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Abstract

In recent years new technologies in neuroscience have made it possible to measure the activities of 

large numbers of neurons simultaneously in behaving animals. For each neuron a fluorescence 
trace is measured; this can be seen as a first-order approximation of the neuron’s activity over 

time. Determining the exact time at which a neuron spikes on the basis of its fluorescence trace is 

an important open problem in the field of computational neuroscience.

Recently, a convex optimization problem involving an ℓ1 penalty was proposed for this task. In this 

paper we slightly modify that recent proposal by replacing the ℓ1 penalty with an ℓ0 penalty. In 

stark contrast to the conventional wisdom that ℓ0 optimization problems are computationally 

intractable, we show that the resulting optimization problem can be efficiently solved for the 

global optimum using an extremely simple and efficient dynamic programming algorithm. Our R-

language implementation of the proposed algorithm runs in a few minutes on fluorescence traces 

of 100,000 timesteps. Furthermore, our proposal leads to substantial improvements over the 

previous ℓ1 proposal, in simulations as well as on two calcium imaging datasets.

R-language software for our proposal is available on CRAN in the package LZeroSpikeInference. 

Instructions for running this software in python can be found at https://github.com/jewellsean/

LZeroSpikeInference.
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1. Introduction.

When a neuron spikes, calcium floods the cell. In order to quantify intracellular calcium 

levels, calcium imaging techniques make use of fluorescent calcium indicator molecules 

[Ahrens et al. (2013), Dombeck et al. (2007), Prevedel et al. (2014)]. Thus, a neuron’s 

fluorescence trace can be seen as a first-order approximation of its activity level over time.
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However, the fluorescence trace itself is typically not of primary scientific interest; instead, 

it is of interest to determine the underlying neural activity, that is, the specific times at which 

the neuron spiked. Inferring the spike times on the basis of a fluorescence trace amounts to a 

challenging deconvolution problem, which has been the focus of substantial investigation 

[Deneux et al. (2016), Grewe et al. (2010), Pnevmatikakis et al. (2013), Sasaki et al. (2008), 

Theis et al. (2016), Vogelstein et al. (2009, 2010), Holekamp, Turaga and Holy (2008), Yaksi 

and Friedrich (2006), Friedrich and Paninski (2016), Friedrich, Zhou and Paninski (2017)]. 

In this paper we propose a new approach for this task, which is based upon the following 

insight, an autoregressive model for calcium dynamics that has been extensively studied in 

the neuroscience literature [Friedrich and Paninski (2016), Friedrich, Zhou and Paninski 

(2017), Vogelstein et al. (2010)] leads directly to a simple ℓ0 optimization problem for which 

an efficient and exact algorithm is available.

1.1. An autoregressive model for calcium dynamics.

In this paper we will revisit an autoregressive model for calcium dynamics that has been 

considered by a number of authors in the recent literature [Friedrich and Paninski (2016), 

Friedrich, Zhou and Paninski (2017), Pnevmatikakis et al. (2016), Vogelstein et al. (2010)]. 

We closely follow the notation of Friedrich, Zhou and Paninski (2017). This model posits 

that yt, the fluoresence at the tth timestep, is a noisy realization of ct, the unobserved 

underlying calcium concentration at the tth timestep. In the absence of a spike at the tth 

timestep (st = 0), the calcium concentration decays according to a pth-order autoregressive 

process. However, if a spike occurs at the tth timestep (st > 0), then the calcium 

concentration increases. Thus,

yt = β0 + β1ct + εt, εt~ind . 0, σ2 , t = 1, …, T;

ct = Σ
i = 1

p
γict − i + st, t = p + 1, …, T .

(1)

In (1), the quantities γ1, …, γp are the parameters in the autoregressive model. Note that the 

quantity yt in (1) is observed; all other quantities are unobserved. Since we would like to 

know whether a spike occurred at the tth timestep, the parameter of interest is st. Figure 1(a) 

displays a small dataset generated according to (1).

In what follows, for ease of exposition, we assume β0 = 0 and β1 = 1 in (1). This assumption 

is made without loss of generality, since β0 and β1 can be estimated from the data, and the 

observed fluorescence y1, …, yT centered and scaled accordingly. See Section 5 for 

additional details.

Vogelstein et al. (2010), Friedrich and Paninski (2016) and Friedrich, Zhou and Paninski 

(2017) seek to interpret st in (1) as the number of spikes at the tth timestep. Thus, in 

principle it would be desirable to use a count-valued distribution, such as the Poisson 

distribution, as a prior on st. However, because maximum a posteriori estimation of st in (1) 

using a Poisson distribution is computationally intractable, they instead suppose that st has 

Jewell and Witten Page 2

Ann Appl Stat. Author manuscript; available in PMC 2019 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an exponential distribution [Vogelstein et al. (2010)]. In the case of the first-order 

autoregressive process (p = 1), this leads Vogelstein et al. (2010) to the optimization problem

minimize
c1, .., cT , s2, …, sT

1
2 Σ

t = 1
T

(yt − ct)
2 + λ Σ

t = 2
T

st

subject to st = ct − γct − 1 ≥ 0,
(2)

where λ is a nonnegative tuning parameter that controls the tradeoff between the fit of the 

estimated calcium to the observed fluorescence and the sparsity of the estimated spike vector 

s2, …, sT. Friedrich and Paninski (2016) and Friedrich, Zhou and Paninski (2017) instead 

consider a closely related problem that results from including an additional ℓ1 penalty for the 

initial calcium concentration,

minimize
c1, .., cT , s2, …, sT

1
2 Σ

t = 1
T

(yt − ct)
2 + λ |c1 | + λ Σ

t = 2
T

st

subject to st = ct − γct − 1 ≥ 0.
(3)

Both (2) and (3) are convex optimization problems, which can be solved for the global 

optimum using a well-developed set of optimization algorithms [Bien and Witten (2016), 

Boyd and Vandenberghe (2004), Hastie, Tibshirani and Friedman (2009), Hastie, Tibshirani 

and Wainwright (2015)]. Because s2, …, sT are not integer valued, they cannot be directly 

interpreted as the number of spikes at each timestep; however, informally, a larger value of s t

can be interpreted as indicating greater certainty that one or more spikes occurred at the tth 

timestep.

In this paper we reconsider the model (1) that originally motivated the optimization 

problems (2) and (3) in the recent literature [Friedrich and Paninski (2016), Friedrich, Zhou 

and Paninski (2017), Vogelstein et al. (2010)]. Rather than interpreting st in (1) as the 

number of spikes at the tth timestep, we interpret its sign as an indicator for whether or not 

at least one spike occurred, that is, st = 0 indicates no spikes at the tth timestep, and st > 0 

indicates the occurrence of at least one spike. Then, in the case of a first-order autoregressive 

model (p = 1), (1) leads naturally to the optimization problem

minimize
c1, .., cT , s2, …, sT

1
2 Σ

t = 1
T

(yt − ct)
2 + λ Σ

t = 2
T

1(st ≠ 0)

subject to st = ct − γct − 1 ≥ 0,
(4)

where 1(A) is an indicator variable that equals 1 if the event A holds and 0 otherwise. In (4) 

λ is a nonnegative tuning parameter that controls the tradeoff between the fit of the 

estimated calcium to the observed fluorescence and the number of timesteps at which a spike 

is estimated to occur.
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Unfortunately, the optimization problem (4) is highly nonconvex due to the presence of the 

indicator variable. In the statistics literature this term is known as an ℓ0 penalty. It is well 

known that optimization involving ℓ0 penalties is typically computationally intractable; in 

general no efficient algorithms are available to solve for the global optimum.

In fact the convex optimization problem (2) considered in Vogelstein et al. (2010) and its 

close cousin (3) considered in Friedrich and Paninski (2016) and Friedrich, Zhou and 

Paninski (2017), can be viewed as convex relaxations to the problem (4). That is, if we 

replace the ℓ0 penalty in (4) with an ℓ1 penalty, then we arrive exactly at problem (2).

1.2. Contribution of this paper.

In the previous subsection we established that the optimization problems (2) and 3) studied 

by Vogelstein et al. (2010), Friedrich and Paninski (2016) and Friedrich, Zhou and Paninski 

(2017) can be seen as convex relaxations of the ℓ0 optimization problem (4), which follows 

directly from the model (1). In fact under the model (1), (4) is the “right” optimization 

problem to be solving; (2) and (3) are simply computationally tractable approximations to 

this problem. In fact, Friedrich, Zhou and Paninski (2017) allude to this in the “Hard 

shrinkage and ℓ0 penalty” section of their paper.

However, using an ℓ1 norm to approximate an ℓ0 norm comes with computational advantages 

at the expense of substantial performance disadvantages; in particular, the use of an ℓ1 

penalty tends to overshrink the fitted estimates [Zou (2006)]. This can be seen quite clearly 

in Figures 1(b) and 1(c). Retaining only the four spikes in Figure 1(c) associated with the 

largest increases in calcium leads to an improvement in spike detection [Figure 1(e); this is 

referred to as the post-thresholding ℓ1 estimator in what follows], but still one of the four true 

spikes is missed.

In this paper we consider a slight modification of (4) that results from removing the 

positivity constraint,

minimize
c1, .., cT , s2, …, sT

1
2 Σ

t = 1
T

(yt − ct)
2 + λ Σ

t = 2
T

1(st ≠ 0)

subject to st = ct − γct − 1.

(5)

In practice the distinction between the problems (5) and (4) is quite minor; on real data 

applications, for appropriate choices of the decay rate γ, the solution to (5) tends to satisfy 

the constraint in (4), and so the solutions are identical.

Like problem (4), solving problem (5) for the global optimum appears, at a glance, to be 

computationally intractable—we (the authors) are only aware of a few ℓ0 optimization 

problems for which exact solutions can be obtained via efficient algorithms.

However, in this paper we show that in fact (5) is a rare ℓ0 optimization problem that can be 

exactly solved for the global optimum using an efficient algorithm. This is because (5) can 

be seen as a changepoint detection problem for which efficient algorithms that run in no 
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more than 𝒪(T2) time, and often closer to 𝒪(T) time, are available. Furthermore, our 

implementation of the exact algorithm for solving (5) yields excellent results relative to the 

convex approximation (3) considered by Friedrich and Paninski (2016) and Friedrich, Zhou 

and Paninski (2017). This vastly improved performance can be seen in Figure 1(d).

The rest of this paper is organized as follows. In Section 2 we present an exact algorithm for 

solving the ℓ0 problem (5). In Section 3 we investigate the performance of this algorithm, 

relative to the algorithm of Friedrich and Paninski (2016) and Friedrich, Zhou and Paninski 

(2017) for solving the ℓ1 problem (3) in a simulation study. In Section 4 we investigate the 

performances of both algorithms for spike train inference on a dataset for which the true 

spike times are known [Chen et al. (2013), GENIE Project (2015)] and on a dataset from the 

Allen Brain Observatory [Allen Institute for Brain Science (2016), Hawrylycz et al. (2016)]. 

In Section 5 we generalize the problem (5) in order to allow for efficient estimation of an 

intercept term and to accommodate an autoregressive model of order p > 1 (1). Finally, we 

close with a discussion in Section 6. Technical details and additional results can be found in 

the Appendix.

2. An exact algorithm for solving problem (5).

In Section 2.1 we show that problem (5) can be viewed as a changepoint detection problem. 

In Sections 2.2 and 2.3 we apply existing algorithms for changepoint detection in order to 

efficiently solve (5) for the global optimum in 𝒪(T2) and in substantially fewer than O(T2) 

operations, respectively. Timing results are presented in Section 2.4. We discuss selection of 

the tuning parameter λ and autoregressive parameter γ in (5) in Appendix B.

2.1. Recasting (5) as a changepoint detection problem.

Recall that our goal is to solve the ℓ0 optimization problem (5) or, equivalently, to compute 

c1, …, cT that solve the optimization problem

minimize
c1, .., cT

1
2 ∑

t = 1

T
(yt − ct)

2 + λ ∑
t = 2

T
1(ct − γct − 1 ≠ 0) .

We estimate a spike event at the tth timestep if c t ≠ γc t − 1. (We refer to this as a “spike 

event,” rather than a spike, since c t ≠ γc t − 1 indicates the presence of at least one spike at the 

tth timepoint, but does not directly provide an estimate of the number of spikes.) We now 

make two observations about this optimization problem:

1. Given that a spike event is estimated at the tth timestep, the estimated calcium 

concentration at any time t1 < t is independent of the estimated calcium 

concentration at any time t2 ≥ t.

2. Given that two spike events are estimated at the tth and t′th timesteps with t < t′, 

and no spike events are estimated in between the tth and t′th timesteps, the 

calcium concentration is estimated to decay exponentially between the tth and t
′th timesteps.
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This motivates us to consider the relationship between (5) and a changepoint detection 
problem [Aue and Horváth (2013), Braun and Müller (1998), Davis, Lee and Rodriguez-

Yam (2006), Yao (1988), Lee (1995), Jackson et al. (2005), Killick, Fearnhead and Eckley 

(2012), Maidstone et al. (2017)] of the form

minimize
0 = τ0 < τ1 < ⋯ < τk < τk + 1 = T , k

∑
j = 0

k
𝒟(y(τ j + 1):τ j + 1

) + λ k , (6)

where

𝒟(ya:b) ≡ min
ca, ct = γct − 1, t = a + 1, …, b

1
2 ∑

t = a

b
(yt − ct)

2 . (7)

In (6) we are simultaneously minimizing the objective over the times at which the 

changepoints (τ1, …, τk) occur and the number of changepoints (k); the parameter λ 
controls the relative importance of these two terms.

The following result establishes an equivalence between (6) and (5).

PROPOSITION 1. There is a one-to-one correspondence between the set of estimated spike 
events in the solution to (5) and the set of changepoints 0 = τ0, τ1, …, τk, τk+1 = T in the 
solution to (6), in the sense that c t ≠ γc t − 1 if and only if t ∈ {τ1 +1, …, τk + 1}. 

Furthermore, given the set of changepoints, the solution to (5) takes the form

ct =

γct − 1 τ j + 2 ≤ t ≤ τ j + 1,

Σt = τ j + 1
τ j + 1 ytγ

t − (τ j + 1)

Σt = τ j + 1
τ j + 1 γ

2(t − (τ j + 1)) t = τ j + 1,

for j ∈ {0, …, k}.

Proposition 1 indicates that in order to solve (5), it suffices to solve (6). We note that due to 

a slight discrepancy between the conventions used in the changepoint detection literature 

and the notion of a spike event in this paper, the indexing in Proposition 1 is a little bit 

awkward, in the sense that the kth spike event is estimated to occur at time τk + 1, rather 

than at time τk.

In the next two sections, we will make use of the following result.

PROPOSITION 2. The quantity (7) has a closed-form expression,
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𝒟(ya:b) = Σ
t = a

b yt
2

2 − 𝒞(ya:b) Σ
t = a

b
ytγ

t − a +
𝒞(ya:b)2

2 Σ
t = a

b
γ2(t − a), where

𝒞(ya:b) =
Σt = a

b ytγ
t − a

Σt = a
b γ2(t − a) .

Furthermore, given 𝒟(ya:b), we can calculate 𝒟(ya: (b + 1)) in constant time.

Propositions 1 and 2 are proven in Appendix A.

2.2. An algorithm for solving (5) in 𝒪(T2) operations.

In this section we apply a dynamic programming algorithm proposed by Jackson et al. 

(2005) and Auger and Lawrence (1989) in order to solve the changepoint detection problem 

(6) for the global optimum in 𝒪(T2) time. Due to the equivalence between (6) and (5) 

established in Proposition 1, this algorithm also solves problem (5).

Roughly speaking, this algorithm recasts the very difficult problem of choosing the times of 

all changepoints simultaneously into the much simpler problem of choosing the time of just 

the most recent changepoint. In greater detail consider solving (6) on the first s timesteps. 

Define F(0) ≡ −λ, and for s ≥ 1, define

F(s) = min
0 = τ0 < τ1 < ⋯ < τk < τk + 1 = s, k

∑
j = 0

k
𝒟(y(τ j + 1):τ j + 1

) + λ k

= min
0 = τ0 < τ1 < ⋯ < τk < τk + 1 = s, k

∑
j = 0

k
[𝒟(y(τ j + 1):τ j + 1) + λ ] − λ

= min
0 = τ0 < τ1 < ⋯ < τk < τk + 1 = s, k

∑
j = 0

k − 1
[𝒟(y(τ j + 1):τ j + 1) + λ ] − λ +𝒟(y(τk + 1):τk + 1) +

λ

= min
0 ≤ < τk < τk + 1 = s

min
0 = τ0 < τ1 < ⋯ < τk′ < τk′ + 1 = τk′k′

∑
j = 0

k′
[𝒟(y(τ j + 1):τ j + 1) + λ ] − λ

+ 𝒟(y(τk + 1):τk + 1) + λ

= min
0 ≤ τ < s

F(τ) + 𝒟(y(τ + 1):s) + λ } .

(8)

In other words, in order to solve (6) we need simply identify the time of the most recent 

changepoint, and then solve (6) on all earlier times.
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This recursion gives a simple recipe for evaluating F(T) efficiently; set F(0) = −λ and 

compute F(1), F(2), …, F(T) based on previously calculated (and stored) values. For 

example, at s = 1, calculate and store

F(1) = min
0 ≤ τ < 1

F(τ) + 𝒟(y(τ + 1):1) + λ = F(0) + 𝒟(y1) + λ ,

and then at s = 2 use the previously calculated values F(0) and F(1) to compute the minimum 

over a finite set with s elements

F(2) = min
τ ∈ {0, 1}

{F(τ) + 𝒟(y(τ + 1):2) + λ }

= min{F(0) + 𝒟(y1:2) + λ , F(1) + 𝒟(y2) + λ } .

Given F(1), …, F(s − 1), computing F(s) requires minimizing over a finite set of size s, and 

therefore it has computational cost linear in s. The total cost of computing F(T) is quadratic 

in the total number of timesteps, T, since there are T + 1 subproblems, ∑s = 0
T s =𝒪(T2) .

Full details are provided in Algorithm 1. We note that this algorithm is particularly efficient 

in light of Proposition 2, which makes it possible to perform a constant-time update to 

𝒟(y(τ + 1):s) in order to compute 𝒟(y(τ + 1): (s + 1)).

2.3. Dramatic speedups using cost-complexity pruning.

In a recent paper Killick, Fearnhead and Eckley (2012) considered problems of the form (6) 

for which an assumption on 𝒟( ⋅ ) holds; this assumption is satisfied by (7).

The main insight of their paper is as follows. Suppose that s < r and 

F(s) + 𝒟(y(s + 1):r) > F(r). Then for any q > r, it is mathematically impossible for the most 

recent changepoint before the qth timestep to have occurred at the sth timestep. This allows 

us to prune the set of candidate changepoints that must be considered in each step of 

Algorithm 2, leading to drastic speedups. Details are provided in Algorithm 2, which solves 

(5) for the global optimum.
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Algorithm 1:

An 𝒪(T2) algorithm for solving (5)

Under several technical assumptions Killick, Fearnhead and Eckley (2012) show that the 

expected complexity of this algorithm is 𝒪(T). The main assumption is that the expected 

number of changepoints in the data increases linearly with the length of the data; this is 

reasonable in the context of calcium imaging data, in which we expect the number of neuron 

spike events to be linear in the length of the recording.

2.4. Timing results for solving (5).

We simulated data from (1) with γ =0.998, σ = 0.15 and st ~ind. Poisson(θ) with θ ∈ {0.1, 

0.01, 0.001}. We solved (5) with λ = 1 using our R-language implementations of 

Algorithms 1 and 2.

Timing results, averaged over 50 simulated datasets, are displayed in Figure 2. As expected 

the running time of Algorithm 1 scales quadratically in the length of the time series, whereas 

the running time of Algorithm 2 is upper bounded by that of Algorithm 1. Furthermore, the 

running time of Algorithm 2 decreases as the firing rate increases. The Chen et al. (2013) 

dataset explored in Section 4.1 has firing rate on the same order of magnitude as the middle 

panel, θ = 0.01. Using Algorithm 2, we can solve (5) for the global optimum in a few 

minutes on a 2.5 GHz Intel Core i7 Macbook Pro on fluorescence traces of length 100,000 

with moderate to high firing rates.

We note here that Algorithm 2 for solving (5) is much slower than the algorithm of 

Friedrich, Zhou and Paninski (2017) for solving (3), which is implemented in Cython and 

has approximately linear running time. It should be possible to develop a faster algorithm for 

solving (5) using ideas from Johnson (2013), Maidstone et al. (2017) and Hocking et al. 
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(2017). Furthermore, a much faster implementation of Algorithm 2 would be possible using 

a language other than R. We leave such improvements to future work.

Algorithm 2:

An algorithm for solving (5) in substantially fewer than 𝒪(T2) operations

3. Simulation study.

3.1. Comparison methods.

In this section, we use in silico data to demonstrate the performance advantages of the ℓ0 

approach (5) over two competing approaches:

1. The ℓ1 proposal (3) of Friedrich and Paninski (2016) and Friedrich, Zhou and 

Paninski (2017), which involves a single tuning parameter λ.

2. A thresholded version of the ℓ1 estimator. Letting s2, …, sT denote the solution to 

(3), we define the post-thresholding estimator as

st = s t1(s t ≥ L), t = 2, …, T , (9)

for L a positive constant. In other words the post-thresholding estimator retains 

only the estimated spikes for which the estimated increase in calcium exceeds a 

threshold L. The post-thresholding estimator involves two tuning parameters—λ 
in (3), as well as the value of L used to perform thresholding.

The post-thresholding estimator is motivated by the fact that the solution to (3) tends to yield 

many “small” spikes, that is, s t is near zero, but not exactly equal to zero, for many 
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timesteps. In fact this can be seen in Figure 1(c). As seen in Figure 1(e), the post-

thresholding estimator has the potential to improve the performance of the ℓ1 estimator by 

removing some of these small spikes. Of course, the post-thresholding estimator with L = 0 

is identical to the ℓ1 estimator from (3).

3.2. Performance measures.

We measure performance of each method based on two criteria: (i) error in calcium 

estimation and (ii) error in spike detection.

We consider the mean of squared differences between the true calcium concentration in (1) 

and the estimated calcium concentration that solves (5),

MSE(c, c) = 1
T ∑

t = 1

T
(ct − c t)

2 . (10)

This quantity involves the unobserved calcium concentrations, c1, …, cT, and thus can only 

be computed on simulated data. Furthermore, this quantity can be computed for our ℓ0 

proposal (5) and for the ℓ1 proposal (3) but not for the postthresholding estimator (9), since 

the post-thresholding estimator does not lead to an estimate of the underlying calcium 

concentrations.

We now consider the task of quantifying the error in spike detection. We make use of the 

Victor–Purpura distance metric [Victor and Purpura (1996, 1997)], which defines the 

distance between two spike trains as the minimum cost of transforming one spike train to the 

other through spike insertion, deletion or translation. We also use the van Rossum distance 

[van Rossum (2001)], defined as the mean squared difference between two spike trains that 

have been convolved with an exponential kernel with timescale τ = 2.

3.3 Results.

We generated 100 simulated datasets according to (1) with parameter settings γ = 0.96, T = 

5000, σ = 0.15 and st ~i.i.d. Poisson(0.01).

On each simulated dataset we solved (5) and (3) for a range of values of the tuning 

parameter λ. Moreover, we post-thresholded the ℓ1 solution, as in (9), with five different 

threshold values: L ∈ {0, 0.125, 0.250, 0.375, 0.500}.

Figure 3(a) displays the error in spike event detection for the van Rossum distance, Figure 

3(b) displays the error in spike event detection for the Victor–Purpura distance metric and 

Figure 3(c) displays the error in calcium estimation (10), for the ℓ0 problem (5) and the ℓ1 

problem (3), for a range of values of λ. Results are averaged over the 50 simulated datasets.

As mentioned earlier, since the calcium concentration is not defined for the post-

thresholding estimator (9), the post-thresholding estimator is not displayed in Figure 3(c). In 

Figures 3(a) and 3(b), five distinct curves are displayed for the post-thresholding operator; 

each corresponds to a distinct value of L. Note that as L increases, the maximum possible 
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number of estimated spikes from the postthresholding estimator decreases. For example, 

with λ = 0 and L = 0.5, no more than approximately 50 spikes are estimated by the post-

thresholding estimator. For this reason some of the curves corresponding to the post-

thresholding estimator appear truncated in Figures 3(a) and 3(b).

Figure 3 reveals that the ℓ0 estimator (5) results in dramatically lower errors in both calcium 

estimation and spike detection than the ℓ1 estimator (3) (which is equivalent to the post-

thresholding operator with L = 0). Although postthresholding with L > 0 improves upon the 

unthresholded ℓ1 estimator, the ℓ0 estimator still substantially outperforms all competitors in 

Figures 3(a) and 3(b). Moreover, the ℓ0 estimator requires just a single tuning parameter λ in 

(5), whereas the post-thresholding procedure involves two tuning parameters, λ in (3) and L 
in (9), leading to challenges in tuning parameter selection.

Furthermore, the ℓ0 problem (5) achieves the lowest errors in both calcium estimation and 

spike detection when applied using a value of the tuning parameter λ that yields 

approximately 50 estimated spikes, which is the expected number of spikes in this 

simulation. This suggests that it should be possible to use a crossvalidation scheme to select 

the tuning parameter λ for the ℓ0 approach; we propose such a scheme in Appendix B. By 

contrast in Figure 3(b), the ℓ1 approach achieves its lowest error in calcium estimation when 

far more than 50 spikes are estimated. This is a consequence of the fact that the ℓ1 penalty 

simultaneously reduces the number of estimated spikes and shrinks the estimated calcium. 

Therefore, the value of the tuning parameter λ in (3) that yields the most accurate estimate 

of calcium will result in severe over-estimation of the number of spikes. This means that the 

cross-validation scheme detailed in Appendix B will not perform well for the ℓ1 approach.

4. Application to calcium imaging data.

In this section we apply our ℓ0 proposal (5) and the ℓ1 proposal of Friedrich and Paninski 

(2016) and Friedrich, Zhou and Paninski (2017) (3), both with and without post-thresholding 

(9) to two calcium imaging datasets. In the first dataset, the true spike times are known 

[Chen et al. (2013), GENIE Project (2015)], and so we can directly assess the spike 

detection accuracy of each proposal. In the second dataset the true spike times are unknown 

[Allen Institute for Brain Science (2016), Hawrylycz et al. (2016)]; nonetheless, we are able 

to make a qualitative comparison of the results of the ℓ1 and ℓ0 proposals.

4.1. Application to Chen et al. (2013) data.

We first consider a dataset that consists of simultaneous calcium imaging and 

electrophysiological measurements [Chen et al. (2013), GENIE Project (2015)], obtained 

from the Collaborative Research in Computational Neuroscience portal (http://crcns.org/

data-sets/methods/cai-1/about-cai-1). In what follows we refer to the spike times inferred 

from the electrophysiological measurements as the “true” spikes.

The top panel of Figure 4 shows a 40-second recording from cell 2002, which expresses 

GCaMP6s. The data are measured at 60 Hz for a total of 2400 timesteps. The raw 

fluorescence traces are DF/F transformed with a 20% percentile filter as in Figure 3 of 

Friedrich, Zhou and Paninski (2017). In this 40-second recording there are a total of 23 true 
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spikes; therefore, we solved the ℓ0 and ℓ1 problems with γ = 0.9864405 using values of λ in 

(5) and (3) that yield 23 estimated spikes. Additionally, we solved the ℓ1 problem with λ = 1 

and post-thresholded it according to (9) using L = 0, 0.1, and 0.13; these threshold values 

yielded 230, 54, and 23 estimated spikes, respectively.

Figure 4 displays the estimated spikes resulting from the ℓ0 proposal, the estimated spikes 

resulting from the ℓ1 proposal, the estimated spikes from postthresholding the ℓ1 solutions, 

and the ground truth spikes. We see that the ℓ0 proposal has one false negative (i.e., it misses 

one true spike at around 7 seconds) and one false positive (i.e., it estimates a spike at around 

36 seconds, where there is no true spike). By contrast, the ℓ1 problem concentrates the 23 

estimated spikes at three points in time, and therefore suffers from a substantial number of 

false positives as well as false negatives. Because the ℓ1 penalty controls both the number of 

spikes and the estimated calcium, the ℓ1 problem tends to put a large number of spikes in a 

row, each of which is associated with a very modest increase in calcium. This is consistent 

with the results seen in Figures 1 and 3. Post-thresholding the ℓ1 estimator does lead to an 

improvement in results relative to the unthresholded ℓ1 method; however, the post-

thresholded solution with 23 spikes still tends to estimate a number of spikes in short 

succession when in fact only one true spike is present, and also misses several true spike 

events.

We note that the ℓ0 method tends to estimate spike times one or two timesteps ahead of the 

true spike times. This is due to model misspecification. Model (1) with p = 1 assumes that 

the calcium concentration increases instantaneously due to a spike event and subsequently 

decays; however, we see from Figure 4 that in reality, a spike event is followed by an 

increase in calcium over the course of a few timesteps before the onset of exponential decay. 

We see two possible avenues to address this relatively minor issue: estimated spike times 

from the ℓ0 method can be adjusted to account for this empirical observation; or else the 

optimization problem (5) can be adjusted in order to allow for more realistic calcium 

dynamics [e.g., by solving an ℓ0 optimization problem corresponding to (1) with p > 1]. We 

explore the second alternative in Section 5.

In Appendix C we apply an approach proposed by Friedrich, Zhou and Paninski (2017) to 

approximate the solution to a nonconvex problem using a greedy algorithm. This alternative 

approach performs quite a bit better than solving the ℓ1 problem (3); however, it does not 

achieve the global optimum.

4.2. Application to Allen brain observatory data.

We now consider a dataset from the Allen Brain Observatory, a large open-source repository 

of calcium imaging data from the mouse visual cortex [Allen Institute for Brain Science 

(2016), Hawrylycz et al. (2016)]. For this data the true spike times are not available, and so 

it is difficult to objectively assess the performances of the ℓ1, post-thresholded ℓ1, and ℓ0 

methods. Instead, for each method we present several fits that differ in the number of 

detected spikes. We argue that the ℓ0 problem yields results that are qualitatively superior to 

those of the competitors, in the sense that they are better supported by visual inspection of 

the data.
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For the second ROI in NWB 510221121, we applied the ℓ1, post-thresholded ℓ1, and ℓ0 

methods to the first 10,000 timesteps of the DF/F-transformed fluorescence traces. Since the 

data are measured at 30 Hz, this amounts to the first 333 seconds of the recording. Figure 5 

shows the results obtained with γ = 0.981756.

For the ℓ0 and ℓ1 estimators we chose the values of λ in (3) and (5) in order to obtain 27, 49 

and 128 estimated spikes. For the post-thresholded estimator (9) we set λ = 1, and then 

selected L to yield 27, 49 and 128 estimated spikes.

As in the previous subsection we see that, when faced with a large increase in fluorescence, 

the ℓ1 problem tends to estimate a very large number of spikes in quick succession. For 

example, when 27 spikes are estimated, the ℓ1 problem concentrates the estimated spikes at 

three points in time [Figure 5(a)]. Even when 128 spikes are estimated, the ℓ1 problem still 

seems to miss all but the largest peaks in the fluorescence data [Figure 5(c)]. Post-

thresholding the ℓ1 estimator improves upon this issue somewhat, but spikes corresponding 

to smaller increases in fluorescence are still missed; this issue can be clearly seen in Figures 

5(d)–(f), which zoom in on a smaller time window.

By contrast the ℓ0 problem can assign an arbitrarily large increase in calcium to a single 

spike event. Therefore, it seems to capture most of the visible peaks in the fluorescence data 

when 49 spikes are estimated [Figures 5(b) and 5(e)], and it captures all of them when 128 

spikes are estimated [Figures 5(c) and 5(f)].

Though the true spike times are unknown for this data, based on visual inspection, the 

results for the ℓ0 proposal seem superior to those of the ℓ1 and post-thresholded ℓ1 proposals.

5. Extensions.

We now present two straightforward extensions to the optimization problem (5) for which 

computationally attractive algorithms along the lines of the one proposed in Section 2 are 

available.

5.1. Estimation of the intercept in (1).

The model for calcium dynamics considered in this paper (1) allows for an intercept term, 

β0. In order to arrive at (5) we assumed that the intercept was known and (without loss of 

generality) equal to zero. However, in practice we might want to fit the model (1) without 

knowing the value of the intercept β0. In fact, in many settings this may be of great practical 

importance, since the meaning of the model (1) (and, for instance, the rate of exponential 

decay γ) is inextricably tied to the value of the intercept.

We now propose a modification to the ℓ0 optimization problem (5) that allows for estimation 

of the intercept β0. So that the resulting problem can be efficiently solved using the ideas 

laid out in Section 2, we must ensure that given the estimated spike times, the calcium can 

be estimated separately between each pair of consecutive spikes. Consequently, we must 

allow for a separate intercept term between each pair of consecutive spikes. This suggests 

the optimization problem
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minimize
c1, …, cT , β01, …, β0T

1
2 ∑

t = 1

T
(yt − ct − β0t)

2 + λ ∑
t = 2

T
1(ct ≠ γct − 1, β0t ≠ β0, t − 1

, (11)

where the indicator variable 1(A,B) equals one if the event A ∪ B holds, and equals zero 

otherwise. Therefore, 1(ct≠γct−1, β0t≠β0,t−1) equals one if the calcium concentration stops 

decaying or if the intercept changes. Note that in the solution to (11), the intercept is 

constant between adjacent timesteps, unless there is a spike.

Problem (11) can be recast as a changepoint problem of the form (6) with

𝒟(ya:b) ≡ min 1
2 Σ

t = a
b

(yt − ct − β0t)
2

subject to ct = γct − 1, β0t = β0, t − 1, t = a + 1, …, b .

Given D(ya:b), D(ya: (b + 1)) can be updated in constant time. Thus, the algorithms introduced 

in Section 2 can be easily modified in order to solve (11) for the global optimum.

5.2. An autoregressive model with p > 1 in (1).

The model (1) allows for the calcium dynamics to follow a pth order autoregressive process. 

For simplicity this paper focused on the case of p = 1. We now consider developing an ℓ0 

optimization problem for the model (1) with p > 1.

It is natural to consider the ℓ0 optimization problem

minimize
c1, …, cT

1
2 ∑

t = 1

T
(yt − ct)

2 + λ ∑
t = p + 1

T
1

(ct ≠ ∑i = 1
p γict − i)

. (12)

However, (12) cannot be expressed in the form (6). The penalty in (12) induces a 

dependency in the calcium that spans more than two timesteps, so that the calcium at a given 

timestep may depend on the calcium prior to the most recent spike. As a result (12) is 

computationally intractable.

Instead, we consider a changepoint detection problem of the form (6) with cost function

𝒟(ya:b) ≡ min 1
2 Σ

t = a
b

(yt − ct)
2

subject to ct = Σ
i = 1

p
γict − i, t = a + p, …, b .

Thus, the calcium follows a pth order autoregressive model between any pair of spikes; 

furthermore, once a spike occurs, the calcium concentrations are reset completely. That is, 

the calcium after a spike is not a function of the calcium before a spike. Consequently, it is 
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straightforward to develop a fast algorithm for solving this changepoint detection problem 

for the global optimum using ideas detailed in Section 2.

In particular a popular model for calcium dynamics assumes that, between any pair of 

spikes, the calcium can be well approximated by the difference between two exponentially-

decaying functions [Brunel and Wang (2003), Cavallari, Panzeri and Mazzoni (2016), 

Mazzoni et al. (2008), Volgushev, Ilin and Stevenson (2015)]. This would perhaps be a better 

model for the data from the Allen Brain Observatory, in which increases in fluorescence due 

to a spike occur over the course of a few timesteps rather than instantaneously; see Figure 5. 

This “difference of exponentials” model falls directly within the framework of (1) with p = 

2, and hence could be handled handled using the changepoint detection problem just 

described.

6. Discussion.

In this paper, we considered solving the seemingly intractable ℓ0 optimization problem (5) 

corresponding to the model (1). By recasting (5) as a changepoint detection problem, we 

were able to derive an algorithm to solve (5) for the global optimum in expected linear time. 

It should be possible to develop an even more efficient algorithm for solving (5) that exploits 

recent algorithmic developments for changepoint detection [Johnson (2013), Maidstone et 

al. (2017), Hocking et al. (2017)]; we leave this as an avenue for future work.

We have shown in this paper that solving the ℓ0 optimization problem (5) leads to more 

accurate spike event detection than solving the ℓ1 optimization problem (3) proposed by 

Friedrich, Zhou and Paninski (2017). Indeed, this finding is intuitive: the ℓ1 penalty and 

positivity constraint in (3) serves as a exponential prior on the increase in calcium at any 

given time point and thereby effectively limits the amount that calcium can increase in 

response to a spike event. By contrast the ℓ0 penalty in (5) is completely agnostic to the 

amount by which a spike event increases the level of calcium. Consequently, it can allow for 

an arbitrarily large (or small) increase in fluorescence as a result of a spike event.

While approximations to the solution to the ℓ0 problem (5) are possible [de Rooi and Eilers 

(2011), de Rooi, Ruckebusch and Eilers (2014), Hugelier et al. (2016), Scott and Knott 

(1974), Olshen et al. (2004), Fryzlewicz (2014), Friedrich, Zhou and Paninski (2017)], there 

is no guarantee that such approaches will yield an attractive local optimum on a given 

dataset. In this paper we completely bypass this concern by solving the ℓ0 problem for the 

global optimum.

In this paper we have focused on the empirical benefits of the ℓ0 problem (5) over the ℓ1 

problem (3). However, it is natural to wonder whether these empirical benefits are backed by 

statistical theory. Conveniently, both the ℓ0 and ℓ1 optimization problems are very closely 

related to problems that have been well studied in the statistical literature from a theoretical 

standpoint. In particular, in the special case of γ = 1, the ℓ0 problem (5) was extensively 

studied in Yao and Au (1989) and Boysen et al. (2009). Furthermore, when γ = 1, the ℓ1 

problem (5) is very closely related to the fused lasso optimization problem,
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minimize
c1, …, cT

1
2 ∑

t = 1

T
(yt − ct)

2 + λ ∑
t = 2

T
ct − ct − 1 ,

which has also been extremely well studied [Tibshirani et al. (2005), Mammen and van de 

Geer (1997), Davies and Kovac (2001), Rinaldo (2009), Harchaoui and Lévy-Leduc (2010), 

Qian and Jia (2012), Rojas and Wahlberg (2014), Lin et al. (2016), Dalalyan, Hebiri and 

Lederer (2017)]. However, we leave a formal theoretical analysis of the relative merits of (5) 

and (3), in terms of ℓ2 error bounds and spike recovery properties, to future work.

Our R-language software for our proposal is available on CRAN in the package 

LZeroSpikeInference. Instructions for running this software in python can be found at 

https://github.com/jewellsean/LZeroSpikeInference.
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APPENDIX A:: PROOF OF PROPOSITIONS

A.1. Proof of Proposition 1.

The first sentence follows by inspection. To establish the second sentence, we observe that 

the cost

D(ya:b) ≡ min
ca, ct = γct − 1, t = a + 1, …, b

1
2 ∑

t = a

b
(yt − ct)

2

can be rewritten by direct substitution of the constraint as

D(ya:b) = min
ca

1
2 ∑

t = a

b
(yt − γt − aca)2 .

This is a least squares problem and is minimized at

ca =
∑t = a

b ytγ
t − a

∑t = a
b γ2(t − a) ,

which implies that
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𝒟(ya:b) = 1
2 ∑

t = a

b
yt − γt − aca

2,

and furthermore that for a < t ≤ b the fitted values are c t = γc t − 1. Applying this argument to 

each segment gives the result stated in Proposition 1.

A.2. Proof of Proposition 2.

The first equation follows by expanding the square for the final form of 𝒟(ya:b) in the proof 

of Proposition 1. Given 𝒟(ya:b) we can calculate 𝒟(ya: (b + 1)) in constant time by storing 

Σt = a
b yt

2

2  and Σt = a
b ytγ

t − a, and updating each of these sums for the new data point yb+1; we 

use a closed form expression to calculate ∑t = a
b + 1γ2(t − a). With each of these quantities stored, 

𝒟( ⋅ ) and 𝒞( ⋅ ) are updated in constant time.

APPENDIX B:: CHOOSING λ AND γ

Recall that in (5), the parameters λ and γ are unknown. The nonnegative parameter λ 
controls the tradeoff between the number of estimated spike events and the quality of the 

estimated calcium fit to the observed fluorescence. The parameter γ,0 < γ < 1, controls the 

rate of exponential decay of the calcium. We consider two approaches for choosing γ and λ.

B.1. Approach 1.

To estimate γ, we manually select a segment ya:b that, based on visual inspection, appears to 

exhibit exponential decay. We then estimate γ as

γ = argmin
γ

{D(ya:b)} = argmin
γ

min
ca, ct = γct − 1, t = a + 1, …, b

1
2 ∑

t = a

b
(yt − ct)

2 .

This can be done via numerical optimization.

Next, given γ , we select λ via cross-validation. For each value of λ that we consider, we 

solve (6) on a training set, and then evaluate the mean squared error (MSE) on a hold-out 

set. Details are provided in Algorithm 3.

B.2. Approach 2.

Pnevmatikakis et al. (2013), Friedrich and Paninski (2016), and Friedrich, Zhou and 

Paninski (2017) propose to select the exponential decay parameter γ based on the 

autocovariance function, and to choose the tuning parameter λ such that ∥ y − c ∥2 ≤ σ T

where the standard deviation σ is estimated through the power spectral density of y, and T is 
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the number of timepoints. We refer the reader to Friedrich, Zhou and Paninski (2017) and 

Pnevmatikakis et al. (2016) for additional details.

APPENDIX C:: A GREEDY APPROACH FOR APPROXIMATING THE 

SOLUTION TO A NONCONVEX PROBLEM

Friedrich, Zhou and Paninski (2017) consider a variant of the optimization problem (3),

minimize
c1, …, cT , s2, …, sT

1
2 Σ

t = 1
T

(yt − ct)
2

subject to st = ct − γct − 1 ≥ smin or st = 0,
(13)

obtained from (3) by setting λ = 0, and changing the convex positivity constraint to the 

nonconvex constraint that st lies within a nonconvex set. Like (5), (13) is non-convex. 

Friedrich, Zhou and Paninski (2017) do not attempt to solve (13) for the global optimum; 

instead, they provide a heuristic modification to their algorithm for solving (5), which is 

intended to approximate the solution to (13).

Figure 6 illustrates the behavior of this approximate algorithm when applied to the same data 

as in Figure 4. We set γ = 0.9864405, and considered three values of smin. When smin = 10−8 

and smin = 0.1, in panels (a) to (b), too many spikes are estimated. But when smin = 0.3, in 

panel (c), the solution to (13) is very similar to the solution to (5) with λ = 0.6. Both almost 

perfectly recover the ground truth spikes. Therefore, in this example, the approximate 

algorithm of Friedrich, Zhou and Paninski (2017) for solving (13) performs quite well.
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Algorithm 3:

A cross-validation scheme for choosing λ (5)

However, (13) is a nonconvex problem, and the approximate algorithm of Friedrich, Zhou 

and Paninski (2017) is not guaranteed to find the global minimum. In fact, we can see that 

on the data shown in Figure 6, this approximate algorithm does not find the global optimum. 
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When applied with smin = 0.3, the approximate algorithm yields an objective value of 8.57. 

By contrast, our algorithm for solving (5) yields a solution that is feasible for (13), and 

which results in a value of 7.86 for the objective of (13). We emphasize that this is quite 

remarkable: even though the algorithm proposed in Section 2 solves (5) and not (13), it 
nonetheless yields a solution that is closer to the global optimum of (13) than does the 
approximate algorithm of Friedrich, Zhou and Paninski (2017), which is intended to solve 
(13).

In many cases, the greedy algorithm of Friedrich, Zhou and Paninski (2017) for solving (13) 

might yield good results that are near the global optimum of (13), and potentially even near 

the global optimum of (5). However, there is no guarantee that this algorithm will yield a 

“good” local optimum on any given dataset. By contrast, in this paper we have proposed an 

elegant and efficient algorithm for exactly solving the ℓ0 problem (5).

Fig. 6. 
Spike detection for cell 2002 of the Chen et al. (2013) data. In each panel, the observed 
fluorescence ( ) and true spikes ( ) are displayed. Estimated spikes from problem (13) 

are shown in ( ), and the estimated spikes from the ℓ0 problem (5) with λ = 0.6 are 
shown in ( ). Times 0 s–35 s are shown in the top row; the second row zooms in on 
times 5 s–10 s to illustrate behavior around a large increase in calcium concentration. 
Columns correspond to different values of smin.
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Fig. 1. 
A toy simulated data example. In each panel the x-axis represents time. Observed 
fluorescence values are displayed in ( ). (a): Unobserved calcium concentrations ( ) and 
true spike times ( ). Data were generated according to the model (1). (b): Estimated calcium 
concentrations ( ) and spike times ( ) that result from solving the ℓ1 optimization 
problem (3) with the value of λ that yields the true number of spikes. This value of λ leads 
to very poor estimation of both the underlying calcium dynamics and the spikes. (c): 

Estimated calcium concentrations ( ) and spike times ( ) that result from solving the 
ℓ1 optimization problem (3) with the largest value of λ that results in at least one estimated 
spike within the vicinity of each true spike. This value of λ results in 19 estimated spikes, 
which is far more than the true number of spikes. The poor performance of the ℓ1 

optimization problem in panels (b) and (c) is a consequence of the fact that the ℓ1 penalty 
performs shrinkage as well as spike estimation; this is discussed further in Section 1.2. (d): 

Estimated calcium concentrations ( ) and spike times ( ) that result from solving the ℓ0 

optimization problem (5). (e): The four spikes in panel (c) associated with the largest 
estimated increase in calcium ( ); we refer to this in the text as the post-thresholding ℓ1 

estimator. Since the estimated calcium is not well defined after post-thresholding, we do not 
plot the estimated calcium concentration.
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Fig. 2. 
Timing results for solving (5) for the global optimum, using Algorithms 1 ( ) and 2 

( ). The x-axis displays the length of the time series (T), and the y-axis displays the 
average running time in seconds. Each panel, from left to right, corresponds to data 
simulated according to (1) with st ~i.i.d. Poisson(θ), with θ ∈ {0.001, 0.01, 0.1}. Standard 
errors are on average < 0.1% of the mean compute time. Additional details are provided in 
Section 2.4.
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Fig. 3. 
Simulation study to assess the error in spike detection and calcium estimation, for the ℓ1 (3), 

post-thresholded ℓ1 (9) and ℓ0 (4) problems. (a): Error in spike detection measured using van 
Rossum distance. (b): Error in spike detection, measured using Victor-Purpura distance. (c): 

Error in calcium estimation (10). Simulation details are provided in Section 3.
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Fig. 4. 
Spike detection for cell 2002 of the Chen et al. (2013) data. The observed fluorescence ( ) 

and true spikes ( ) are displayed. Estimated spike times from the ℓ0 problem (4) are 
shown in ( ), estimated spike times from the ℓ1 problem (3) are shown in ( ), and 
estimated spike times from the post-thresholding estimator (9) are shown in ( ). Times 
0s–35s are shown in the top row; the second row zooms into time 30s–40s in order to 
illustrate the behavior around a large increase in calcium concentration.
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Fig. 5. 
The first 10,000 timesteps from the second ROI in NWB 510221121 from the Allen Brain 
Observatory. Each panel displays the DF/F-transformed fluorescence ( ), the estimated 
spikes from the ℓ0 problem ( ) (5), the estimated spikes from the ℓ1 problem ( ) 

(3), and the estimated spikes from post-thresholding the ℓ1 problem ( ) (9). The panels 
display results from applying the ℓ1 and ℓ0 methods with tuning parameter λ chosen to yield 
(a): 27 spikes for each method; (b): 49 spikes for each method; and (c): 128 spikes for each 
method. The post-thresholding estimator was obtained by applying the ℓ1 method with λ = 

1, and thresholding the result to obtain 27, 49 or 128 spikes. (d)–(f): As in (a)–(c), but 
zoomed in on 200–250 seconds.
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