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Type IV pili (T4P) are bacterial appendages composed of
protein subunits, called pilins, noncovalently assembled into
helical fibers. T4P are essential, in many bacterial species, for
processes as diverse as twitching motility, natural compe-
tence, biofilm or microcolony formation, and host cell adhe-
sion. The genes encoding type IV pili are found universally in
the Gram-negative, aerobic, nonflagellated, and pathogenic
coccobacillus Acinetobacter baumannii, but there is consid-
erable variation in PilA, the major protein subunit, both in
amino acid sequence and in glycosylation patterns. Here we
report the X-ray crystal structure of PilA from AB5075, a
recently characterized, highly virulent isolate, at 1.9 Å reso-
lution and compare it to homologues from A. baumannii
strains ACICU and BIDMC57, which are C-terminally glyco-
sylated. These structural comparisons revealed that
PilAAB5075 exhibits a distinctly electronegative surface chem-
istry. To understand the functional consequences of this
change in surface electrostatics, we complemented a �pilA
knockout strain with divergent pilA genes from ACICU,
BIDMC57, and AB5075. The resulting transgenic strains
showed differential twitching motility and biofilm formation
while maintaining the ability to adhere to epithelial cells.
PilAAB5075 and PilAACICU, although structurally similar, pro-
mote different characteristics, favoring twitching motility
and biofilm formation, respectively. These results support a
model in which differences in pilus electrostatics affect the
equilibrium of microcolony formation, which in turn alters
the balance between motility and biofilm formation in
Acinetobacter.

Type IV pili (T4P)2 are bacterial appendages composed of
protein subunits, called pilins, noncovalently assembled into
helical fibers. These appendages are found in a wide range of
eubacteria and are related structurally to type II secretion pseu-
dopili, competence-induced pili, and archeal archaella (1–3).
In many bacteria, these organelles are essential for processes
as diverse as twitching motility, natural competence, biofilm
or microcolony formation, and adhesion to biotic and abiotic
surfaces. These systems are phylogenetically diverse and are
commonly divided into type IVa (widely distributed), type
IVb (primarily found in enteric bacteria), and, proposed
recently, type IVc (tight adherence pili) (4). All type IV pilus
systems contain genes encoding for a cytoplasmic AAA�
ATPase (PilB), an integral membrane protein (PilC), and at
least two pilins (5–7). One pilin, the major pilin, makes up
nearly the entirety (�99%) of the pilus, with the other sub-
units, minor pilins, being incorporated either at the tip (8) or
scattered along the length (9).

Type IV pilin gene products are easily identified by their
combination of an N-terminal signal peptide (which is removed
by a specific protease prior to their incorporation into the pilus
fiber) followed by a hydrophobic �-helix (serving as a trans-
membrane domain for pilins in the inner/plasma membrane)
and finally a soluble region commonly referred to as the pilin
headgroup. The vast majority of known pilin headgroup struc-
tures are similar; a single globular domain consisting of an
N-terminal �-helix with a C-terminal �-sheet packed against it
(10). However, the amino acid sequences of these pilin head-
groups are so diverse that even structurally similar proteins
have insignificant (�10 –20%) sequence identities (11). Despite
the variety of type IV pilin proteins, which include minor pilins
with multidomain headgroups (8, 9), a given pilin gene within a
given species is typically well-conserved with only the major
pilin showing significant variation (12). Sequence diversity in
the major pilin has typically been attributed to diversifying
selection (13).

Acinetobacter baumannii, a Gram-negative, aerobic, nonflagel-
lated coccobacillus, expresses type IV pili, which are essential for
twitching motility and natural competence (14), and contribute to
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host cell adherence (15). T4P are ubiquitous within the Acintobac-
ter genus, which contains environmental strains from soil
and water, as well as commensal and pathogenic strains iso-
lated from mammalian hosts, including humans (16 –18).
A. baumannii has recently gained notoriety as a source of
hospital-acquired infections (19 –21), particularly for mili-
tary personal returning from the Middle East (hence the
moniker “Iraqibacter”) (22); however, several other species
related to A. baumannii, often simply referred to as the “Ab
group,” are routinely isolated from nosocomial infections
(23, 24). In particular the four related species of the
Acinetobacter calcoaceticus–A. baumannii (Acb) complex
(A. baumannii, A. calcoaceticus, Acinetobacter pitti, and Acineto-
bacter nosocomialis) are difficult to distinguish (25) and have all
been found to be infectious in model systems (26).

The type IVa pili of A. baumannii and related species have
diverse PilA proteins (both in amino acid sequence and
O-linked glycosylation) that are unrelated to the overall taxon-
omy. In this paper, we compare the structure and function of
pilin proteins from three strains of A. baumannii: (i) ACICU
(also known as H34), an epidemic, multidrug-resistant strain
belonging to the European clone II group that was isolated from
cerebrospinal fluid in an outbreak in Rome in 2005 (27); (ii)
BIDMC 57, a 2013 respiratory isolate from Beth Israel Dea-
coness Medical Center (Boston, MA) and sequenced at the
Broad Institute (Cambridge, MA); and (iii) AB5075, which
was isolated in 2008 from a osteomyelitis of the tibia by a
group at the Walter Reed Army Institute of Research (Silver
Spring, MD) (28) and found by those authors to be more
virulent than other A. baumannii isolates. However, corre-
lating pilus isotypes with phenotypic characteristics is
complicated by the divergence between pilA genotype and
Acinetobacter genetic diversity; by way of example, A. cal-
coaceticus PHEA-2 is an industrial wastewater isolate, but
PilAPHEA2 is 94% identical to PilAACICU.

Previously, we solved X-ray crystal structures of PilA, the
major pilin protein, from two strains of A. baumannii: ACICU
and BIDMC57 (15). PilAACICU and PilABIDMC57 were much
more similar to pilin structures from Pseudomonas aeruginosa
and Dichelobacter nodosus than to each other, seemingly prod-
ucts of convergent evolution. We have proposed that this diver-
gence within A. baumannii pilA genes could potentially be
explained by specialization for aerobic or anaerobic environ-
ments caused by differences in the distribution of disulfide
bonds; the solved structures of FimA, the D. nodosus major
pilin, and PilABIDMC57 lack disulfide bonds at the C terminus
typically found in pilins from Gram-negative bacteria.

However, a phylogenetic analysis of amino acid sequences
from the major pilins of A. baumannii, P. aeruginosa, and
D. nodosus showed three clusters, each containing sequences
from multiple species (15). We chose to examine the structure
of PilA from A. baumannii AB5075, a recently characterized
and unusually virulent clinical isolate (28), both as a represen-
tative of this third taxonic group and because unlike PilAACICU

and PilABIDMC57, PilAAB5075 is not natively C-terminally gly-
cosylated. We have solved the X-ray crystal structure of
PilAAB5075 and, after comparing it to the other Acinetobacter
PilA structures, found differences in surface electrostatics,

which suggest a mechanism for functional differentiation in
T4P based on the structure of PilA. To test our hypothesis, we
have complemented a pilA knockout strain of a model strain,
A. nosocomialis M2, with the pilin genes from A. baumannii
AB5075, ACICU, and BIDMC57 to directly compare the result-
ing phenotypes. Our results, described below, suggest that a
functional trade-off may exist between the ability of Acineto-
bacter T4P to promote biofilm formation and to function in
twitching motility.

Results

Acinetobacter pilA is highly variable and shows evidence of
convergent evolution with type IV pilins from other species.

Type IV pili are found in a wide variety of bacteria and have
been widely studied in Gram-negative infectious strains, partic-
ularly Pseudomonas and Neisseria species, which produce copi-
ous amounts of pili under laboratory conditions (46 –51). We
previously noted the similarity in structure between A. bau-
mannii PilA proteins and the equivalent major pilin proteins in
P. aeruginosa and D. nodosus. All three of these gammaproteo-
bacteria species have been isolated from mammalian hosts, as
well as soil, and typically present with persistent opportunistic
infections rather than acute bacteremia (26, 52, 53). These phe-
notypic similarities suggest that functional similarities may also
exist between the three T4P systems.

Fig. 1A shows a phylogenic tree of 60 A. baumannii PilA,
P. aeruginosa PilA, and D. nodosus FimA amino acid sequences
excluding the N-terminal signal peptides (all sequences begin
FTLIEL. . .). The three branches of the unrooted tree each
contain sequences from multiple species. On the top left,
the branch containing PilAACICU also contains P. aeruginosa
PilAPAO1 and PilAPAK among others. Counterclockwise, the
next branch, containing PilABIDMC57, also includes D. nodosus
FimA sequences from the predominant serotypes (A–C and
E–G). The final branch contains representatives from all three
species, including PilAAB5075, D. nodosus FimA from serotypes
D and H, and P. aeruginosa PilA1244. We noted the existence of
this third branch in the dendogram previously (15). However,
unlike the ACICU and BIDMC57 division, we could find no
ready explanation for the division between the ACICU and
AB5075 branches.

Notably, of the seven A. baumannii pilin genes, pilA alone
shows this divergence, suggesting that the “machinery” of
pilus assembly is conserved throughout. Fig. 1B shows a den-
dogram of the seven pilins from A. baumannii AB5075,
ACICU, and BIDMC57. The pilA branch (circled in red)
shows substantially more variation than the other six, which
are well-conserved, particularly between ACICU and
AB5075; in one case, PilV, the ACICU and AB5075 amino
acid sequence are identical.

High-resolution structure of PilAAB5075

We determined the structure of PilA from A. baumannii
AB5075 as a C-terminal fusion to maltose-binding protein to a
resolution of 1.9 Å (Table 1). PilAAB5075 possesses a typical type
IVa pilin fold (Fig. 2A), beginning with an �-helix (�1-C, the
N-terminal portion, residues 1–22, is hydrophobic and was
removed for expression and crystallization), which leads into an
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extended loop (the ��-loop, see below) and then a central
�-sheet packed against the helix. Like PilAACICU (and the
majority of solved type IV pilin structures), one of its disulfide
bonds is at the C terminus between the final two �-strands of

the central �-sheet, between residues 135 and 148. This simi-
larity in disulfide bonding may explain why, despite the poor
sequence conservation between the PilAACICU and PilAAB5075

C termini, their D-regions (the loops bound by the C-terminal
disulfide bonds) are superimposable (Fig. 2C), unlike the equiv-
alent C-terminal region of PilABIDMC57 (Fig. 2D). This supports
our hypothesis that the C-terminal structure of PilABIDMC57

and the structurally similar D. nodosus FimA (serotype A, PDB
ID: 3SOK) (54) contain C-terminal helices and hydrophobic
regions to stabilize them in the absence of the disulfide bond.
Previously we showed that alanine mutations of those C-termi-
nal hydrophobic residues destabilized PilABIDMC57 (15). Fig. 2B
shows a sequence alignment of PilAAB5075, PilAACICU, and
PilABIDMC57; despite the structural conservation in the central
�-sheet, the sequence similarity is low: �35% for any of the
three to either of the other two, excluding the N-terminal trans-
membrane helix (residues 1–22).

The most striking feature of the PilAAB5075 structure is the
��-loop (from the end of the central �-helix to the start of the
first �-strand in the central �-sheet); bounded by a dashed gray
line in Fig. 2A. Approximately 15 residues longer than the
��-loop of PilAACICU, it contains a disulfide bond to the central
�-helix (residues 50 and 65) and twists back over itself twice,
extending out from the center of the headgroup. It contains
none of the �-character found in the ACICU ��-loop but has
some positional overlap with the BIDMC57 ��-loop (Fig. 2)

Figure 1. Phylogeny of A. baumannii type IV pilin genes. A, dendogram of major pilin amino acid sequences from 20 representative strains of A. baumannii
(green), P. aeruginosa (orange), and D. nodosus (blue). The sequences of PilAAB5075, PilAACICU, and PilABIDMC57 are marked on their respective branches (accession
numbers in Table S1). B, dendogram of A. baumannii pilin amino acid sequences. Branches for each of the seven pilins are highlighted in red (PilA), orange
(FimU), light orange (PilV), yellow (PilW), green (PilX), light blue (PilE1), and dark blue (PilE2); the genetic organization of the pilin genes is diagrammed below in
the corresponding colors.

Table 1
Crystallographic parameters for MBP–PilAAB5075

The values in parentheses are for the highest resolution shell.
Resolution range 29.21–1.9 (1.968–1.9)
Space group P 1 21 1
Unit cell 39.557, 103.04, 56.195, 90, 98.947, 90
Total reflections 156,212 (15709)
Unique reflections 34,906 (3467)
Multiplicity 4.5 (4.5)
Completeness (%) 99.64 (99.77)
Mean I/�(I) 14.63 (2.44)
Wilson B-factor 28.44
Rmerge 0.05718 (0.5332)
Rpim 0.02973 (0.28)
CC1⁄2 0.999 (0.849)
CC* 1 (0.958)
Rwork 0.2002 (0.3110)
Rfree 0.2432 (0.3382)
Root mean square

Bonds 0.005
Angles 0.73

Ramachandran (%)
Favored 97.70
Allowed 2.30
Outliers 0.00

Clashscore 4.04
Average B-factor 41.53

Macromolecules 41.45
Ligands 53.97
Solvent 42.23
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and the pilin of P. aeruginosa PAK (36). Despite the long
stretches with no �- or �-structure, the loop conformation
can be unambiguously determined because of the well-de-
fined electron density in this region (Fig. S1). An analysis of
relative B-factors for PilAAB5075, PilAACICU, and PilABIDMC57

suggests that the internal dynamics of PilAAB5075 and PilAACICU

may be similar as well (Fig. S2). Both have relatively low b-fac-
tors for the �1-C helix and central �-sheet with intermediate
relative b-factors for the ��-loop (though higher for two of the
loops in PilAAB5075) and the highest relative b-factors at the C
terminus. Conversely, PilABIDMC57 has a gradient of relative
b-factors running along the �1-C helix from the N-terminal
portion (low) to the tip and ��-loop (high), whereas the C ter-
minus is relatively well-ordered.

Surface electrostatics of A. baumannii PilA variants

Variation in the ��-loop of pilin proteins is well-docu-
mented (10), but the unusual structure of the ��-loop in
PilAAB5075 suggested some functional role to us. An examina-
tion of the surface electrostatics of PilAAB5075 showed an
unusual concentration of acidic groups at the surface, particu-

larly in the ��-loop itself (Fig. 3A). The contrast is particularly
striking with PilAACICU. Calculations of theoretical isoelectric
points for the two headgroups (i.e. excluding residues 1–22)
give values of 4.73 for PilAAB5075 and 8.43 for PilAACICU. To
evaluate the implications of the extended ��-loop and its elec-
tronegative surface for a native pilus, we created models of full-
length PilAAB5075 (that is modeling the transmembrane helix
spanning residues 1–22) (Fig. S3A) and an assembled AB5075
type IV pilus based on the 2006 model Neisseria gonorrhoeae
pilus (37) (Fig. S3B) and the higher-resolution 2017 P. aerugi-
nosa model from Wang et al. (55) (Fig. 3B and Fig. S3C). Elec-
tronegativity clearly predominates, with the few electropositive
regions on the surface confined to a recessed groove, which
follows the helical symmetry axis around the pilus fiber (Fig. 3C
and Fig. S3D).

If we compare the charged residues that are exposed on the
surface of the AB5075 and ACICU pilus models (Fig. S4), each
has six negatively charged (aspartate or glutamate) residues, but
the ACICU surface also contains seven positively charged
(lysine or arginine) residues, whereas none are found on the

Figure 2. Structure of PilAAB5075. A, cartoon representation of PilAAB5075 headgroup; disulfide bonds are displayed in yellow. B, sequence alignment of
PilAAB5075, PilAACICU and PilABIDMC57. �-Helices are highlighted in red, and �-strands are in blue. Sequence identity (*), close similarity (:), and similarity (.) are
indicated below. C, superimposition of PilAAB5075 (pink) and PilAACICU (gray). D, superimposition of PilAAB5075 (pink) and PilABIDMC57 (gray).
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equivalent AB5075 surface (lysine 117 can be found in the pre-
viously mentioned groove). Two of these basic surface residues
form unambiguous salt bridges with acidic residues (lysine
69/glutamate 63 and arginine 122/aspartate 109), whereas
three other pairs are within 3 Å but ambiguous from the side-
chain density (lysine 102/aspartate 126, lysine 103/glutamate
105, and arginine 132/glutamate 129). One logical consequence
of an increased electronegativity of the pilus surface is that elec-
trostatic repulsion would then disfavor pilus–pilus contacts,
including the formation of pilus bundles, which have been dem-
onstrated to promote microcolony formation in type IVb pili
(56, 57).

Twitching motility by �pilA complements
Phenotypic comparisons of A. baumannii have been under-

taken by several other groups previously (58 –60). Eijkelkamp
et al. (60), in particular, examined the correlation between pilA
sequence and motility and biofilm phenotypes, finding a link
between pilA sequence and twitching motility. In this study,
because we wished to isolate the effects of variation in PilA from
other factors, we introduced pilA genes from A. baumannii
AB5075, ACICU, and BIDMC57 into a �pilA strain of A. noso-
comialis M2. This strain, originally described as A. baumannii
M2 (14), has been used as a model system for studies of multiple
aspects of Acinetobacter pathogenesis (15, 21, 61).

We measured the ability of A. nosocomialis M2 �pilA com-
plemented with plasmids containing pilA from A. baumannii
AB5075, ACICU, and BIDMC57 (Fig. S5), as well as positive
and negative controls to move at the interface between nutrient
agar and polystyrene using standard methods (14). To quanti-
tate the extent of twitching motility, we used crystal violet to
stain the bacteria and image analysis software to distinguish
bacteria from background and using WT, �pilA, �pilT, and

complements for validation (Fig. S6). The results from 1%
MacConkey agar plates (Fig. 4) show that the AB5075 and
BIDMC57 complements were able to complement the �pilA
phenotype with much greater effectiveness than the ACICU
mutant. The ACICU mutant did show significantly more move-
ment than �pilA (p � 0.035) but was at least an order of mag-
nitude worse than the WT, native complement, AB5075 com-
plement, and BIDMC57 complement.

Adhesion to A549 and Detroit 562 cells

Previously we reported that the �pilA mutant of A. noso-
comialis M2 showed a defect in adhesion to A549 cells, an
immortalized cell line derived from lung epithelial cells,
which was restored in the complemented strain (15). Addi-
tionally, adhesion was significantly increased in the �pilT
mutant, which is incapable of retracting type IV pili. Based
on these results, we reasoned that if the pilAACICU comple-
ment was poorly motile because it produced few T4P, it
would correspondingly be a poor complement for the native
pilin in these host cell adhesion assays. If, however, the
pilAACICU complement was capable of normal pilus biogenesis
but incapable of retraction, similar to what was observed previ-
ously by Rogers et al. (79), we would expect it to adhere
to A549 cells more strongly than the pilAAB5075 and
pilABIDMC57 complements.

These assays were performed as described previously (15)
with the exception that the bacteria were grown in MacConkey
medium rather than Luria broth (see “Experimental proce-
dures”). This change was prompted by our observation that
type IV pilus expression by A. nosocomialis M2, as evidenced
by twitching motility, is significantly greater in MacConkey
medium than in Luria broth (Fig. S7). The results (Fig. 5) show
that under these conditions, robust binding to both A549

Figure 3. Model of the A. baumannii AB5075 type IV pilus. A, columbic surfaces of the PilAAB5075, PilAACICU, and PilABIDMC57 headgroups. B, cartoon
representation of pilus model (pink). A single modeled full-length pilin is depicted in violet. C, columbic electrostatic surface depiction of the AB5075 pilus.
Electrostatic potential key for A and C is shown below.
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and Detroit 562 (nasopharyngeal) cells is observed for the
WT strain and significantly decreased in the �pilA mutant
and that all three of A. baumannii pilA complements restore
adhesion with no significant differences between them.

These data indicate that all three pilA complements are
capable of both extension and retraction of T4P, and we find
no relationship between PilA sequence and the relative bind-
ing to these two cell types.

Figure 4. Twitching motility of A. nosocomialis M2 and complemented strains. A, normalized twitching area, expressed as the fraction of the plate covered.
Error bars represent standard error. ***, p � 0.001. B, representative images of twitching results after staining with crystal violet.

Figure 5. Host cell adherence through Acinetobacter type IV pili. The average number of cfu of A. nosocomialis recovered from a binding experiment with
either A549 cells (black circles) or Detroit 562 cells (white circles) is shown. Error bars represent standard error. Significant (p � 0.05) reduction for both cell lines
is marked with an asterisk (*).
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A. baumannii biofilm formation on stainless steel
If the divergence in PilA sequence is the result of functional

specialization, we would expect that a defect in one function
would be compensated for by a gain in another. Correspond-
ingly, we also measured the ability of our complements to
form biofilm in a vertical biofilm formation assay similar to a
CDC biofilm reactor (62). Briefly, sterilized stainless steel cou-
pons were placed upright in culture tubes and immersed in
MacConkey medium, and the medium was inoculated with
bacterial cultures from saturation growths. Our experimental
design was influenced by several factors, including our prior
results growing biofilms horizontally on glass surfaces (15).
Previously we found no significant difference between A. noso-
comialis M2 WT, �pilA, and the native complement in biofilm
formation on horizontal glass surfaces grown in Luria broth.
However, as noted above, we now expected stronger T4P-de-
pendent phenotypes in MacConkey medium. Similarly, Acin-
etobacter adhesion to stainless steel is well-characterized and
robust compared with untreated glass (63). We attribute the
growth medium dependence of T4P expression to differences
in the production of quorum-sensing molecules, consistent
with the observation that virstatin (an inhibitor of AnoR/AnoI)

reduces both surface motility and biofilm formation in A. bau-
mannii (64, 65).

After fixation and fluorescent staining with FM 1– 43, bio-
film formation was assessed using confocal laser scanning
microscopy (CLSM) (Fig. 6). Calculated biomass shows a sig-
nificant phenotype for the �pilA mutant, which can be comple-
mented by the native M2 pilA gene as well as the pilA genes
of AB5075, ACICU, and BIDMC57. Additionally, the ACICU
complement formed significantly greater biomass than the
AB5075 complement (Fig. 6C). We attribute this difference
in biomass to differences in bacterial aggregation because all
strains, including �pilA, were able to adhere in a monolayer to
the stainless steel surface (Fig. 6B). Additionally, we found that
biofilm formation was accompanied by the formation of cross-
linking pilus-like fibers for all strains (Fig. S8), which we attrib-
ute to chaperone-usher (Csu) pili, consistent with their role in
Acinetobacter biofilm formation (66, 67).

Discussion

Variation in the genetics of A. baumannii virulence factors,
including type IV pili, is well-established, and with the improve-
ments in metagenomics sequencing technology, the acquisition

Figure 6. Acinetobacter biofilm formation on stainless steel. A, 3D reconstructions of biofilms imaged by CLSM. B, 2D, top-down CLSM images. C, biofilm
biomass calculated for A. nosocomialis M2, �pilA, and complements. Error bars represent standard error. **, p � 0.01; ***, p � 0.01.
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of genomic data continues to accelerate. In this work we exam-
ine the relationships between genetic variation in the major
subunit of type IV pili, PilA, the molecular structure of type IV
pili, and the resulting bacterial phenotypes. We observed dif-
ferences in surface chemistry between PilAAB5075 and PilAACICU

even as the secondary structure was largely conserved and
found that the two proteins promoted different bacterial behav-
ior as well, with the AB5075 pilin favoring motility and the
ACICU pilin favoring biofilm formation. We propose that these
results can be explained by the equilibrium between single and
bundled type IV pili.

Type IV pili mediate diverse functions in a variety of bacteria
(10), but all of the known functions rely on some interplay
between two general characteristics: adhesion (whether to
DNA, biotic or abiotic surfaces, or each other) (56) and retrac-
tion (which is essential for twitching motility and natural com-
petence) (14). The stark contrast in surface electrostatics
between PilAAB5075 and PilAACICU, given the overall similarity
in fold, suggested to us that fibers formed from PilAAB5075

would be more prone to electrostatic repulsion and hence
adhere less to each other.

Pilus bundling has also been shown to be a function of pilin
surface chemistry; Neisseriae type IV pili are less bundled when
glycosylated at serine 63 (68, 69). Because, unlike A. baumannii
AB5075, the ACICU and BIDMC57 strains C-terminally glyco-
sylate PilA, they may reduce pilus bundling through glycosyla-
tion without the need for electrostatic repulsion. However, it is
important to distinguish between bundling between the pili of a
single cell (cis-bundling) and bundling between the pili of adja-
cent cells (trans-bundling). cis-Bundling is no detriment to
motility and in fact has been shown to dramatically increase
force of pilus retraction and to increase the persistence of
twitching motility (70, 71).

Trans-bundling promotes microcolony formation in entero-
pathogenic Escherichia coli and Vibrio cholerae (56, 57), a pre-
cursor to biofilm formation. The balance between cis- and
trans-bundling is also dependent upon the number of pili per
cell, which is dramatically lower in Acinetobacter than Neisse-
riae and Pseudomonas (14, 37, 55).

An increase in microcolony formation could explain both the
greater biofilm formation of the ACICU complement and its
poor motility. A scheme describing this model is shown in Fig.
7. Single cells are free to move across the surface, resulting in
an overall increase in twitching motility, whereas cells joined
together into microcolonies are less motile but serve as nucle-
ants for the formation of biofilm.

Inverse relationships between twitching motility and biofilm
formation have been observed previously in P. aeruginosa �pilT
mutants (38) and correlatively in clinical isolates (72). In cases
where�pilTmutantsarehyperpilated,increasesinretraction-inde-
pendent adhesive functions can be explained simply through the
increase in adhesive molecules on the surface. By way of example,
we previously reported increased host cell adhesion for the
A. nosocomialis M2 �pilT mutant (15). However, we observe no
hyperpilation of the pilAACICU complement, either directly by
TEM (Fig. S9) or in increased host cell adhesion (Fig. 5), implying
that the defect in motility does not stem directly from decreased
pilus retraction.

Returning to prior studies comparing the phenotypes of
A. baumannii strains, we examined the degree to which the
results reported here were consistent with the behavior of the
native bacteria. Eijkelkamp et al. (60) compared the motility
and adhesion characteristics of a wide variety of clinical isolates
and reported that only 3 of 32 international clone II isolates
(which includes ACICU) showed twitching motility, in contrast
to international clone I (which have pilA sequences similar to

Figure 7. Schematic model for specialization in Acinetobacter type IV pili. A potential tradeoff between biofilm formation and twitching motility based
solely on PilA structure is depicted based on the equilibrium between singled and bundled T4P.
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AB5075), in which 8 of 8 were motile; this correlation between
PilA sequence and motility was also noted by the authors. How-
ever, although these results are consistent with what we observe
with the pilAAB5075 and pilAACICU complements, we note that
American Type Culture Collection 19606, which has a pilA
sequence very similar to BIDMC57, was found to be nonmotile
in that study. More recently and also consistent with our find-
ings, Sahl et al. (73) found greater biofilm formation by ACICU
than AYE (which has a PilA sequence identical to AB5075).

If a tradeoff between twitching motility and biofilm forma-
tion can explain the differentiation of Acinetobacter type IV pili,
what evolutionary pressures favor one over the other? Because
the three pilin proteins in this study are from A. baumannii
clinical isolates, one obvious possibility is that differences in
infection sites led to specialist pathogens. This view is sup-
ported by the observation by Vijayakumar et al. (72) that
A. baumannii isolates from the sputum formed more biofilm in
vitro than isolates from the blood, whereas the reverse was true
for twitching motility. However, Acinetobacter strains with
similar type IV pilins have also been isolated environmentally;
A. calcoaceticus PHEA-2 has a PilA sequence nearly identical to
that of A. baumannii ACICU (94% amino acid identity) but was
isolated from industrial wastewater (74). It is possible that a
distinction exists between the T4P of environmentally adapted
strains, which retain some infectivity and the T4P of specialized
pathogenic strains; Wang et al. (75) observed a trend associat-
ing biofilm-forming strains with better clinical outcome. How-
ever, more work comparing clinical, commensal, and environ-
mental isolates in controlled studies, particularly models of
infection, remains to be done before we can draw such a
conclusion.

The ability of all three A. baumannii pilA complements to
adhere to host cells in a similar manner despite their differences
in structure and surface chemistry is consistent with our prior
observation that the removal of a C-terminal pentasaccharide
from the A. nosocomialis PilA protein also has no effect on
binding to A549 or Detroit 562 cells. We hypothesize that the
relevant adhesin in this case is not PilA itself but a minor pilin
subunit (consistent with the conservation we see of the minor
A. baumannii minor pilins in Fig. 1) or a protein that interacts
with the pilus, either constitutively at the tip (76) or as a
secreted factor, as was recently shown in the type IVb pili of
ETEC (77).

Recently, Harvey et al. (78) reported that pilus glycosylation
can inhibit the binding of phage to the type IV pili of P. aerugi-
nosa, providing the most compelling explanation to date for the
wide prevalence of pilin glycosylation. With that in mind, we
considered the possibility that the electronegative surface
chemistry of PilAAB5075 could also be explained in terms of
defense against phage (PilAAB5075 is not C-terminally glycosy-
lated, unlike PilAACICU and PilABIDMC57). However, based on
the available structures of Pseudomonas PilA proteins that are
not natively glycosylated, pronounced surface electronegativity
does not appear to be a general feature of pilins lacking C-ter-
minal glycans.

In conclusion, the results here demonstrate that subsets of
A. baumannii produce type IV pili with markedly different
molecular structure, and this variation, particularly in terms of

surface chemistry, can result in phenotypic differences in
motility and biofilm formation. The prevalence of type IV pili,
in general, and the homology between A. baumannii type IV
pili and those of phenotypically similar species such as
P. aeruginosa, in particular, imply that these findings may be
generalizable to other biofilm-forming bacteria.

Experimental procedures

Protein expression and purification

PilAAB5075 was expressed and purified as described previ-
ously (15). Briefly, the codon-optimized sequence, starting with
alanine 23, was cloned into a maltose-binding fusion vector
under a T7 promoter, making use of previously described sur-
face entropy reduction mutations (pMal E) (29). A C-terminal
His6 tag was included to ease purification. This plasmid was
transformed into BL21 (DE3) pLysS cells and grown to satura-
tion overnight with shaking at 37 °C in LB medium with 50
�g/ml ampicillin. These saturation cultures were then diluted
into fresh LB-ampicillin and grown with shaking to an optical
density of 0.5 at 37 °C. The flasks were cooled to 18 °C before
induction with 30 mM isopropyl �-D-1-thiogalactopyranoside
and allowed to grow overnight with shaking before being har-
vested by centrifugation at 7,500 � g for 10 min. The cells were
lysed using lysozyme (0.25 mg/ml final concentration), DNase
(0.02 mg/ml) and Triton X-100 (0.5%) for 10 min, and the
resulting lysate was centrifuged again, this time at 20,000 � g
for 30 min. The supernatant was purified using a nickel–
nitrilotriacetic acid column, and the elution was further puri-
fied through size-exclusion chromatography over a GE S200
Superdex column using an Äkta Purifier FPLC.

Structure determination and refinement

Maltose-binding protein–PilAAB5075 crystallization condi-
tions were screened by sitting-drop vapor diffusion at a concen-
tration of 20 mg/ml in 20 mM Bis-Tris (pH 6.0), with and with-
out 50 mM maltose. A crystallization condition was found,
without the addition of maltose, in the Morpheus screen
(Molecular Dimensions), (H4), 12.5% (w/v) PEG 1000, 12.5%
(w/v) PEG 3350, 12.5% (v/v) 2-methyl-2,4-pentanediol, 0.02 M

of amino acid mix (0.2 M DL-glutamatic acid monohydrate, 0.2 M

DL-alanine, 0.2 M glycine, 0.2 M DL-lysine monohydrochloride,
and 0.2 M DL-serine), 0.1 M MES/imidazole, pH 6.5. Crystals
were grown in hanging drops at room temperature and took
�48 h to grow at a protein concentration of 10 mg/ml. They
were then harvested and flash-cooled in the mother liquor sup-
plemented with 20% ethylene glycol. The data were collected at
the Advanced Photon Source, GM/CA, Beamline 23ID-D. The
General Medical Sciences and Cancer Institutes of Structural
Biology Facility at the Advanced Photon Source (GM/CA @
APS) is a part of the X-ray Science Division at APS, Argonne
National Laboratory (ANL).

The resulting data set was processed with XDS. Molecular
replacement was carried out by Phaser (30) using a sequential
search of (i) maltose-binding protein and (ii) PilA from A. bau-
mannii ACICU (15). Phenix and Coot were used for phasing,
building, and refinement (31–34). The crystallographic param-
eters of the refined data are summarized in Table 1.
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Electrostatic calculations

Columbic surfaces were calculated using UCSF Chimera (35)
using a distance-dependent dielectric and a dielectric constant of
4.0, 1.4 Å from the surface. Theoretical polypeptide isoelectric
points were calculated using The Swiss Institute of Bioinformatics
(ExPASy) ProtParam server (https://web.expasy.org/protparam/).

Pilus modeling

Full-length PilAAB5075 was modeled based on the structure of
the full-length P. aeruginosa PAK pilin (36). The initial model
of the pilus was created by superimposition onto a model of the
N. gonorrhoeae type IV pilus filament (Protein Data Bank code
2HIL) (37). The resulting model was then minimized using
UCSF Chimera (35).

Complementation of pilA mutant

pilA genes from A. baumannii AB5075, ACICU, and
BIDMC57 were synthesized (Genscript) and ligated into
pUCP20GM (38) using BamH1 and HindIII restriction sites
(accession numbers in Table S1). The resulting vectors were
electroporated into A. nosocomialis M2 �pilA (14) using stan-
dard protocols (39). The presence of the plasmids was con-
firmed by both resistance to gentamycin and PCR of the pilin
genes.

Twitching motility

A. nosocomialis M2 (including mutants and complement
strains) was grown on 1.5% MacConkey agar plates overnight.
Colonies were selected and stabbed through the centers of 1%
agar plates in polystyrene Petri dishes. The plates were incu-
bated in sealed bags at 37 °C for 3 days. The agar was then
removed, and the bacteria which adhered to the polystyrene
Petri dish were stained with 0.1% crystal violet for 5 min. Excess
crystal violet was removed by gentle washing with deionized
water. The subsurface twitching area on each plate was
accessed using GIMP imaging software. Statistics were calcu-
lated for five replicates and significance determined by
Student’s t test.

Biofilm formation

All strains were grown on 1.5% MacConkey agar plates, sup-
plemented when necessary with gentamycin for plasmid main-
tenance. Overnight cultures were grown from these plates in
MacConkey medium and diluted 1:10 into fresh MacConkey
medium in 10-cm2 flat tissue culture tubes (TPP Techno Plastic
Products AG) containing upright 1/8 � 1-inch untreated stain-
less steel fender washers (Everbilt). After 72 h of shaking (50
rpm) at room temperature, the washers were removed to 6-well
cell-culture plates, gently washed with PBS, stained, and cov-
ered in aluminum foil, with FM 1– 43 dye (1:1000 in PBS) for 15
min at room temperature. The samples were then washed with
PBS and fixed overnight with 4% paraformaldehyde in PBS at
4C. The fixed samples were stored at 4 °C in PBS until being
imaged as described below.

Confocal laser scanning microscopy

Biofilms were grown on stainless steel surfaces and prepared
as described above. Each stainless steel washer was covered

with a 18 � 18-mm glass coverslip and read using a Nikon A1
confocal laser scanning microscope and accompanying soft-
ware (Nikon, Tokyo, Japan). Z-stacks were acquired for each
strain. The structural organization of the biofilms was analyzed
using the Comstat2 software package (http://www.comstat.
dk)3 (40). The 3D representations of the biofilms were gener-
ated using the 3D viewer plugin for the FIJI distribution of
ImageJ (http://3dviewer.neurofly.de)3 (41).

Cell adhesion

A549 human airway adenocarincoma cells (52) (American
Type Culture Collection, CCL 185) or Detroit 562 pharyngeal
carcinoma cells (53) (American Type Culture Collection, CCL
138) were seeded in 24-well culture plates and cultured at 37 °C,
5% CO2 to 2.0 � 105 cells/well in Dulbecco’s modified Eagle’s
medium containing 10% fetal bovine serum, 2.0 mM glutamine,
100 units/ml penicillin, and 100 �g/ml streptomycin. The cells
were washed twice with PBS, pH 7.2, fixed for 10 min at room
temperature with 2.5% (v/v) glutaraldehyde in PBS, pH 7.2, and
washed three times with PBS, pH 7.2, as described (42, 43).
A. nosocomialis M2 (including mutants and complements) was
cultured overnight in MacConkey broth, washed twice with
PBS, pH 7.2, resuspended in PBS, pH 7.2 containing 2.0 mg/ml
glucose, and quantified spectrophotometrically at A600. Fixed
A549 or Detroit 562 cells (2.0 � 105/well) were incubated with
2.0 � 107 cfu/well of A. nosocomialis M2 in 0.5 ml for 40 min at
37 °C and washed three times with PBS, pH 7.2. Bound bacteria
were released with 0.05% trypsin-EDTA, and bound colony-
forming units were quantified on Luria Bertani agar plates, as
described (42, 43). Significance was determined by Student’s t
test.

All depictions of protein structures were created using
PyMOL (Schrödinger) or UCSF Chimera (35). Sequence align-
ments were made using Clustal Omega (44), and phylogenic
trees were diagrammed using Interactive tree of life (iTOL)
from EMBL (45).
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