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Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated 

with poor outcomes, neutrophilia and lymphocytopenia. This contrasts with increased lymphocyte 

infiltration of tumors, which is correlated with improved outcomes. Lifestyle parameters, such as 

obesity and diets with high levels of saturated fat and/or omega (ω)-6 polyunsaturated fatty acids 

(PUFAs), can influence these inflammatory parameters, including an increase in extramedullary 

myelopoiesis (EMM). While tumor secretion of growth factors (GFs) and chemokines regulate 

tumor-immune-cell crosstalk, lifestyle choices also contribute to inflammation, abnormal 

pathology and leukocyte infiltration of tumors. A relationship between obesity and high-fat diets 

(notably saturated fats in Western diets) and inflammation, tumor incidence, metastasis and poor 

outcomes is generally accepted. However, the mechanisms of dietary promotion of an 

inflammatory microenvironment and targeted drugs to inhibit the clinical sequelae are poorly 

understood. Thus, modifications of obesity and dietary fat may provide preventative or therapeutic 

approaches to control tumor-associated inflammation and disease progression. Currently, the 

majority of basic and clinical research does not differentiate between obesity and fatty acid 

consumption as mediators of inflammatory and neoplastic processes. In this review, we discuss the 

relationships between dietary PUFAs, inflammation and neoplasia and experimental strategies to 

improve our understanding of these relationships. We conclude that dietary composition, notably 

the ratio of ω−3 vs ω−6 PUFA regulates tumor growth and the frequency and sites of metastasis 

that together, impact overall survival (OS) in mice.
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Introduction

Diet composition affects the onset and progression of chronic degenerative diseases, 

including cancer, that are controlled in part by inflammatory processes.1, 2 Growing 

evidence indicates that diet and its composition critically influence human health and 

immunity via secretion of adipokines, and their regulation of metabolic pathways. Dietary ω
−3 PUFA has been a focus due to its anti-inflammatory, immunomodulatory and potential 

anticancer activity.1, 3, 4 In this review, we discuss the systemic expansion, as well as, local/

regional infiltration of immune and myeloid cells, which can support or inhibit tumor 

initiation and progression in a phenotypic dependent manner. As an example, tumor-

associated macrophages (TAMs) have direct tumoricidal activity and can induce antitumor 

T-cell responses; but can also suppress cytotoxic T-lymphocyte (CTL) numbers and 

functions; thereby, facilitating tumor growth and progression (Figure 1). Tumor infiltration 

by myeloid cells is regulated, in part, by tumor-secreted GFs and chemokines, and as 

discussed herein, PUFAs, all of which control the migration, expansion and tissue infiltration 

of myeloid progenitors5, 6. Growing epidemiological, experimental, and clinical evidence 

suggests that ω−3 PUFAs have a role in the control of neoplastic cell growth and relapse 

and, by improving the efficacy of radiation and chemotherapy, reduce therapy-associated 

secondary complications.7, 8 These bioactivities may be related to the immunomodulatory 
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and anti-inflammatory activities of ω−3 PUFA, as this can influence inflammatory 

processes, notably those induced by ω−6 PUFA bioactivity.1, 3, 4

Although, myeloid cell infiltration of tumors is predominantly pro-tumorigenic9, myeloid 

cells can also inhibit tumor growth including activated macrophage tumor cytotoxicity as 

measured in vitro10. Despite the lack of a correlation between immunogenicity, metastatic 

propensity and the frequency of TAMs11–13, TAM infiltration is associated with poor 

outcomes14 and rapid disease progression15, 16. Myeloid-derived suppressor cells (MDSCs) 

are increased in the circulation of tumor bearing (TB) hosts and within tumors, and are 

associated with an immunosuppressive tumor microenvironment17–21. This 

immunosuppressive activity occurs via multiple mechanisms, including reactive oxygen 

species (ROS), nitric oxide (NO) synthetase (NOS-2) and arginase, as well as the secretion 

of immunosuppressive cytokines22. Preclinical and clinical studies have shown that 

macrophages and MDSCs can stimulate tumor growth11, 23, while immune augmenting M1 

macrophages and/or dendritic cells (DC) −1 cells contribute to antitumor T-cell responses, 

although, often insufficient for tumor rejection24. A low frequency of M1 macrophages, or 

an increase in infiltrating M2 macrophages, DC2s, and MDSCs are associated with a poor 

prognosis and an increase in tumor relapse following primary tumor resection25, 26. In 

contrast to tumor infiltration by myeloid cells, numerous clinical studies have demonstrated 

a correlation between tumor-infiltrating lymphocytes (TILs) and disease free survival (DFS) 

and OS in cancer patients27, 28. However, the relationship is dependent on the infiltrating 

lymphocyte phenotype, density and location. For example, infiltration by CD4+ T-regulatory 

(T-reg) cells is associated with poor outcomes, while infiltration by CD8+ cytotoxic effector 

cells is associated with positive outcomes29. In this review, we focus on the potential role of 

ω−3 PUFAs as a therapeutic adjuvant agent, highlighting their immunomodulatory effects 

and potential for beneficial effects, as well as the pro-tumorigenic activity of the 

inflammatory ω−6 PUFAs.

Tumor Infiltrating Inflammatory Cells and Patient Outcomes.

Human health and disease are controlled by both genetic and environmental factors. 

Numerous studies have examined the relationship between dietary habits and the types and 

amounts of essential fatty acids, particularly PUFA and resultant tumor development30. The 

ω−3 PUFAs have anti-cancer effects based on in vitro and in vivo studies31–33. Thus, the 

addition of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) to tumor cell 

cultures, but not normal cells, is cytotoxic34. This bioactivity is predominantly associated 

with long-chain (LC) ω−3 PUFA as compared to the shorter chain plant ω−3, α-linolenic 

acid (ALA)35. Perhaps of greater import is the finding that co-culture or pre-exposure of 

tumor cells with LC ω−3 PUFA enhances the cytotoxicity of antimitotic and other 

chemotherapeutic drugs against tumor cells36. Several additional anticancer mechanisms 

have been proposed including an alteration in the growth of tumor cells, interference with 

the cell cycle, increasing cell death via necrosis or apoptosis37, 38, inhibition of angiogenesis 

and metastasis39 and down regulation of inflammation and inflammatory cell infiltration of 

tumors40, 41. Based on these and other studies LC ω−3 PUFAs are being examined in a 

therapeutic context in combination with traditional adjuvant therapy in patients with 

cancer42. Similar to inflammatory cells, tumor specific CTLs can also infiltrate tumors, and 
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their frequency is predictive of improved outcomes43. However, a subset of CD4+ infiltrating 

lymphocytes can suppress antitumor T-cell functions and are identified as suppressive T-

cells (i.e., T-regulatory cells (T-regs)). In contrast, infiltrating CD8+ CTLs have anti-tumor 

activity but generally occur at low frequencies and with low avidities44 such that, they have 

minimal ability to control tumor growth45. Nonetheless, a high frequency of tumor 

infiltrating T-cells (primarily CD8+ T-cells) is associated with improved outcomes46–53.

A better understanding of the regulatory events and pharmacophores, such as the PUFAs that 

can regulate tumor infiltration with antitumor T-cells, is needed to predict outcomes and 

develop novel therapeutic modalities54. In addition to immunoregulatory activity by 

infiltrating immune cells, some tumor and myeloid cells, including macrophages, 

polymorphonuclear neutrophils (PMN) and MDSCs, express immunosuppressive checkpoint 

mediators, such as PD-L155, resulting in cellular interactions that inhibit T-cell proliferation 

and functions. An effective antitumor immune response can occur, following a coordinated 

response, by innate and adaptive immune cells. Critical components include DC and 

macrophage presentation of tumor associated antigens (TAAs) and neoantigens, 

upregulation of costimulatory ligands, and increased cytokine and chemokine secretion, 

resulting in the induction of CTL responses, migration of activated T-cells to the tumor 

microenvironment, and T-cell tumoricidal activity. Tumor-specific T-cell responses also 

contribute to the recruitment of innate effector cells to the tumor microenvironment, 

including macrophages, DCs, gamma/delta (γ/δ) T-cells, natural killer (NK) cells and 

natural killer T-cells (NKT) cells, which are capable of tumor cell cytotoxicity, independent 

of T-cell receptor (TCR)-mediated T-cell recognition. Nonetheless, the immune system has 

developed potent mechanisms to maintain homeostasis and limit potentially dangerous 

complications due to an exuberant immune response. These negative regulatory feedback 

loops, are usurped by tumors, allowing them to evade immune surveillance, inhibit CTL 

responses, resulting in obstacles to the initiation and propagation of successful antitumor 

adaptive immune responses. The cellular mediators, mechanisms of action and molecular 

mediators of both pro- and anti-tumorigenic infiltrating cells are summarized in Table 1 and 

2.

Innate and Adaptive Antitumor Cellular Mechanisms

Dietary supplementation with PUFAs, especially LC ω−3 PUFAs, has pro-resolving effects 

on both innate and adaptive immunity via multiple mechanisms. This includes effects on 

numerous cell phenotypes that coordinate the host response against tumors. Thus, resolvins, 

metabolites from LC ω−3 PUFAs have endogenous pro-resolution activity that protects 

against aberrant / uncontrolled innate inflammatory responses56. The present paradigm 

suggests that the activation of DCs, an innate immune cell, initiates the development of 

adaptive immune responses against tumors. Classically activated macrophages (M1s) are 

part of the tumor microenvironment, with a functional role limiting tumor progression. In 

early tumors, macrophages have an inflammatory, tumoricidal phenotype. Important features 

of M1 macrophages include the expression of iNOS, ROS and the secretion of the NK and 

type 1 T-cell stimulating cytokine IL-12. Further, M1 macrophages phagocytose and kill 

bacteria, viruses and tumor cells, and secrete proinflammatory cytokines57. M1s also 

promote indirect cytotoxicity by activating adaptive immune responses58.
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Granulocytes, specifically neutrophils, may also have a role in tumor regression, including 

cytotoxicity via Fas/Fas Ligand interactions, as well as, ROS. Eosinophils can also infiltrate 

tumors, with potential antitumor activity via their secretion of cytotoxic factors including 

major basic protein, cationic protein and peroxidase; however, it is unclear whether 

granulocytes exert direct anti-tumor activities59.

NK cells are also highly cytotoxic, innate immune effectors with cytotoxicity, via perforin 

and granzyme-dependent mechanisms. NK cells have an array of different activating and 

inhibitory receptors facilitating recognition of stress ligands on tumor cells, which can 

regulate the levels of major histocompatibility complex (MHC) expression60, 61. It is noted 

that the anti-tumor activity of NK cells is largely limited to single tumor cells or micro-

metastases.

Classical (αβ+) CD8 T-cells recognize peptides presented by class I MHC on the 

membranes of Ag-presenting cells (APCs)62, 63 and tumor cell, intracellular antigens (Ags), 

following phagocytosis, are subjected to proteolysis with antigenic (Agic) epitopes bound 

within the peptide-binding groove of the MHC molecule, and the peptide-MHC complexes 

transported to and inserted into the plasma membrane of APCs for T-cell recognition. In 

addition, CD4+ T-cells recognize Ags in the context of MHC class II molecules, primarily 

expressed by APCs. T helper cell differentiation occurs via the secretion of cytokines that 

‘help’ activate B cells, NK cells, and CD8+ CTLs. A wide variety of T helper cell subsets 

with differing functional roles have been identified based on their function (Th1, Th2, Th17, 

etc.).

Following activation by APCs, and with CD4+ T-cell help, CTLs develop a direct cell 

mediated cytotoxicity. Upon differentiation and activation, these T-cells undergo 

programmed cell death and/or exhaustion, preventing over-activation of immunity, thereby 

limiting autoimmune responses. These lymphocyte responses can also be regulated by LC ω
−3 PUFAs, including promotion of CD4+ Th1 cell differentiation64 and the modulation of T-

reg cells65.

Numerous randomized clinical trials have reported anti-inflammatory activity by marine LC 

ω−3 PUFAs and improved clinical parameters in rheumatoid arthritis patients66, 67. These 

effects are mostly attributed to EPA, (C20:5) and DHA, (C22:6) via two mechanisms. First, 

they interfere with the enzymatic conversion of arachidonic acid (AA, C20:4) an ω−6 PUFA 

to pro–inflammatory prostaglandins (PGs) and leukotrienes (LTs). Second, EPA is a direct 

precursor in the biosynthetic pathway of anti-inflammatory PGs (series-3) and LTs 

(series-5). Dietary ω−3 LC-PUFAs replace AA in the phospholipid bilayer of cell and then 

alters the membrane composition and fluidity, as well as cell signaling, gene transcription 

and metabolism of proresolving mediators40, 41, 68, 69. A recent meta-analysis of nine 

clinical trials, with 475 colorectal cancer (CRC) patients, evaluated the effects of ω−3 PUFA 

on cytokines and/or acute phase proteins levels70. In a stratified analyses, a reduction in IL-6 

levels was observed in surgical patients that received 0.2 g/kg of fish oil parenterally during 

the postoperative period and the albumin levels were increased in the surgical patients that 

received >2.5 g/d of EPA and DHA orally during the preoperative period. In patients 

undergoing chemotherapy, supplementation of 0.6 g/d of EPA and DHA for 9 week 
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significantly reduced C-reactive protein (CRP) levels, and the CRP:albumin ratio. The 

authors concluded that LC ω−3 PUFA supplementation has benefits on reducing some 

inflammatory mediators, but that these benefits were specific to distinct supplementation 

protocols based on duration, dose and route of administration.

Dietary PUFA Regulation of Myeloid Cell Function

The regulatory activity of PUFAs on immunity appears to affect myeloid cells. It has been 

demonstrated that a diet rich in ω−6 PUFAs enhanced the accumulation of MDSCs, which 

are negative immune regulators71. This was observed with both cultured murine bone 

marrow cells and in vivo, in mice fed diets enriched in ω−6 PUFAs. In these studies, mice 

were fed a linseed oil based diet containing 45% of the shorter ω−3 PUFA, ALA, or a 

sunflower oil diet containing 45% LA, an ω−6 PUFA. The results suggested that the 

bioactivity of PUFAs occurred through janus kinase-signal transducer and activator of 

transcription (JAK-STAT3) signalling, such that a JAK inhibitor almost completely inhibited 

the bioactivity of PUFAs on MDSCs. Thus, it was concluded that the immune modulatory 

activity of PUFAs may be mediated, in part, by diet.

High fat diets are associated with non-alcoholic fatty liver disease (NAFLD), and with 

Kupffer cells, which are hepatic resident macrophages, representing 20–25% of the non-

parenchymal cells in the liver. NAFLD, which is characterized by chronic systemic low 

grade inflammation, including a critical contribution by Kupffer cells72. The increased 

production of proinflammatory cytokines and eicosanoids, by ω−6 PUFA metabolism, can 

enhance Kupffer cell secretion of inflammatory cytokines, resulting in NFκβ activation with 

further worsening of inflammation and fibrosis73. Recently, several studies have suggested 

that lipid accumulation in adipose tissues of obese hosts, promoted infiltrating macrophages 

with an M1 polarization shift; while M2 phenotype macrophages were found in lean adipose 

tissue74, 75. Thus, high-fat diets can decrease the frequency of Kupffer cells with an M1-

predominant phenotype and result in increased secretion of pro-inflammatory cytokines. 

Further, ω−3 PUFAs polarize Kupffer cells/macrophages to a predominantly M1 phenotype 

while ω−6 PUFAs polarize Kupffer cells/macrophages to an M2 phenotype, in association 

with the activation of NFkβ signalling and peroxisome proliferator-activated receptors 

(PPAR)-ƴ respectively76, 77. The up-regulation of PPAR-ƴ induces macrophage 

polarization from an M1-predominant phenotype to an M2 phenotype78. Because dietary 

fish oil, LC ω−3 PUFA, results in decreased PGE-2 production, LC ω−3 PUFAs are anti-

inflammatory, and enhance secretion of Th1-type cytokines, and decrease MHC II 

expression, NK cell activity, and lymphocyte proliferation. Consistent with this hypothesis, 

the culture of human neutrophils with the LC ω−3 PUFAs, EPA or DHA inhibits superoxide 

production and phagocytosis79. Similarly, the incubation of murine peritoneal macrophages 

with EPA or DHA has been reported to inhibit MHC II expression80. In one study, human 

monocytes were cultured with EPA or DHA, resulting in a decrease in the proportion of 

human leukocyte antigens-DR or DP (HLA-DR or –DP) positive monocytes following 

addition of IFN-γ81 depressing Ag presentation82. Similarly, adding fish oil to rodent diets 

has been shown to decrease superoxide and hydrogen peroxide secretion by macrophages83. 

Experiments comparing diets with safflower oil versus fish oil have been found to decrease 

peak plasma levels of TNF-α, IL-1β, and IL-6 following lipopolysaccharide (LPS) 
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injection84. Indeed, parenteral nutrition that includes fish oil can decrease serum TNF-α, 

IL-6, and IL-8 levels in burned rats, compared with animals given ω−6 PUFA–rich 

parenteral nutrition79. However, these studies utilized super-pharmacologic doses, 

contrasting with most rodent studies using dietary fish oil in which EPA plus DHA comprise 

up to 30% of the lipid fatty acids and up to 12% of energy. Conclusions from studies, such 

as these, have been refined by using relatively low levels of EPA or DHA (4.4% of total FAs 

or 1.7% of dietary energy), documenting that these levels are sufficient to result in anti-

inflammatory activities85.

T-cell Immunosuppression and PUFA

LC ω−6 PUFAs are proinflammatory86 as they can be metabolized to AA and subsequently 

by COX-/LOX- to inflammatory lipid mediators including (PGs) and leukotrienes (LTs)87. 

These AA metabolites are well known for their tumor-promoting effects and the COX 

downstream molecule PGE-2 can enhance tumor growth by stimulating the development of 

tolerogenic DCs and Tregs. 5-LOX metabolites involve 4 series leukotrienes (LTs) and have 

a role in stimulating tumor growth and progression88. In contrast, the ω−3 fatty acids, EPA 

and DHA, modulate COX/LOX activities by forming less potent metabolites such as three 

series PGEs and five series LTs. Further, the lipoxygenase products from AA metabolism 

stimulate the expansion and differentiation of myeloid progenitor cells89 such as MDSCs. 

Tolerogenic DCs contribute to T-cell regulatory functions by suppressing their activation via 

peripheral tolerance. In steady state conditions, tissue-resident immature DCs internalize/

process and present Ags from tumors. These DCs, identified as DC2s, are poorly 

immunogenic, and do not secrete proinflammatory cytokines, and express low levels of 

costimulatory molecules. Further, DC2s secrete immunosuppressive cytokines, including 

IL-10 and TGF-β that are key mediators in the induction of T-reg cell differentiation. 

Indoleamine 2,3-dioxygenase (IDO) secretion by these DCs also contributes to immune 

tolerance90. Alternatively activated macrophages (M2s) are differentiated from monocytes 

by IL-4 stimulation. M2s facilitate tumor angiogenesis, support tumor progression, invasion 

and metastasis, and contribute to immunosuppression by secreting IL-10, facilitating the 

development of IL-4-secreting Th2 cells, and provide a positive feedback for the 

development of additional M2 macrophages. CCL22, produced by M2 macrophages, also 

recruit T-regs to suppress CTL functions. Further, PD-L1, expressed by M2 macrophages, 

contributes to the apoptosis of activated T-cells91.

Similar to M2 macrophages, MDSCs; a heterogeneous population of immature myeloid cells 

with potent immunosuppressive activity also infiltrates tumors. MDSCs can be either of 

monocytic, granulocytic or immature origin20, 92. In the blood of cancer patients, MDSCs 

lack lineage (LIN) markers for lymphocytes (CD19 and CD3) and NK cells (CD56) and thus 

express an LIN−HLADR−CD11b+ phenotype93, 94 that can be further segregated based on 

expression of CD14 (monocytic), CD15 (granulocytic) or CD33+CD14-CD15− (immature) 

expression20, 95. A positive correlation between the frequency of MDSCs and tumor stage 

has been reported for numerous tumor pathologies92. MDSCs inhibit T-cell activation via 

arginase, iNOS, ROS or reactive nitrogen species (RNS) as well as secretion of 

immunosuppressive cytokines96. Further, MDSCs deplete nutrients necessary for 

lymphocyte function, disrupt IL-2 receptor signaling, interfere with lymphocyte trafficking, 
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promote activation of T-regs by CD40-CD40L ligation, suppress CD3-zeta (ζ) expression 

and secrete IL-10 or TGF-β97, 98.

T-regs are divided into 2 major populations, one that develops in the thymus99 and one that 

is induced in the PB100 by TGF-β. In homeostatic conditions, T-regs limit the induction and 

expression of autoimmunity, inhibit bystander tissue destruction and maintain tolerance to 

self-antigens101. In cancer patients, the T-reg frequency in the PB is increased compared to 

normal individuals102. In addition, there are high numbers of tumor infiltrating T-regs103. T-

regs are phenotypically identified as CD4+ T-cells that co-express forkhead box P3 (Foxp3) 

and CD25102. Further, T-regs can express one or more checkpoint inhibitory molecules; 

including, but not limited to, lymphocyte activating gene-3 (LAG-3), T-cell immunoglobulin 

and mucin-domain containing-3 (TIM3), glucocorticoid-induced tumor necrosis factor 

receptor (GITR), cytotoxic T-lymphocyte–associated antigen-4 (CTLA-4), and programmed 

death-1 (PD-1), which can directly suppress immune cells102, 104. T-regs can also indirectly 

suppress effector T-cells by depleting local IL-2, which is needed for the survival of actively 

dividing effector T-cells105. Indirect suppression is also associated with the secretion of 

immunosuppressive cytokines, including IL-10 and TGF-β106. In contrast to 

immunosuppressive myeloid cells, recent research has focused on direct PUFA regulation of 

T-regs.

Diets Rich in ω−6 PUFAs Increase the Risk of Inflammatory Diseases

Numerous studies have suggested that dietary PUFAs regulate inflammatory responses. 

Western diets include fatty acids (FAs) from animal sources, which are mainly saturated 

fatty acids (SFAs) and FAs from plants that are predominantly ω−6 PUFAs. In contrast, 

some FAs derived from plant-based oils, and fatty fish consist mainly of ω−3 PUFA. Rodent 

and clinical studies have shown that hosts given diets rich in ω−6 PUFAs have an increased 

risk of inflammatory diseases, including asthma, rheumatoid arthritis and inflammatory 

bowel disease107. In contrast, diets with high levels of LC ω−3 PUFAs are anti-

inflammatory, with a decreased risk of inflammatory diseases107. Further, PUFAs can be 

oxidized to either pro-inflammatory or pro-resolving lipid mediators (Figure 2), both of 

which have potent immune modulatory capacities108. Pro-inflammatory mediators, notably 

PGs and LTs, are secreted in response to “foreign” substances and cleared by pro-resolving 

lipid mediators, restoring tissue homeostasis109. Diets with high levels of the ω−3 PUFAs, 

shorter chain ALA, and more critically, LC EPA and DHA are associated with regulation of 

the incidence and severity of inflammation70. The beneficial effects of dietary FAs include 

the anti-inflammatory metabolites LTs, thromboxanes (TX), resolvins and a decrease in the 

levels of inflammatory cytokines. The ω−3 PUFAs differ from the ω−6 PUFAs based on the 

position of their double bonds in the acyl chain, such as linoleic acid (LA) as compared to 

arachidonic acid (AA) found with ω−6 PUFA containing diets. (Figure 2) However, the 

inflammatory and immune augmenting aspects of PUFAs are not clearly separated based on 

the number and placement of double bonds, counting from the methyl end of the FA (i.e., ω
−3 vs ω−6). The addition of the dietary shorter ω−3 PUFA, ALA, an essential FA, and the 

main precursor of LC ω−3 PUFAs, enhances secretion of superoxides from macrophages 

and neutrophils110, resulting in cellular adhesion to endothelial cells111 and pro-

inflammatory effects in vitro. Further, ALA can slow the proliferation of rodent and human 
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lymphocytes following mitogen stimulation112–114, supporting immunosuppressive activity 

by ALA. Consistent with these in vitro observations, studies in which rodents were given a 

high-fat diet, rich in ALA, resulted in a decreased mitogen-stimulation of lymphocyte 

proliferation and NK cell activity115. In vitro studies using the ω−6 PUFA; AA, have 

demonstrated increased inflammation associated changes, including enhanced superoxide 

release110, neutrophil attachment to endothelial cells111, and IL-1β secretion by 

macrophages116. Mice fed diets with high ω−6 PUFA levels, in a dose dependent manner, 

resulted in increased levels of LTE-4 and PGE-2 following zymosan stimulation in vivo117. 

Thus, diets high in AA result in increased angiotensinogen, IL-6 and monocyte 

chemoattractant protein (MCP)-1 and increased expression of the proinflammatory 

transcription factor; nuclear factor κβ (NFκβ)118. In other studies using rats fed diets with a 

high ALA composition for 8 weeks, a decreased superoxide production was observed by 

peritoneal macrophages in response to phorbol esters119, and an increase in TNF secretion 

by resident macrophages, although no effect on TNF production was observed with 

inflammatory macrophages120. Thus, the effects of the shorter ω−3 PUFA, ALA on 

lymphocyte functions appears to be dependent on ALA levels and total PUFA diet content 

and composition121. These observations with ALA and ω−6 PUFA contrast with the 

bioactivity of the LC ω−3 PUFA with 20 or more carbon atoms such as EPA, and DHA, 

which are anti-inflammatory and immune augmenting122. Diets incorporating LC ω−3 

PUFAs are anti-inflammatory, in part due to a decrease in metabolism of ω−6 PUFA into 

inflammatory eicosanoids, cytokines, and stimulation of ROS and NOS mediators123. 

Clinically, EPA and DHA dietary supplementation can decrease intestinal damage and 

improve gut histology in patients with inflammatory bowel disease124, as well as decreased 

arthritic lesions including joint pain, number of tender and swollen joints, and duration of 

morning stiffness125.

Dynamic Anti-inflammatory Activities of ω−3 PUFA

One of the challenges of dietary studies, with PUFA regulation of inflammation, is that 

obesity is associated with a chronic low-grade inflammation and increased levels of free 

fatty acids, pro-inflammatory cytokines, hormones and circulating macrophages126, 127. 

Adipose tissue can secrete metabolites that either promote or resolve an inflammatory 

response128. Additionally, excess energy is normally stored in adipose tissue129, resulting in 

enlarged fat cells (hypertrophy) and increased numbers, primarily through hyperplasia of 

pre-adipocytes, to store the excess triglycerides (TG). This hypertrophy and hyperplasia of 

adipose cells increases oxygen consumption, resulting in hypoxia129, activation of cellular 

stress pathways and autonomous inflammation due to pro-inflammatory cytokine 

secretion129. This also results in myeloid infiltration of adipose tissue, (including mammary 

glands), surrounding both dead and dying adipocytes, where they form crown-like structures 

(CLS) and a phenotypic shift of the adipose tissue macrophages, releasing pro-inflammatory 

cytokines that induce ROS and activate inflammatory signalling pathways in neighbouring 

adipocytes130. An example of the impact of differing dietary PUFA composition on CLS 

formation in mammary fat pad (MFP) is shown in Figure 3. MFPs from groups of mice 

receiving isocaloric and isolipidic diets containing either ω−3 PUFA (Figure 3A), or ω−6 

PUFA (Figure 3B) diets by pair feeding for 20 weeks, were analyzed for CLS in 10 high 
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power fields per sample (N=10/group). The results from our studies showed that there was a 

significant increase in CLS in the mammary fat pad (MFP) of mice receiving ω−6 diets 

(Figure 3B) compared to the mice consuming ω−3 diets (Figure 3A). These observations are 

consistent with the recent report on hepatocyte secretion of dipeptidyl peptidase 4 and 

adipose inflammation including CLCs.131

Obesity contributes to the tumor microenvironment by increasing inflammation, and the 

presence of free fatty acids (FFAs)132. High levels of proinflammatory adipokines contribute 

to the content of inflammatory cell content within the tumor microenvironment133, 134 

through autocrine and paracrine activation of signalling pathways including NF-κβ135, 

STAT3 and extracellular regulated kinase (ERK)1/2, all of which stimulate tumor cell 

proliferation, which can inhibit apoptosis136. In contrast, adiponectin, secreted by white 

adipose tissue, has anti-proliferative effects for breast cancer cells, but is down-regulated in 

obese patients137. Thus, low levels of adiponectin increase the risk of breast cancer in obese 

women138.

A number of clinical trials have assessed the therapeutic activity of diets supplemented with 

fish oil in inflammatory diseases, including Crohn’s disease, psoriasis, ulcerative colitis, 

rheumatoid arthritis, multiple sclerosis, and lupus139. Many placebo-controlled, double-

blinded trials with dietary fish oil, undertaken in patients with chronic inflammatory 

diseases, have documented significant benefits. The evidence for clinical activity by fish oil 

is greatest in rheumatoid arthritis, where LC ω−3 PUFA consumption results in a 

concentration-dependent decrease in inflammatory enzymes, including ones that degrade 

cartilage, COX-2, but not COX-1 expression and TNF-α and IL-1β expression in cultured 

articular chondrocytes140. The mechanisms of action with LC ω−3 PUFAs in patients with 

arthritis have been postulated to be a competition between the canonical ω−6 substrate AA 

resulting in eicosanoids with lower inflammatory activity141. Further, LC ω−3 PUFAs can 

be metabolized into anti-inflammatory, bioactive lipid mediators including resolvins, 

protectins and maresins, which can resolve inflammation with significantly more activity 

than their lipid precursors142. The associated paradigm shift, based on these observations, 

suggests that the resolving phase of inflammation is not passive, but involves actively 

downregulated endogenous anti-inflammatory mediators143. This contrasts with ω−6 PUFA 

metabolites, including PGD-2, LTD-4, LTC-4, and LTE-4, which mediate asthmatic 

bronchoconstriction. Although AA is a precursor to LTs and has a role in allergic 

inflammation, PGE-2 can also regulate macrophage and lymphocyte functions. Thus, dietary 

consumption of the ω−6 PUFA LA, as the precursor of AA, is causally linked to allergic 

diseases and supports a potential treatment strategy using LC ω−3 PUFAs144.

Dietary ω−3 Regulation of Murine Tumor Growth

Clinically, a number of differing associations have been reported between PUFA 

consumption / composition and inflammation; due in part to confounding factors including 

genetic susceptibility, tissue microenvironments, stress, obesity, age, caloric intake and 

dietary duration. Murine models have suggested a number of mechanisms that associate 

dietary PUFA with tumor initiation and progression, secondary to systemic and tissue 

inflammation. These studies include a number of pathologic conditions such as infections, 
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autoimmune and inflammatory conditions, neoplasia and obesity with neutrophilia, 

splenomegaly and multifocal, hepatic extramedullary myelopoiesis (i.e., the formation of 

myeloid tissue outside of the bone marrow)5, 145. These inflammatory conditions, in 

association with tumor initiation, are regulated by multiple risk factors, including hormones, 

obesity, diet, and age. However, following tumor initiation and growth, inflammation is 

controlled by tumor secretion of GFs, as well as, existing risk factors. Thus, the tumor 

inflammatory microenvironment is associated with cross talk between host immunity and 

tumor-secreted GFs. As an example, the cellular microenvironment of mammary glands 

incorporates, primarily, adipocytes, hormonal responsive epithelial cells, and stromal cells, 

as well as, infiltrating immune cells, resulting in mammary glands that can act as both an 

endocrine and as an immune organ146. This stimulates a progressive increase in tumor 

infiltrating inflammatory cells, including MDSCs, M2 macrophages, DC2s, and 

granulocytes, during tumor initiation and progression from normal tissue to dysplastic 

cells147.

The role of dietary PUFA during tumor progression and metastasis has been examined in 

syngeneic, and xenograft mammary cancer models. In a xenograft model using MDA-

MB-435 tumor cells, athymic nude mice were injected with tumor cells following 

establishment of the mice on diets of either LA, EPA or DHA. These studies revealed 

significantly delayed tumor growth and metastasis in the mice fed an EPA or DHA diet, 

including a reduction in AA levels in the tumor membrane phospholipids148. The results 

from one of our studies are shown in (Figure 4). In this study, two groups of mice received 

diets differing in PUFA composition using pair fed, isocaloric and isolipidic liquid diets 

(unpublished results). Ten weeks following initiation of the diets, the mice received 

orthotopic injections of 4T1 mammary tumor cells. The results show that mice consuming a 

LC ω−3 PUFA diet had significantly slower growing tumors (Figure 4A) and prolonged 

survival (Figure 4B) compared to the mice receiving an ω−6 PUFA diet. Interestingly, when 

subgroups of mice were autopsied 35 days post orthotopic injection, the mice consuming the 

ω−6 based diets were observed to have a significantly greater number and frequency of 

pulmonary, hepatic, renal, cardiac and bone marrow metastases. Inhibition of inflammatory 

cells, as discussed elsewhere in this review, is associated with slower growth of primary 

tumors and potentially a reduction in the frequency of metastases. This suggests that dietary 

PUFA composition is not only critical to tumor initiation, but also modulates tumor growth 

and the extent of metastasis and metastatic sites. Further, in murine studies, when EPA and 

DHA are provided as neoadjuvant therapy, the number of pulmonary metastases are 

significantly decreased compared to mice on an LA diet149. Similar immune-augmenting 

and therapeutic activities were reported in studies with R3230RC and MCF-7 breast 

adenocarcinoma tumor models150, 151, including a reduced number of MDSCs152. In a 

tumor survival study, mice were switched from an 8% corn oil (1% ALA) diet to an 8% 

canola oil (10% ALA) diet, when the mice had developed an average primary tumor volume 

of 60 mm3. In this study, tumor growth was significantly lower in mice fed the ω−3, canola 

oil diet as compared to the ω−6, corn oil cohort.153 Based on these and other preclinical 

studies, it appears that dietary intervention may be used with therapeutic intent.

Murine studies with interventions using LC ω−3 PUFA and autochthonous, chemically 

induced mammary tumors support these observations. In an autochthonous 7, 12-
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dimethylbenz (α) anthracene (DMBA) induced mammary tumor model, mice on a fish oil 

diet had a significantly reduced tumor incidence, growth and metastasis154, 155. The LC ω−3 

diet affected tumor induction and growth that correlated with reduced AA serum levels, 

suppressed tumor cell proliferation, protection against DNA single strand breaks, and an 

increase in apoptosis marker expression155–157. Similarly, in a tumor model with N-methyl-

N-nitrosourea (MNU)-induced rat mammary tumors, diets with varying fat composition 

were compared, including an SFA diet, a monounsaturated fat (MUFA) diet, an ω−6 PUFA 

alone diet or diets with different ratios of ω−6 : ω−3 PUFA diets. It was found that a diet 

incorporating a 1:1 ratio of ω−6 : ω−3 PUFA was most effective in preventing mammary 

tumor development as compared to the other dietary groups. Studies into causal 

relationships revealed that this diet group had decreased transcription of cyclooxygenase-2 

(COX-2), and 5-lipoxygenase (5-LOX) in mammary tissues and PPAR-γ levels158. Together, 

these and other studies directly support a role for LC ω−3 PUFA in controlling the 

inflammatory tumor microenvironment by the upregulation of PPAR-γ157, 158. When dietary 

LC ω−3 PUFA content was increased to an ω−6 : ω−3 ratio of 1:14.6, as compared to 1:0.7, 

a 60% decrease in tumor growth was observed159. Similar studies, using a therapy model 

with orthotopic 4T1 mammary tumors, in which a 5% fish oil diet was initiated when the 

hosts had developed primary tumors that were 8–10 mm3 in diameter, resulted in 

significantly reduced growth and metastasis, which correlated with decreased tumor cell 

proliferation160.

The ability of LC ω−3 PUFAs to downregulate inflammatory mediators and increase 

proteins, associated with apoptosis, supports the importance of exogenous regulation of the 

tumor microenvironment. However, the regulatory mechanisms are unclear. In-vivo studies, 

focused on cellular phenotypes, have examined the effect of dietary LC ω−3 PUFA on 

inflammatory cells in animal models with both LPS and tumor induced inflammation. 

However, the majority of murine models use diets that are not isocaloric and are rarely pair-

fed, raising questions regarding mechanisms based on obesity verses dietary composition. 

Since obesity itself is inflammatory, clarifying the effects of obesity associated 

inflammation, as opposed to diet regulation, is crucial to determining the actual effects of 

dietary components in tumor initiation and progression. Thus, the use of an animal model 

using an isocaloric, isolipidic liquid diet that allows pair feeding and controlled dietary 

caloric intake is required to assess dietary impacts on weight and adipose changes, as well as 

dissociate effects between obesity and dietary composition, such as PUFA composition.

Dietary LC ω−3 PUFA and Improved Cancer Patient Outcomes

The local tumor microenvironment includes tumor cells, extracellular matrix; endothelial 

cells, stromal cells, fibroblasts, adipocytes and critically infiltrating inflammatory and 

adaptive immune cells. These microenvironmental elements have a role in regulating 

tumorigenesis, tumor growth, invasion and metastasis. The infiltrating immune cells, 

particularly CTLs, serve as regulatory factors in the tumor microenvironment161, 162. In 

cancer patients, it has been documented that the infiltration of immune cells provided an 

independent positive prognostic factor using immunohistochemistry (IHC) and 

hematoxylineosin (HE) staining.163 Studies, into the type of infiltrating immune cells (e.g., 
CD3+, CD8+, and FOXP3+ T lymphocytes) and the density or location of infiltrating T-cells, 
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contribute to a prognostic correlation with positive outcomes for patients with 

CRC50, 164–170. This correlation is also observed in a variety of other tumors, including 

ovarian cancer and breast cancer171–174. These studies have been extended clinically to 

include a meta-analysis assessing the impact of tumor-infiltrating inflammatory cells on 

outcomes, including a meta study incorporating 30 studies involving 2,988 patients.175 

These studies examined the associations between CRC survival and generalized tumor 

inflammatory infiltrates (N=12) and T lymphocyte subsets (N=18). Pooled analyses revealed 

that a significant, generalized tumor inflammatory infiltrate was associated with improved 

cancer-specific survival (CS), OS and DFS. Stratification by cellular location and T 

lymphocyte subset indicated that in the tumor microenvironment, CD3+, CD8+ and FoxP3+ 

cellular infiltrates were not significant prognostic markers for OS or CS. In contrast, a high 

frequency of infiltrating CD8+, but not CD3+ or FoxP3+ T-cell cells were predictive of an 

increased OS. Furthermore, a high frequency of tumor infiltrating CD3+ cells at the invasive 

tumor margin was also associated with improved OS and DFS.175

Consistent with the effect of LC ω−3FA on tumor infiltrating immune cells, is an inverse 

relationship between dietary LC ω−3FA consumption and the risk of developing CRC, as 

reported within case-control studies by Murff et al.176 and Habermann et al.177. However, 

the benefits were limited such that, in one study176 an increased ω−3 PUFA intake was 

associated with a reduced risk of colorectal adenomas in women, whereas in another trial178 

an inverse association was observed between low DHA intake and an increase in the risk of 

CRC in patients with specific genetic variants that resulted in higher levels of 

proinflammatory mediators. More recently, a relationship between LC ω−3FA intake and 

survival in the CALGB 89803 randomised trial of adjuvant chemotherapy for completely 

resected stage III CRC (n=1,264) was investigated retrospectively178. Patients in the highest 

quartile of LC ω−3FA dietary intake had an increased disease-free survival (DFS) compared 

with the lowest quartile. Notably, this relationship appeared to be greater for patients with 

high CRC COX-2 expression178. Numerous clinical studies have examined adjuvant 

supplemental therapy with LC ω−3FA179. In one positive example breast cancer patients 

with high dietary DHA had a significantly longer time to disease progression and survival as 

compared to patients with lower incorporation of supplemented DHA180.

IHC analyses of infiltrating immune cells, particularly CD3+ T lymphocytes in the primary 

tumor, provide a biomarker predicting good clinical outcomes in most cancer 

pathologies181–183. Furthermore, basic histological quantification of T lymphocyte density, 

cytotoxicity and memory, by CD3+, CD8+, and CD45RO+ markers respectively, demonstrate 

that an increase in T lymphocyte infiltration was associated with significant improvements in 

a patient’s DFS and OS165, 182, 184. In CRC, identifying the location of infiltrating CTLs, 

assessed as CD3+CD8+ T-cells in two areas within the center (CT) and invading margin (IM) 

of the primary tumor, provides an accurate prediction of clinical outcomes165. The 

quantification of the density, phenotype, and location (CT or IM) of infiltrating CTL results 

in what has been termed an Immunoscore185–187. Indeed, the analysis of CD3+ cell 

infiltration surpasses the gold standard of diagnosis by tumor-stage, lymph node, and 

metastatic invasion. The assessment, of a tumor Immunoscore, subsets patients into five 

categories based on the location in the tumor (CT and IM) of CD3+ and CD8+ T-cells.
188, 189.
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In addition to leukocytic infiltration of tumors, circulating hematological inflammatory 

markers, including the neutrophil–lymphocyte ratio (NLR), can predict the survival of 

cancer patients190. This has been extensively studied, documenting the prognostic value of 

the NLR in multiple, but not all, tumor pathologies and disease stages. Over 60 studies 

(>37,000 patients) have been examined to assess the prognostic value of the NLR191. In 

parallel with these studies, there are reports of a relationship between plasma 

proinflammatory cytokine levels and elevated NLR (>5)192, 193 providing insight into 

underlying mechanisms. Further, there is potentially a relationship between the frequency of 

circulating myeloid cells and an elevated NLR and an increase in peritumoral 

macrophages192. Together, these observations suggest that the NLR reflects, in part, innate 

immunity and myeloid cell infiltration of tumors, providing an easily measurable biomarker 

that is predictive of OS and progression free survival (PFS).

TILs occur primarily at the tumor interface with the surrounding stroma194. Thus, while 

infiltrating leukocytes may have prognostic significance, subsets of infiltrating cells, may be 

a more accurate predictor. As discussed above, infiltrating CD8+ T-cells, are a critical 

component of tumor-specific adaptive immunity. CTLs are a cellular mediator that can be 

prognostic of positive outcomes. Further, immunosuppressive myeloid cells, including 

MDSCs, DC2s and M2 macrophages, emphasize the criticality of assessing the infiltrating 

myeloid cell-to-CD8+ lymphocyte ratio in cancer tissues. Several studies have focused on 

this parameter, concluding that infiltrating CD66+ myeloid cells provide an independent 

prognostic factor for poor DFS and OS195. This observation has been extended with the 

finding that the infiltrating NLR (iNLR) determined as a CD66+ : CD8+ cell ratio, 

documents a relationship with OS and tumor stage196.

In association with immunoregulatory properties, a patient’s lifestyle, preceding and 

following diagnosis and therapeutic interventions, may help control cancer initiation, 

progression38, and responses to therapeutic interventions197. Specifically, patients who 

consume a high-fat diet; one with high levels of saturated fat, or one with high levels of ω−6 

PUFAs, frequently exhibit neutrophilia, that can facilitate tumor initiation and progression, 

resulting in poor outcomes198, 199. Conversely, diets that contain a high ω−3 PUFA content 

have been associated with lower inflammation, lower EMM and better clinical outcomes5. 

We posit, herein, that dietary LC ω−3 PUFA may increase the infiltration of tumor specific 

CTLs, decrease myeloid cell infiltration and improve intraturmoral survival of T-cells, 

contributing to improved patient outcomes.

Epidemiological studies into the incidence and progression of breast cancer in American 

women of Japanese descent, have been compared to that of women in Japan. The results 

from one study indicated a significantly higher breast cancer incidence in American women 

compared to Japanese women200. This conclusion was supported by the observation that 

children from Japanese immigrants to America, but not the immigrants themselves, had 

breast cancer rates similar to the general American population201. In the 1990s, dietary 

components were found to be implicated in these different incidences202. These relatively 

weak correlative epidemiologic studies were considered plausible, as preclinical experiments 

demonstrated that LC ω−3 PUFAs could reduce pro-inflammatory cytokines, inflammation 

and cancer development203. Similarly, high fat diets have been shown to increase the risk of 
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breast cancer and aggressive prostate cancers204. Case–controlled studies have documented 

an inverse relationship between the dietary ω−6 and LC ω−3 PUFAs ratio and the incidence 

of breast cancer, supporting the importance of the relative ratio of ω−6 and LC ω−3 LC-

PUFAs in the diet205. In an epidemiological study of 56,007 French women over 8 years, the 

risk of breast cancer was reported to be unrelated to dietary PUFA consumption overall. 

Rather, a significant risk was associated with the ratio of dietary ω−6 vs. LC ω−3 PUFAs, 

which was inversely related to LC ω−3 PUFA levels in women with the highest intake of ω
−6 PUFAs, indicating interactions due to PUFA consumption206. The decreased risk of 

developing breast cancer with LC ω−3 PUFA consumption was confirmed in a case 

controlled study207, where a population based study showed all-cause mortality was reduced 

16–34% in women consuming high levels of LC ω−3 PUFAs208. Indeed, in the last 20 years, 

data has accumulated suggesting that high ω−6 PUFA consumption is pro-inflammatory, 

likely involving COX-2 secretion and NFκβ activation, resulting in an increased incidence 

of cancer and all-cause mortality. In contrast, a high consumption of LC ω−3 PUFA is 

protective against neoplasia, resulting in the downregulation of NFκβ, a decreased incidence 

of cancer and neoplasia associated all-cause mortality209. Indeed, in a meta-analysis of 11 

independent prospective studies, it was suggested that a decrease in the dietary ω−6 : LC ω
−3 PUFA ratio significantly lowered the risk of breast cancer210. Even though some studies 

have shown no association between a heightened diet of ω−6 : LC ω−3 fatty acid ratios and 

breast cancer development, the risk of developing breast cancer was directly associated with 

increasing ω−6 : LC ω−3 PUFA ratios211.

Recent studies have investigated the underlying mechanisms in these observations, and their 

relationship to innate and acquired immune cells in the tumor microenvironment. The 

regulatory activity of LC ω−3 PUFA on macrophage functions, has been documented with 

the use of antagonists to GPR120, which is expressed by some myeloid cell populations and 

acts as a PUFA receptor212. This is supportive of a role for LC ω−3 PUFA mediation of anti-

inflammatory effects via this receptor. However, the nuclear receptor PPAR-γ also acts as a 

receptor for PUFAs and the regulatory mechanisms of LC ω−3 and ω−6 PUFA on 

obesity213, postmenopausal breast cancer214 and microenvironmental inflammation64, 

suggesting a need for additional studies. Changes in the lipid content of cell membranes 

associated with LC ω−3 and ω−6 PUFA consumption may regulate oncogenic signalling via 

the regulating of lipid raft profiles and a reduction in cytokine production215. Further, 

PUFAs contribute to the regulation of BM and extramedullary hematopoiesis at sites such as 

the spleen216, 217 and may also induce the expansion of MDSCs71.

Summary

Dietary consumption of PUFAs may not only affect inflammation and the incidence and 

progression of neoplasia, but also may provide an interventional strategy with positive 

clinical outcomes for cancer patients and patients with other pathologies via the regulation 

of inflammation. In general, increased dietary ω−6 PUFA consumption is associated with a 

heightened risk of breast cancer due to direct effects on the mammary gland and promotion 

of a pro-inflammatory tumor microenvironment. In contrast, dietary LC ω−3 PUFAs have 

protective effects and suppress ω−6 PUFA associated inflammation. The nutritional 

recommendation has been that individuals should decrease dietary ω−6 PUFA intake and 
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increase LC ω−3 PUFA consumption with an intake of at least 500 mg/day of dietary LC ω
−3 PUFA218, easily achievable with 2 weekly servings of oily fish, supporting prevention of 

cancer and cardiac disease and a dietary ratio of ω−6 : ω−3 PUFA of approximately 8:1 or 

lower219. PPAR-γ and GPR120 agonists also have potential use as neoplastic 

chemopreventive drugs; although their use, initially, is perhaps better targeted towards either 

high-risk individuals or as a therapeutic intervention. Regardless, there remains a compelling 

need to document that both pharmacophores and dietary regulation of PUFAs have clinically 

significant anti-cancer activities. Future trials should address this question as well as the 

impact on tumor infiltrating cells subtypes. We stress that translational/preclinical studies 

should utilize isocaloric and isolipidic, pair fed diets to control the regulation of immunity 

and inflammation by obesity versus dietary FAs. Further, great care must be taken to 

differentiate dietary control of tumor growth as opposed to metastasis, as these biologic 

parameters are interrelated. In our experience, fatty diets impact not only primary tumor 

growth, but also the extent and critically, sites of metastasis, all of which are typically 

unstudied but clinically and highly relevant since they are often the ultimate cause of the 

patient’s demise.
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Highlights:

• This review discusses the relationships between dietary PUFAs, lipid 

mediators, inflammation and neoplasia and experimental strategies to improve 

our understanding of these relationships.

• Discusses the need for isocaloric, isolipidic and pair-fed models to separate 

mechanisms based on obesity verses dietary composition

• Discusses our understanding of dietary PUFAs regulation of inflammation 

and neoplastic progression as an interventional strategy for cancer patients.

• Discusses recent findings on PUFA regulation of not only tumor initiation, but 

also tumor growth and the extent and sites of metastasis.
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Fig. 1. 
Leukocytes that infiltrate a tumor can regulate their growth rate, progression and may 

facilitate metastasis. Tumor regression is associated with tumor infiltration by dendritic cells 

(DCs), cytotoxic T cells (CTL) and type 1 T-helper cells (Th-1). Contrasting with this, tumor 

growth is facilitated by immune mediated immunosuppression and neoangiogenesis in 

association with infiltration by myeloid-derived suppressor cells, (MDSCs), immature DCs, 

pDCs, M2 macrophages, as well as T regulatory (T-reg) cells and a low frequency of CD4+ 

and CD8+ effector T cells. Further, the expansion of and infiltration by myeloid cell 

populations, including immunosuppressive sub-populations, is regulated in part, by colony 

stimulating factors (CSFs), and chemokines secreted by tumor cells, dietary ω−6 poly-

unsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs).
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Fig. 2. 
This figure is an outline of eicosanoid mediator synthesis pathways from arachidonic acid 

(AA) and resolvin related mediators from α-linolenic acid (ALA) and their inflammatory 

and anti-inflammatory functions. COX, cyclooxygenase; CYT p450 cytochrome, p450; 

chemokine subtype, CXC; HETE, hydroxyeicosatetraenoic acid; HDHA, 

hydroxyldocosahexaenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; HPDHA, 

hydroperoxydocosahexaenoic acid; HPEPE, hydroperoxyeicosapentaenoic acid; IL, 

interleukin, IFN, interferon; LOX, lipoxygenase; LT, leukotriene; LX, lipoxin; PG, 

prostaglandin; PMN, polymorphonuclear leukocytes; ROS, reactive oxygen synthetase; 

TNF, tumor necrosis factor, TX, thromboxane.
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Fig. 3: 
Dietary PUFA regulation of mammary adipose tissue inflammation

Crown-like-structures (CLS) were analysed in H & E stained sections of mammary fat pad 

from mice that received the differing PUFA composition diets for 20 weeks5. MFP from 

mice fed ω−3 diet (Fig. 3A) and ω−6 diet (Fig. 3B). Mice given the ω−3 diet had fewer and 

smaller CLS relative to mice given an ω−6 diet. Single arrow indicates small CLS and 

double arrows indicated large CLS. Note the difference in size of the adipocytes in the MFPs 

of mice on the different diets, i.e. the adipocytes are significantly larger in the mice given ω
−6 diets. Images were taken at 400x magnification.
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Fig. 4: Dietary PUFA regulation of mammary tumor growth and survival:
Groups of mice fed ω−6 and ω−3 diets for 10 weeks5, were injected orthotopically with 4T1 

cells. Tumor volume was recorded twice a week and plotted with average tumor volume per 

dietary group (Fig. 4A) (n=20). Survival days were compared between the dietary groups 

(Fig. 4B) (n=20) (p<0.05).

Khadge et al. Page 33

Int Immunopharmacol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khadge et al. Page 34

Ta
b

le
 1

T
um

or
 I

nh
ib

ito
ry

 C
el

lu
la

r 
M

ed
ia

to
rs

C
el

lu
la

r 
M

ed
ia

to
rs

F
un

ct
io

ns
M

ol
ec

ul
ar

 M
ed

ia
to

rs

C
lu

st
er

 o
f 

di
ff

er
en

tia
tio

n 
4 

po
si

tiv
e 

(C
D

4+
) 

T
 h

el
pe

r 
1 

ce
ll 

(T
h1

)
Im

m
un

e 
re

co
gn

iti
on

 o
f 

tu
m

or
 a

ss
oc

ia
te

 a
nt

ig
en

s 
(T

A
A

s)
 b

ou
nd

 to
 m

aj
or

 h
is

to
co

m
pa

tib
ili

ty
 

co
m

pl
ex

 (
M

H
C

) 
cl

as
s 

II
 m

ol
ec

ul
es

; c
on

tr
ib

ut
io

n 
to

 d
en

dr
iti

c 
ce

ll 
(D

C
) 

an
d 

m
ac

ro
ph

ag
e 

ac
tiv

at
io

n;
 n

at
ur

al
 k

ill
er

 (
N

K
) 

an
d 

na
tu

ra
l k

ill
er

 T
 c

el
l (

N
K

T
) 

ce
ll 

ac
tiv

at
io

n;
 c

yt
ot

ox
ic

 T
-

ly
m

ph
oc

yt
e 

(C
T

L
) 

ge
ne

ra
tio

n;
 in

du
ct

io
n 

of
 B

-c
el

l d
if

fe
re

nt
ia

tio
n.

IL
-2

, i
nt

er
fe

ro
n 

ga
m

m
a 

(I
FN

-γ
).

 in
te

rl
eu

ki
n 

12
 (

IL
-1

2)
, t

um
or

 
ne

cr
os

is
 f

ac
to

r-
be

ta
 (

T
N

F-
β)

,

C
D

8+
 C

T
L

Im
m

un
e 

re
co

gn
iti

on
 o

f 
TA

A
s 

bo
un

d 
to

 M
H

C
 c

la
ss

 I
 m

ol
ec

ul
es

;
pe

rf
or

in
, g

ra
nz

ym
e 

B
, F

as
 li

ga
nd

 (
Fa

sL
);

 I
FN

-γ
, I

L
-2

,

M
1 

(c
la

ss
ic

al
ly

 a
ct

iv
at

ed
 

m
ac

ro
ph

ag
es

)
TA

A
 p

re
se

nt
at

io
n;

 e
xp

re
ss

io
n 

of
 c

o-
st

im
ul

at
or

y 
m

ol
ec

ul
es

; F
c 

ga
m

m
a 

re
ce

pt
or

 (
Fc

R
)-

m
ed

ia
te

d 
an

tib
od

y 
-d

ep
en

de
nt

 c
el

lu
la

r 
cy

to
to

xi
ci

ty
 (

A
D

C
C

).
IL

-1
β 

an
d 

T
N

F-
α

; r
el

ea
se

 o
f 

re
ac

tiv
e 

ox
yg

en
 s

pe
ci

es
 (

R
O

S)
 

an
d/

or
 r

ea
ct

iv
e 

ni
tr

og
en

 s
pe

ci
es

 (
R

N
S)

C
D

4+
 T

h1
7

St
im

ul
at

io
n 

an
d 

ex
pa

ns
io

n 
of

 T
h1

 a
nd

 C
T

L
s

IF
N

-γ
, I

L
-2

, T
N

F,
 c

he
m

ok
in

e 
lig

an
d 

20
 (

C
C

L
20

),
 c

he
m

ok
in

e 
lig

an
d 

(C
X

C
L

)9
, C

X
C

L
10

D
en

dr
iti

c 
ce

ll 
1 

(D
C

1)
 (

C
D

11
c+

, 
co

nv
en

tio
na

l D
C

s)
 m

at
ur

e 
D

C
s

Im
m

un
og

en
ic

 c
ro

ss
-p

re
se

nt
at

io
n 

of
 T

A
A

s;
 e

xp
re

ss
io

n 
of

 c
os

tim
ul

at
or

y 
m

ol
ec

ul
es

 s
uc

h 
as

 
C

D
40

, C
D

80
, a

nd
 C

D
86

IF
N

s,
 T

N
F-

α
, I

L
-1

, I
L

-4
, I

L
-6

, I
L

-1
0,

 I
L

-1
2,

 a
nd

 I
L

-2
3.

N
K

 c
el

ls
R

ec
og

ni
tio

n 
of

 c
el

ls
 w

ith
 d

ow
n-

re
gu

la
te

d 
or

 a
bs

en
t M

H
C

 e
xp

re
ss

io
n;

 c
yt

ot
ox

ic
ity

 th
ro

ug
h 

pe
rf

or
in

 g
ra

nz
ym

e 
an

d 
ot

he
r 

m
ec

ha
ni

sm
s

pe
rf

or
in

, g
ra

nz
ym

e 
B

, F
as

L
; I

FN
-γ

, I
L

-2
, T

N
F-

β

G
am

m
a/

de
lta

 T
-c

el
ls

 (
γ/

δ 
T-

ce
lls

)
Im

m
un

e 
re

co
gn

iti
on

 o
f 

tu
m

or
-d

er
iv

ed
 p

ho
sp

ho
an

tig
en

s 
or

 s
tr

es
s 

lig
an

ds
; c

on
ta

ct
-d

ep
en

de
nt

 
cy

to
ki

ne
 p

ro
du

ct
io

n,
 tu

m
or

 a
nd

 v
ir

al
 c

yt
ot

ox
ic

ity
IF

N
-γ

, T
N

F,
 I

L
-1

7,
 F

as
L

, p
er

fo
ri

n,
 g

ra
nz

ym
e

N
K

T
 c

el
ls

Im
m

un
e 

re
co

gn
iti

on
 th

ro
ug

h 
bo

th
 N

K
 m

em
br

an
e 

re
ce

pt
or

s 
an

d 
an

 in
va

ri
an

t C
D

1d
 

re
st

ri
ct

ed
 T

-c
el

l r
ec

ep
to

r 
(T

C
R

);
IF

N
-γ

, I
L

-4
, p

er
fo

ri
n,

 g
ra

nz
ym

e 
B

 a
nd

 F
as

L

B
-c

el
ls

Im
m

un
e 

re
co

gn
iti

on
 o

f 
so

lu
bl

e 
an

d 
m

em
br

an
e 

TA
A

s;
 e

xp
re

ss
io

n 
of

 c
o-

st
im

ul
at

or
y 

m
ol

ec
ul

es
; A

D
C

C
 a

nd
 A

g 
pr

es
en

ta
tio

n
se

cr
et

io
n 

of
 T

A
A

-s
pe

ci
fi

c 
an

tib
od

ie
s;

 I
L

-1
2,

 T
N

F-
β

Int Immunopharmacol. Author manuscript; available in PMC 2019 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khadge et al. Page 35

Ta
b

le
 2

Pr
o-

tu
m

or
ig

en
ic

 c
el

lu
la

r 
m

ed
ia

to
rs

C
el

lu
la

r 
M

ed
ia

to
rs

F
un

ct
io

ns
M

ol
ec

ul
ar

 M
ed

ia
to

rs

R
eg

ul
at

or
y 

T-
ce

ll/
cl

us
te

r 
of

 d
if

fe
re

nt
ia

tio
n 

4 
po

si
tiv

e,
 T

 h
el

pe
r 

2 
ce

ll 
(T

-r
eg

/C
D

4+
 T

h2
)

M
ed

ia
te

 im
m

un
e 

ho
m

eo
st

as
is

 v
ia

 s
up

pr
es

si
on

 o
f 

in
fl

am
m

at
io

n 
an

d 
cy

to
to

xi
c 

T-
ly

m
ph

oc
yt

e 
ty

pe
 T

1 
T-

he
lp

er
 c

el
ls

 (
C

T
L

 T
h1

) 
re

sp
on

se
s,

 a
nd

 m
ai

nt
en

an
ce

 o
f 

pe
ri

ph
er

al
 to

le
ra

nc
e

E
xp

re
ss

io
n 

of
 ly

m
ph

oc
yt

e-
ac

tiv
at

io
n 

ge
ne

 3
 (

L
A

G
-3

),
 T

-c
el

l i
m

m
un

og
lo

bu
lin

 
m

uc
in

 3
 (

T
IM

-3
),

 g
lu

co
co

rt
ic

oi
d-

in
du

ce
d 

tu
m

or
 n

ec
ro

si
s 

fa
ct

or
 r

ec
ep

to
r 

(T
N

FR
)-

re
la

te
d 

pr
ot

ei
n 

(G
IT

R
),

 c
yt

ot
ox

ic
 T

-l
ym

ph
oc

yt
e-

as
so

ci
at

ed
 p

ro
te

in
 4

 
(C

T
L

A
-4

),
 p

ro
gr

am
m

ed
 d

ea
th

-1
 (

PD
-1

);
 lo

ca
l c

on
su

m
pt

io
n 

of
 in

te
rl

eu
ki

n 
2 

(I
L

-2
),

 s
ec

re
tio

n 
of

 I
L

-1
0,

 I
L

-4
, I

L
-3

5,
 I

L
-5

, I
L

-6
, t

ra
ns

fo
rm

in
g 

gr
ow

th
 f

ac
to

r 
be

ta
 (

T
G

F-
β)

, g
ra

nz
ym

e 
B

, a
nd

 p
er

fo
ri

n

C
lu

st
er

 o
f 

di
ff

er
en

tia
tio

n 
8 

po
si

tiv
e 

(C
D

8+
)

In
hi

bi
tio

n 
of

 C
T

L
 a

nd
 C

D
4+

 T
h1

 r
es

po
ns

es
IL

-4
, I

L
-5

, I
L

-1
0

T
 h

el
pe

r 
17

 c
el

ls
 (

T
h1

7)
Pr

om
ot

in
g 

an
gi

og
en

es
is

 v
ia

 V
E

G
F 

pr
od

uc
tio

n,
 n

eu
tr

op
hi

l 
re

cr
ui

tm
en

t/i
nf

ilt
ra

tio
n

IL
-8

, I
L

-6
, v

as
cu

la
r 

en
do

th
el

ia
l c

el
l g

ro
w

th
 f

ac
to

r 
(V

E
G

F)
, p

ro
st

ag
la

nd
in

 E
2 

(P
G

E
2)

, T
G

F-
β,

 c
he

m
ok

in
e 

lig
an

d 
1 

(C
X

C
L

1)
, C

X
C

L
5,

 C
X

C
L

8,
 a

nd
 I

L
-1

M
ye

lo
id

-d
er

iv
ed

 s
up

pr
es

so
r 

ce
lls

 (
M

D
SC

),
 

gr
an

ul
oc

yt
e-

lik
e 

(G
-M

D
SC

),
 m

on
oc

yt
e-

lik
e 

(M
-

M
D

SC
) 

an
d 

in
hi

bi
to

r 
(i

M
D

SC
),

D
ep

le
tio

n 
of

 a
rg

in
in

e;
 d

is
ru

pt
io

n 
of

 in
te

rl
eu

ki
n-

2 
(I

L
-2

) 
re

ce
pt

or
 s

ig
na

lin
g;

 in
hi

bi
t l

ym
ph

oc
yt

e 
tr

af
fi

ck
in

g;
 in

cr
ea

se
 T

-
re

g 
ac

tiv
at

io
n 

by
 C

D
40

-C
D

40
L

, i
nh

ib
it 

T-
ce

ll 
fu

nc
tio

n 
an

d 
an

tig
en

 p
re

se
nt

at
io

n,
 s

tim
ul

at
e 

ne
ov

as
cu

la
ri

za
tio

n,
 

do
w

nr
eg

ul
at

io
n 

of
 C

D
3ζ

R
ea

ct
iv

e 
ox

yg
en

 s
pe

ci
es

 (
R

O
S)

, n
itr

at
e 

ox
id

e 
sy

nt
he

ta
se

 (
N

O
S)

, a
rg

in
as

e 
1 

(A
rg

1)
, I

L
-1

0,
 T

G
F-

β

R
eg

ul
at

or
y 

B
 c

el
ls

 (
B

-r
eg

s)
In

hi
bi

tio
n 

of
 T

-c
el

l f
un

ct
io

n
Se

cr
et

io
n 

of
 I

L
-1

0 
an

d 
T

G
F-

β.

M
2,

 tu
m

or
 a

ss
oc

ia
te

d 
m

ac
ro

ph
ag

es
 (

TA
M

) 
al

te
rn

at
iv

el
y 

ac
tiv

at
ed

 m
ac

ro
ph

ag
es

 (
M

ac
s)

Pr
om

ot
e 

an
gi

og
en

es
is

, a
ct

iv
at

e 
T

h2
 a

nd
 C

D
8 

ce
lls

, s
up

po
rt

 
tu

m
or

 p
ro

gr
es

si
on

Se
cr

et
io

n 
of

 a
rg

in
as

e,
 c

yc
lo

-o
xy

ge
na

se
 2

 (
C

O
X

2)
, I

L
-1

0,
 c

he
m

ok
in

e 
lig

an
d 

22
 

(C
C

L
22

),
 p

ro
gr

am
m

ed
 d

ea
th

-l
ig

an
d 

1 
(P

D
L

1)

D
en

dr
iti

c 
ce

ll 
2 

(D
C

2)
 C

D
12

3+
, p

la
sm

ac
yt

oi
d 

(p
D

C
)

L
ow

 le
ve

ls
 o

f 
co

-s
tim

ul
at

or
y 

m
ol

ec
ul

e 
ex

pr
es

si
on

.
Se

cr
et

io
n 

of
 I

L
-1

0,
 I

D
O

, a
nd

 T
G

F-
β

G
ra

nu
lo

cy
te

s
In

cr
ea

se
d 

se
cr

et
io

n 
of

 to
xi

c 
pe

pt
id

es
Se

cr
et

io
n 

of
 R

O
S,

 a
to

pi
c 

m
ed

ia
to

rs
, a

nd
 I

L
-4

Int Immunopharmacol. Author manuscript; available in PMC 2019 December 01.


	Abstract
	Introduction
	Tumor Infiltrating Inflammatory Cells and Patient Outcomes.
	Innate and Adaptive Antitumor Cellular Mechanisms
	Dietary PUFA Regulation of Myeloid Cell Function
	T-cell Immunosuppression and PUFA
	Diets Rich in ω−6 PUFAs Increase the Risk of Inflammatory Diseases
	Dynamic Anti-inflammatory Activities of ω−3 PUFA
	Dietary ω−3 Regulation of Murine Tumor Growth
	Dietary LC ω−3 PUFA and Improved Cancer Patient Outcomes
	Summary
	References
	Fig. 1.
	Fig. 2.
	Fig. 3:
	Fig. 4:
	Table 1
	Table 2

