

un
ds

 [
46

]

Pr
ed

ic
tin

g 
po

te
nt

ia
l c

om
po

un
ds

 f
or

 2
50

7 
pr

ot
ei

n 
ta

rg
et

s 
ut

ili
zi

ng
 th

e 
bi

oa
ct

iv
ity

 d
at

a 
fr

om
 C

hE
M

B
L

. T
he

 w
eb

 s
er

vi
ce

 is
 a

va
ila

bl
e 

[4
7]

R
eg

re
ss

io
n

Pa
rt

ia
l l

ea
st

 s
qu

ar
es

A
 m

ul
tiv

ar
ia

te
 s

ta
tis

tic
al

 a
lg

or
ith

m
 id

en
tif

ie
s 

pr
ed

ic
tiv

e 
fe

at
ur

es
 f

or
 a

 d
ru

g-
ta

rg
et

 in
te

ra
ct

io
n

pl
s

gp
ls

A
 c

om
pr

eh
en

si
ve

 r
ev

ie
w

 o
n 

th
e 

us
e 

of
 P

L
S 

fo
r 

re
la

tin
g 

co
m

po
un

d 
st

ru
ct

ur
e 

an
d 

bi
oa

ct
iv

ity
 [

48
]

D
ua

l
R

an
do

m
 F

or
es

t
A

n 
en

se
m

bl
e 

m
et

ho
d 

to
 m

ak
e 

co
lle

ct
iv

e 
pr

ed
ic

tio
ns

 b
y 

th
e 

m
aj

or
ity

 v
ot

in
g 

fr
om

 m
ul

tip
le

 r
an

do
m

 d
ec

is
io

n 
tr

ee
s

R
an

do
m

Fo
re

st
R

R
F

58
58

 d
ru

gs
 a

nd
 1

4,
49

0 
dr

ug
-t

ar
ge

t i
nt

er
ac

tio
ns

 w
er

e 
re

tr
ie

ve
d 

fr
om

 D
ru

gB
an

k 
an

d 
m

ol
ec

ul
ar

 d
es

cr
ip

to
rs

 f
or

 a
 d

ru
g 

pa
ir

 w
as

 c
on

st
ru

ct
ed

. R
an

do
m

Fo
re

st
 w

as
 

us
ed

 to
 p

re
di

ct
 p

os
iti

ve
 d

ru
g 

pa
ir

s 
th

at
 s

ha
re

 th
e 

sa
m

e 
ta

rg
et

s 
[4

9]

SV
M

A
 k

er
ne

l-
ba

se
d 

su
pe

rv
is

ed
 le

ar
ni

ng
 m

et
ho

d 
to

 p
ro

je
ct

 
th

e 
hi

gh
-d

im
en

si
on

al
 d

at
a 

in
to

 a
 lo

w
er

-d
im

en
si

on
 

hy
pe

rp
la

ne
 to

 s
ep

ar
at

e 
th

e 
da

ta
 in

to
 tw

o 
cl

as
se

s

e1
07

1
K

er
nl

ab
Id

en
tif

ic
at

io
n 

of
 p

ot
en

tia
l b

in
di

ng
 p

oc
ke

ts
 b

as
ed

 o
n 

th
e 

th
re

e-
di

m
en

si
on

al
 

pr
ot

ei
n 

st
ru

ct
ur

es
, w

ith
 w

hi
ch

 th
e 

po
te

nt
ia

l d
ru

g 
ta

rg
et

s 
ca

n 
be

 p
re

di
ct

ed
. A

 
pu

bl
ic

 w
eb

 s
er

ve
r 

ca
lle

d 
D

3T
Pr

ed
ic

to
r 

is
 a

ls
o 

av
ai

la
bl

e 
[5

0]

Methods Mol Biol. Author manuscript; available in PMC 2019 January 07.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Tang Page 19

Table 3
Monotherapy data resources for target-based drug combination predictions

Database Description URL

The Cancer Therapeutics 
Response Portal (CTRP)

481 Compounds have been tested against 860 cancer cell lines for 
which the molecular profiles can be accessed from the CCLE database

http://www.broadinstitute.org/ctrp/

The Cancer Cell Line 
Encyclopedia (CCLE)

http://www.broadinstitute.org/ccle

The Genomics of Drug 
Sensitivity in Cancer (GDSC)

140 Compounds have been tested against a maximal of 672 cancer cell 
lines for which the molecular profiles are available in the COSMIC 
database

http://www.cancerrxgene.org/

http://cancer.sanger.ac.uk/cosmic

NCI-60 232 Compounds tested against 60 cancer cell lines https://dtp.cancer.gov/

http://discover.nci.nih.gov/cellminer/
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Table 4
Comparing the different reference models for characterizing drug synergy

Model Expected effect of no synergy Related concepts and implementation tools

HSA The highest single-agent effect FDA approval guideline

Loewe The effect as if a drug is combined with itself Combination index [75]
Isobologram [77]
URSA [74]

Bliss The effect as if two drugs are acting 
independently

Synergy landscape [78]

ZIP The effect as if two drugs do not change the 
potency of each other

Synergy landscape [73]

SANE The effect if two drugs are conditionally 
independent

Combenefit http://www.cruk.cam.ac.uk/research-groups/jodrell-group/combenefit
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