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The QT interval is an important diagnostic feature on surface
electrocardiograms because it reflects the duration of the ven-
tricular action potential. A previous genome-wide association
study has reported a significant linkage between a single-nucle-
otide polymorphism �11.7 kb downstream of the gene encoding
the RING finger ubiquitin ligase rififylin (RFFL) and variability
in the QT interval. This, along with results in animal studies,
suggests that RFFL may have effects on cardiac repolarization.
Here, we sought to determine the role of RFFL in cardiac elec-
trophysiology. Adult rabbit cardiomyocytes with adenovirus-
expressed RFFL exhibited reduced rapid delayed rectifier cur-
rent (IKr). Neonatal rabbit cardiomyocytes transduced with
RFFL-expressing adenovirus exhibited reduced total expression
of the potassium channel ether-a-go-go-related gene (rbERG).
Using transfections of 293A cells and Western blotting exper-
iments, we observed that RFFL and the core-glycosylated
form of the human ether-a-go-go-related gene (hERG) potas-
sium channel interact. Furthermore, RFFL overexpression
led to increased polyubiquitination and proteasomal degra-
dation of hERG protein and to an almost complete disappear-
ance of IKr, which depended on the intact RING domain of
RFFL. Blocking the ER-associated degradation (ERAD) path-
way with a dominant-negative form of the ERAD core com-
ponent, valosin-containing protein (VCP), in 293A cells par-
tially abolished RFFL-mediated hERG degradation. We
further substantiated the link between RFFL and ERAD by
showing an interaction between RFFL and VCP in vitro. We
conclude that RFFL is an important regulator of voltage-
gated hERG potassium channel activity and therefore cardiac
repolarization and that this ubiquitination-mediated regula-
tion requires parts of the ERAD pathway.

The QT interval measures the time from the beginning of the
QRS complex to the end of the T wave on a surface electrocar-
diogram (1, 2) and reflects ventricular action potential duration
(3). A prolonged QT interval increases the likelihood for poly-
morphous ventricular arrhythmias, which may lead to palpita-
tions, dizziness, and sudden cardiac arrest in the general popu-
lation (4, 5). As approximately one-third of QT interval
variability is heritable (6 –8), a number of genome-wide associ-
ation studies have been performed to identify genes underlying
this variation (9 –12). For example, two genome-wide associa-
tion studies (10, 11) of QT intervals identified two genetic
variants downstream of the Ring finger and FYVE-like domain
E3 ubiquitin protein ligase (RFFL)3 gene, viz. rs2074518 and
rs1052536, which are associated with modest changes in QT
interval duration. Interestingly, a recent investigation by Joe
and colleagues (13) used a congenic strain of Dahl salt-sensitive
rats introgressed with genomic segments from the normoten-
sive Lewis rat to map a quantitative trait locus for hypertension,
short-QT interval, and cardiac hypertrophy to a 42.5-kb region
that contains a single gene, RFFL. Although the authors specu-
lated that, due to increased RFFL levels in the congenic rats,
perturbations in endosomal recycling could be the underlying
cause, no mechanistic studies were available. Human RFFL, a
member of the RING finger ubiquitin ligases (14), encodes a
363-amino acid protein, which is widely expressed. It contains
an N-terminal FYVE (Fab1, YOTB/ZK632.12, Vac1 and EEA1)-
like domain similar to the phosphatidylinositol 3-phosphate–
binding FYVE finger and a C-terminal RING finger required for
its ubiquitin ligase activity (15, 16). In a number of in vitro
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studies, RFFL has been linked to endocytic recycling, which
requires an intact FYVE-like domain (15), p53 turnover
through regulation of Mdm2 stability (17), tumor necrosis fac-
tor-induced NF-�B activation (18), and destabilization of
PRR5L, a suppressor of mTORC2, resulting in mTORC2-me-
diated protein kinase C� phosphorylation and cell migration
downstream of G�12 (19).

The aforementioned RFFL-proximal single nucleotide poly-
morphisms (SNPs) associated with modest changes in the QT
interval duration in humans and the effect of elevated RFFL on
the QT interval in a congenic rat strain prompted us to study
the effect of RFFL on cardiac repolarization. We hypothesized
that RFFL potentially acts through ubiquitination to alter ion
channel synthesis, trafficking, and/or recycling or degradation
through proteasomes or lysosomes (20). We therefore set out to
identify RFFL-associated ion channels responsible for these
effects. Here, we present data that support a role for RFFL in the
regulation of human ether-a-go-go-related gene (hERG) for-
ward trafficking, thereby affecting cardiac repolarization.

Results

RFFL negatively affects IKr expression in adult rabbit
cardiomyocytes and lowers rabbit ether-a-go-go-related gene
(rbERG) expression in neonatal rabbit cardiomyocytes

To evaluate the role of RFFL in the control of native IKr, we
utilized ARbCM. After 48 h in culture, these cells generally
show low but significant expression of E-4031–sensitive cur-

rent IKr (21, 22). For the electrophysiological studies, car-
diomyocytes were transduced with adenovirus encoding GFP
or FLAG-RFFL for 48 h. We observed that the IKr peak tail
current after the �40 mV depolarizing pulse was 0.80 � 0.24
pA/pF in GFP-transduced ARbCM (n � 10), whereas it was
significantly lower (0.12 � 0.16 pA/pF, p � 0.01) in RFFL-trans-
duced ARbCM (n � 11, Fig. 1, A–C). Due to remodeling of
ARbCM in culture, we were unable to consistently detect rabbit
ERG in immunoblots (data not shown). To see any possible
effect of RFFL on rbERG expression, we therefore used adeno-
virally transduced neonatal rabbit cardiomyocytes, which show
high expression of rbERG (23). We noticed that RFFL overex-
pression significantly reduced rbERG levels (155-kDa band) by
�60% in NRbCM (Fig. 1, D and E).

RFFL lowers hERG expression and function in 293A cells

To delineate the RFFL-dependent regulation of IKr, we
switched to 293A cells transiently expressing hERG. Similar to
the IKr data in adult cardiomyocytes (Fig. 1, A–C), RFFL expres-
sion resulted in an almost complete loss of hERG tail current
(e.g. peak tail current following activation at 40 mV: 29.0 � 10.9
pA/pF for control, and 0.4 � 0.6 pA/pF for RFFL; p � 0.05; Fig.
2, A and B) in 293A cells. This was accompanied by a severe
down-regulation of total hERG protein expression (Fig. 2, C and
G). However, the ubiquitination-deficient �RING deletion of
RFFL did not significantly change IKr (Fig. 2, A and B) or total
hERG (Fig. 2, C and G).

Figure 1. Overexpressed RFFL down-regulates IKr in adult rabbit cardiomyocytes. ARbCM were transduced with adenovirus encoding GFP (control) or
RFFL (100 m.o.i., 48 h). A, representative current traces in GFP-expressing ARbCM. After a recording in control solution (a), the cells were perfused with 5 �M

E-4031 (b) and IKr was defined as the difference, i.e. as E4031-sensitive current (c). HP was �40 mV and 3-s depolarizing test pulses were applied in 10-mV
increments to maximum membrane potential of �40 mV. Displayed time period corresponds to the end of the depolarizing steps and the beginning of
repolarization to HP, which is associated with IKr tail current. B, representative current traces in RFFL-expressing ARbCM. C, I-V curves of the peaks of E-4031-
sensitive IKr tail currents (data are presented as mean � S.D.) of GFP- or RFFL-transduced ARbCM (p � 0.01 in two-way analysis of variance; control and RFFL:
cells from 6 animals each). D, NRbCM were infected with adenovirus encoding GFP (control) or RFFL (1 m.o.i., 48 h). Western blotting data were from NRbCM
extracts to measure expression of rbERG, RFFL, and GAPDH (the asterisk indicates an unspecific band). E, respective relative expression levels of 155 kDa rbERG
normalized to GAPDH expression from three independent experiments performed in triplicate (*, p � 0.05). In the scatter plot, averaged values for the three
independent experiments together with the mean � S.D. values are shown.
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Figure 2. Overexpressed RFFL down-regulates IKr and hERG protein in 293A cells. 293A cells were co-transfected with GFP, hERG, and RFFL (WT and RING
deletion) expression plasmids or control. A, representative traces of hERG currents from control, RFFL, and RFFL-�RING-expressing cells (HP � �80 mV).
Voltage steps between �70 mV and 40 mV were applied to activate hERG channels before returning to �60 mV to record the tail currents. B, peak tail current
amplitudes at �60 mV were normalized to cell capacitance. Data in the I-V curves are presented as mean � S.D. (three independent experiments). The IKr peak
tail current was almost completely abolished by RFFL expression (p � 0.05). C, respective total hERG expression levels in co-transfected 293A cells. D, 293A cells
were transfected with hERG (lanes 1-3), pcDNA3 (1), RFFL (2), and RFFL-H333A plasmids (3). Respective total hERG expression levels are shown. E, 293A cells were
transfected with hERG (lanes 1–3), pcDNA3 as control (1), FLAG-tagged RFFL (2), and RFFL-�RING plasmids (3). Cell-surface proteins were biotinylated using
sulfo-NHS-SS-biotin, purified with neutravidin beads from total cell lysates, subjected to SDS-PAGE and blotted onto a nitrocellulose membrane. A represen-
tative immunoblot shows cell-surface (surface) and/or total (input) expression of hERG, transferrin receptor (TR), or GAPDH. FLAG antibody was used to detect
total expression of RFFL and RFFL-�RING (the asterisk indicates an unspecific band). F, total Kir2.1 expression in 293A cells transiently co-transfected with
plasmids encoding Kir2.1 (lanes 1–3), pcDNA3 (1) RFFL (2), and RFFL-�RING (3). G, respective relative expression levels (� S.D.) of total hERG expression (135-
and 155-kDa bands) normalized to GAPDH or tubulin expression (cf. panels C and D), surface expression of hERG (155-kDa band) normalized to transferrin
receptor expression (cf. panel E), and total Kir2.1 expression normalized to GAPDH expression (cf. panel F). In the scatter plot, averaged values for each
independent experiment together with the mean � S.D. values are shown (three to six independent experiments performed in triplicate each) (*, p � 0.05)).
H, a representative Western blotting depicts total hERG expression in HEK cells with stable hERG expression (25), transiently transfected with plasmids
encoding pcDNA3 (1), RFFL (2), and RFFL-�RING (3). I, a representative immunoblot shows total hERG expression in human osteosarcoma U-2 OS cells
transiently co-transfected with plasmids encoding hERG (lanes 1–3), pcDNA3 (1), RFFL (2), and RFFL-�RING (3) (the asterisk indicates an unspecific band). J, total
hERG expression in 293A cells transiently co-transfected with plasmids encoding hERG (lanes 1– 4) and pcDNA (control; lane 1) along with increasing amounts
of expression plasmid for RFFL-�FYFE (1, 3, and 9	 molar ratio between RFFL-�FYFE and hERG expression plasmids; lanes 2-4) (the asterisk indicates an
unspecific band).
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Similarly, the ubiquitination-deficient mutant RFFL-H333A
(the zinc-coordinating histidine of the RING domain Cys-
X2-Cys-X11-Cys-X1-His-X3-Cys-X2-Cys-X6-Cys-X2-Cys was
replaced with alanine) (18, 24) had no effect on hERG expres-
sion (Fig. 2, D and G). These findings underscore the impor-
tance of a functional RING domain for an RFFL-dependent
effect on hERG and IKr. Biotinylation of surface protein from
co-transfected 293A cells indicated that expression of RFFL led
to an approximate 90% decrease in hERG protein on the mem-
brane (Fig. 2, E and G). The specificity of RFFL for hERG was
further supported by the finding that levels of the co-expressed
inward-rectifier potassium channel Kir2.1 were not affected by
WT RFFL or RFFL-�RING in 293A cells (Fig. 2, F and G).
Down-regulation of total hERG levels upon expression of RFFL,
which required an intact RING domain, was also seen in HEK
cells stably expressing hERG (25) (Fig. 2H) and human osteo-
sarcoma U-2 OS cells transiently co-transfected (Fig. 2I). Pre-
viously, Coumailleau and colleagues (15) demonstrated that
overexpressed RFFL was localized to the endocytic recycling
compartment (ERC) and delayed transferrin recycling from the
ERC to the membrane. They further pointed out the require-
ment of the FYVE-like but not the RING domain both for local-
ization of RFFL to the ERC and delayed recycling from the ERC.
Therefore, we created a deletion of the FYVE-like domain of
RFFL and tested the molecule on co-expressed hERG levels.
Just like WT RFFL, RFFL-�FYVE co-expression resulted in a
robust down-regulation of total hERG (Fig. 2J), ruling out the
involvement of endosomal recycling in the RFFL-dependent
regulation of hERG expression.

Co-immunoprecipitation experiments in 293A cells co-
transfected with plasmids allowing the expression of FLAG-
tagged RFFL, RFFL-H333A, RFFL-�RING, and hERG (Fig. 3A)
demonstrated an interaction between RFFL or its mutants and
the core-glycosylated form of hERG (135 kDa) but not its fully
glycosylated form (155 kDa), which is found mainly on the
membrane. This interaction implies that RFFL is probably
located on the ER and/or possibly the cis-Golgi apparatus. Fur-
thermore, we noticed that the RING domain significantly con-
tributed to hERG interaction comparing the amount of co-pre-
cipitated hERG with catalytically inactive RFFL-H333A and
RFFL-�RING lacking the RING domain (Fig. 3, A and B, lanes 3
and 4), which displayed similar levels of expression and immu-
noprecipitation efficiency. Next, we treated co-transfected
293A cells with 100 nM brefeldin A, a blocker of vesicular trans-
port from the ER to the Golgi apparatus (26). Brefeldin A treat-
ment for 24 h generally resulted in an almost complete disap-
pearance of the fully glycosylated form of hERG and a
concomitant increase of its core-glycosylated form (cf. 135- and
155-kDa bands in Fig. 3C, lanes 1 and 3). Importantly, brefeldin
A did not prevent RFFL-dependent degradation of hERG (Fig.
3, C and D) implying that RFFL-dependent degradation of
hERG occurs at the endoplasmic reticulum.

RFFL leads to hERG polyubiquitination and proteosomal
degradation in 293A cells

Because RFFL is a member of the RING finger ubiquitin
ligase family (14, 27) and several studies (17–19) identified tar-
get molecules for ubiquitination by RFFL, we reasoned that

RFFL overexpression would result in ubiquitin-mediated deg-
radation of hERG. To this end, we co-transfected expression
plasmids for hERG, HA-tagged ubiquitin, FLAG-tagged RFFL,
FLAG-tagged RFFL-�RING, or control plasmid into 293A
cells. Total cell extracts, prepared 48 h later, were immunopre-
cipitated with anti-HA antibody to enrich for ubiquitinated
protein. The ubiquitinated protein fraction was separated by
size using SDS-PAGE, transferred to a membrane and probed
against hERG. Western blotting data presented in Fig. 4A indi-
cate an RFFL-dependent dramatic increase in multiple ubiq-
uitinated hERG bands implying polyubiquitination of hERG.
Again, no increase in hERG ubiquitination was noted in cells
expressing RFFL void of its catalytic activity. As proteins that
are ubiquitinated on the ER get generally degraded via protea-
somes (28), we treated cells expressing hERG, RFFL, or con-
trol plasmid with the selective proteasome inhibitors
MG132 (29) or lactacystin (30) as well as with the lysosomal
inhibitor chloroquine (31) for 24 h. Not surprisingly, treat-
ment of cells with MG132 and lactacystin but not chloro-
quine partially prevented the RFFL-dependent down-regu-
lation of hERG by RFFL (Fig. 4, B and C). Thus, our data
suggest a proteasome-dependent degradation of hERG
channel after polyubiquitination by RFFL.

Figure 3. Interaction of RFFL and hERG in 293A cells. A, 293A cells were
transfected with hERG and FLAG-tagged RFFL, RFFL-H333A, and RFFL-�RING
expression plasmids or pcDNA3 as control. Co-immunoprecipitation was per-
formed on cell extracts with anti-FLAG antiserum to pulldown RFFL-interact-
ing proteins. A representative immunoblot against hERG protein reveals an
interaction between pulled down RFFL or its mutants and core-glycosylated
135-kDa hERG. Input samples were probed against FLAG to detect RFFL and
hERG (the asterisks indicate unspecific bands). B, quantitative analysis on the
ratio of co-IP hERG to immunoprecipitated RFFL-H333A, which was set at 1
and hERG to RFFL-�RING (n � 4 individual co-IP (*, p � 0.05)). C, RFFL-medi-
ated degradation of hERG occurs at the endoplasmic reticulum. 293A cells
were transfected with plasmids for hERG, RFFL, or control plasmid for 24 h and
then treated with 100 nM brefeldin A or vehicle for 24 h. Representative West-
ern blotting shows total expression of hERG, RFFL, and tubulin of treated cells.
D, respective relative expression levels (� S.D.) of total hERG (135- and 155-
kDa bands) normalized to �-tubulin levels (three independent experiments
performed in triplicate each (*, p � 0.05)).
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RFFL-dependent degradation of hERG requires VCP activity

Based on the aforementioned data, hERG polyubiquitination
by RFFL is likely happening on the ER. Therefore, it is conceiv-
able that components of the ER-associated degradation
(ERAD) pathway are required for RFFL-mediated hERG ubiq-
uitination and degradation. A core component of this pathway
is the ATPase valosin-containing protein (VCP), which among
other cellular activities is involved in the extraction of ubiquiti-
nated proteins from the ER membrane, a prerequisite for sub-
sequent proteosomal degradation (32). Co-expression of a
dominant-negative form of VCP, VCP(DKO), partially blocked
hERG degradation by RFFL, whereas WT VCP had no signifi-
cant effect (Fig. 5, A and B). Immunoprecipitation experiments
(Fig. 5C) showed that co-expression of VCP(DKO) and RFFL
resulted in a dramatic increase in hERG polyubiquitination
compared with RFFL or VCP(DKO) experiments. Finally, we

also performed co-immunoprecipitations on protein isolated
from 293A cells transiently transfected with expression plas-
mids for EGFP-tagged VCP (control) or FLAG-tagged RFFL
and EGFP-VCP to demonstrate an in vitro association between
RFFL and VCP (Fig. 5D). Data suggest that hERG polyubiquiti-
nated by ER-associated RFFL requires VCP-mediated retro-
translocation prior to proteosomal degradation.

rs2074518 is associated with lower levels of RFFL in the left
ventricle of the heart

We used expression quantitative trait loci (eQTL) data from
the Genotype-Tissue Expression (GTEx) project (33) to deter-
mine whether the SNP rs2074518 (Fig. 6A) is associated with
RFFL expression levels in the heart. Left ventricular heart sam-
ples from individuals carrying a heterozygous or homozygous
SNP had lower RFFL expression (p � 2.3e-6) (Fig. 6B). These
data suggest that lower levels of RFFL are associated with a
shortened QT interval as reported previously (10) and support
our findings that RFFL levels affect cardiac repolarization via
modifying hERG levels on the membrane.

Discussion

Recent genome-wide association studies (10, 11) of QT inter-
val reported two genetic variants, which are associated with
modest changes in QT interval duration (Fig. 6A). 1) rs2074518
(10) is located in intron 11 of the DNA ligase 3 (LIG3) gene and
�11.7 kb downstream of the RFFL gene. 2) rs1052536 (11) is
found in the 3
 UTR of the LIG3 gene and �4.6 kb downstream
of RFFL. Furthermore, the chromatin surrounding rs2074518 is
characterized by a DNase I hypersensitivity peak cluster, his-
tone H3K27 acetylation, and various transcription factor-bind-
ing sites (34 –36), all hallmarks of a regulatory region surround-
ing rs2074518 (Fig. 6A). Thus, it is conceivable that genetic
variants in this region may indirectly affect expression of nearby
genes such as LIG3 or RFFL by altering the chromatin architec-
ture of the aforementioned DNA regulatory region. It is highly
unlikely that LIG3 expression is somewhat linked to the QT
interval as it encodes DNA ligase III essential for DNA base-
excision in mitochondria (37). By contrast, increased RFFL lev-
els in a congenic rat strain resulted in QT interval shortening,
hypertrophy, and hypertension (13). The aforementioned
reports prompted us to investigate further the possible link
between RFFL and the QT interval. Based on the observed
effects of overexpressed RFFL on IKr in rabbit cardiomyocytes
(Fig. 1, A–C) and hERG polyubiquitination and degradation in
293A cells (Fig. 4), we conclude that RFFL is an important reg-
ulator of hERG and thus cardiac repolarization.

Our observations outlined in this study suggest the following
model for RFFL (Fig. 7). RFFL binds to and polyubiquitinates
immature, core-glycosylated hERG channels on the ER. Polyu-
biquitination of hERG elicits its proteosomal degradation.
Thus, RFFL participates in the ER-associated degradation of
hERG. ERAD is an evolutionary conserved pathway to maintain
protein homeostasis by degrading misfolded or excess protein
(28). Recently, two other ubiquitin ligases, ER-resident CHIP
and ER-anchored TRC8, have been reported to participate in
ERAD of hERG (38 –40). It will be interesting to learn whether
these three ubiquitin ligases can act in parallel independently or

Figure 4. hERG polyubiquitination and proteasomal degradation upon
RFFL co-expression in 293A cells. A, immunoprecipitation (IP) of lysates
from 293A cells transfected with plasmids for hERG, HA-tagged ubiquitin,
RFFL, RFFL-�RING, or plasmid pcDNA3 (control) for 48 h was performed with
anti-HA antiserum. A representative immunoblot shows levels of polyubiq-
uitinated hERG and input levels of hERG, FLAG-tagged RFFL, or RFFL-�RING.
B, RFFL-mediated degradation of hERG through proteasomes. 293A cells
were transfected with plasmids for hERG, RFFL, or control plasmid for 24 h and
then treated with 5 �M MG132, 5 �M lactacystin, 10 �M chloroquine or vehicle
for 24 h. Representative Western blots show total expression of hERG, RFFL,
and tubulin of treated cells. C, respective relative expression levels (� S.D.) of
total hERG (135- and 155-kDa bands) normalized to �-tubulin levels (three
independent experiments performed in triplicate each (*, p � 0.05)).
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in tandem on hERG and identify respective ubiquitination
site(s) in the channel. For example, the ubiquitin ligases RMA1
and CHIP act sequentially in the ER membrane and cytosol to
monitor the folding status of cystic fibrosis transmembrane
conductance regulator (CFTR) and its mutant CFTR�F508
(41). Similarly, sequential ubiquitination of CFTR�F508 by
RMA1 and gp78 is required for the channel’s proteosomal deg-
radation (42). Further studies are also warranted to character-
ize ERAD proteins required for RFFL-mediated hERG degrada-

tion with respect to hERG recognition, retranslocation,
ubiquitination, targeting to proteasomes, and degradation
(reviewed in Refs. 28 and 43). ERAD is also a crucial part of the
ER quality control (ERQC) system (43). A number of studies
delineated parts of the ERQC with respect to hERG folding.
Transcripts of hERG 1a and 1b are physically associated during
translation to provide spatial proximity of nascent proteins
required for proper folding and assembly of the channel (44).
Also, several (co-) chaperones are required for correct folding

Figure 5. hERG polyubiquitination by RFFL and proteasomal degradation requires VCP in 293A cells. A, 293A cells were co-transfected with plasmids for
hERG, RFFL, control plasmid, and 300 ng of EGFP-VCP(WT), EGFP-VCP(DKO), or EGFP expression plasmids for 24 h. A representative Western blotting shows total
expression of hERG, EGFP-VCP, RFFL, and tubulin of treated cells (the asterisk indicates an unspecific band). B, respective relative expression levels (� S.D.) of
total hERG (135- and 155-kDa bands) in the presence of co-expressed RFFL normalized to �-tubulin levels (three independent experiments performed in
triplicate each (*, p � 0.05)). C, immunoprecipitation (IP) of lysates from 293A cells transfected with plasmids for hERG, HA-tagged ubiquitin, RFFL, EGFP-
VCP(DKO), or control plasmid for 24 h was performed with anti-HA antiserum. A representative immunoblot shows levels of polyubiquitinated hERG and input
levels of hERG, FLAG-tagged RFFL or EGFP-VCP(DKO). D, 293A cells were transfected with EGFP-VCP(WT) and FLAG-tagged RFFL expression plasmids or EGFP
as control. Co-IP was performed on cell extracts with anti-FLAG antiserum to pulldown RFFL-interacting proteins. The immunoblot against EGFP protein reveals
an interaction between pulled down RFFL and VCP. Input samples were probed against FLAG and GFP to detect RFFL and EGFP-VCP, respectively.

Figure 6. rs2074518 is associated with lower levels of RFFL mRNA in the left ventricle. A, schematic of the RFFL and LIG3 gene loci and location of two SNPs
associated with QT interval duration (10, 11): rs2074518 is located in intron 11 and rs1052536 in the 3
 UTR of the LIG3 gene. Exons are represented by numbered
colored rectangles. The yellow circle indicates rs2074518-surrounding chromatin with a DNase I hypersensitivity cluster, histone H3K27 acetylation, and various
transcription factor-binding sites, which are based on data from the ENCODE project using various cell lines (34 –36). B, eQTL data from the GTEx project (33)
show that the left ventricular heart samples from individuals carrying a heterozygous or homozygous SNP have lower RFFL mRNA expression (p � 2.3e-6).
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of hERG in the ER (reviewed in Ref. 45). Finally, we have
recently shown that Ring Finger Protein 207 (RNF207), located
on the ER, regulated APD, likely via promoting hERG forward
trafficking/folding/ER exit in a heat shock protein-dependent
manner (46). It remains to be shown whether RFFL functionally
interacts with any of the aforementioned components of the
ERQC for hERG.

Okiyoneda et al. (47) recently reported that RFFL selectively
recognized and polyubiquitinated the unfolded mutant
CFTR�F508 on the plasma membrane. This led to removal of
the mutant protein from the membrane and stimulated its lys-
osomal degradation. The authors suggested that RFFL was cru-
cial in the chaperone-independent peripheral quality control of
CFTR. Although our data imply a role for RFFL in ER quality
control of hERG, it is plausible that RFFL could also be part of
the peripheral quality control of structurally compromised
hERG on the plasma membrane. Such a scenario is reminiscent
of the ubiquitin ligase CHIP, which is both involved in ERAD of
hERG (38 –40) as well as in the peripheral quality control of
conformationally defective hERG (48).

However, currently, we cannot rule out the possibility that
RFFL actually provides hERG quantity rather quality control on
the ER. One can envisage that cardiomyocytes must maintain
a sufficient number of hERG channels on the membrane
required for proper repolarization. In contrast, limiting hERG
channels on the cell surface is required to prevent a marked
APD shortening underlying short QT syndrome, a risk factor
for arrhythmias. For example, the ubiquitin ligase Nrdp1 tar-
gets properly folded and functional ErbB3 receptor tyrosine
kinase on the ER, which is also dependent on the ERAD path-
way ATPase VCP (49). We anticipate that regulatory pathways
exist that allow tight control of hERG forward trafficking by
regulating stability and/or expression of RFFL. Such pathways
could be adversely affected by certain cardiac diseases subse-
quently impacting IKr.

Newton-Cheh et al. (10) reported that the genetic variant
rs2074518 is associated with a modest shortening of the QT

interval. Additionally, data from the Genotype-Tissue Expres-
sion project (33) indicate that rs2074518 is also associated with
lower levels of RFFL transcript in the human left ventricle (Fig.
6B). Thus, this correlation between lower RFFL levels and
shortened QT interval is strongly supported by our data pre-
sented in this study. Here, we show that increased levels of
RFFL resulted in lower hERG expression on the membrane
reducing IKr. IKr, however, is a crucial repolarizing current in
large animals (50) and lowering IKr by certain drugs or a number
of hERG mutations is well-known to prolong the QT interval
(51). Therefore, RFFL-mediated regulation of hERG-encoded
IKr may well account for the aforementioned association
between RFFL levels and QT interval duration. At first sight,
such a scenario, i.e. increased RFFL levels reduce IKr and would
therefore cause QT interval prolongation, cannot account for
the findings by Gopalakrishnan et al. (13) who reported that
higher levels of RFFL expression resulted in QT interval short-
ening in a congenic rat strain. However, species-dependent dif-
ferences in repolarizing voltage-gated potassium currents, i.e.
transient outward K� currents (Ito) and delayed, outwardly rec-
tifying K� currents (IK) could explain different effects of RFFL
on cardiac repolarization in human or rat. For example, IKr
plays virtually no role in adult rodents (52). In contrast, Ito is
essential during the whole repolarization phase of the action
potential in rodents, whereas in large mammals, including
human and rabbit, Ito causes only partial membrane repolariza-
tion, shaping rapid repolarization of the action potential and
setting the height of the initial plateau (53).

Experimental procedures

DNA

Expression plasmids for FLAG-tagged human RFFL
(pFLAG-CMV2-CARP2; Addgene ID 16013), HA-tagged ubiq-
uitin-expressing plasmid (pRK5-HA-ubiquitin-WT; Addgene
ID 17608), EGFP-tagged WT, and dominant-negative VCP
(VCP(WT)-EGFP and VCP(DKO)-EGFP; Addgene IDs 23971
and 23974) were purchased from Addgene. FLAG-tagged
RFFL-expressing adenovirus was prepared using the Gateway
cloning system (Thermo Fisher Scientific) as described previ-
ously (46). The deletions of the RING (�RING) and FYVE-like
(�FYVE) domains as well as the RING domain point mutation
H333A were generated by site-directed mutagenesis (46).
pcDNA3-hERG and pcDNA3-Kir2.1 express the human hERG
and Kir2.1 channels, respectively (25). The plasmid pEGFP was
obtained from Clontech.

Transfections

Human embryonic kidney (HEK) 293A cells (Thermo Fisher
Scientific), HEK cells stably expressing hERG (25), and U-2 OS
cells (ATCC) were cultured in Dulbecco’s modified Eagle’s
medium and split at �50% confluency. We generally used a 1:1
molar ratio of RFFL and potassium channel expression plas-
mids (e.g. 30 ng of FLAG-tagged RFFL- and 32 ng of hERG-
expressing plasmids, 338 ng of pFLAG-CMV-2 (Millipore
Sigma) as carrier DNA, and 1.2 �l of Lipofectamine 2000
(Thermo Fisher Scientific) per well of 12-well plates) and incu-
bated the cells for 48 h. The clear-cut effect of RFFL on hERG
levels was also seen at lower molar ratios of RFFL and hERG

Figure 7. Model of RFFL-mediated degradation of hERG on the ER. RFFL
polyubiquitinates hERG on the ER, which leads to proteosomal degradation
of the channel. Also depicted are two additional ubiquitin ligases known to
target hERG: RNF207 on the ER promotes hERG folding/ER exit/forward traf-
ficking (46); NEDD4-2 located on the trans-Golgi newtwok (TGN) (54) as well as
cell-surface (55) monoubiquitinates hERG promoting lysosomal hERG degra-
dation. MVB, multivesicular body.
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expression plasmids and at 24 h after transfection (data not
shown).

Preparation of rabbit cardiomyocytes

Septal adult rabbit cardiomyocytes (ARbCM) were isolated
from the hearts of 6 –24 –month-old New Zealand White rab-
bits (both sexes) in accordance with Institutional Animal Care
and Use Committee (IACUC)-approved protocols. The filtered
cells were maintained in 45 mM KCl, 65 mM potassium gluta-
mate, 3 mM MgSO4, 15 mM KH2PO4, 16 mM taurine, 10 mM

HEPES, 0.5 mM EGTA, and 10 mM glucose (pH 7.3) for 1 h. Cells
were centrifuged, resuspended in medium 199 (Thermo Fisher
Scientific) supplemented with 10% FBS (MilliporeSigma), anti-
biotics, and 0.5 �M cytochalasin D (MilliporeSigma) and plated
on laminin-coated cover glasses. After 2–3 h, the medium was
replaced and adenovirus (100 m.o.i.) added to the cells. Cells
were maintained at 37 °C with 5% CO2 and �48 h later, cells
were used for patch clamp and biochemistry. Ventricular neo-
natal rabbit cardiomyocytes (NRbCM) were isolated from 3 to
5-day-old New Zealand White rabbits (both sexes) in accord-
ance with Institutional Animal Care and Use Committee
(IACUC)-approved protocols as described previously (23).

Immunoblot analysis

Co-immunoprecipitations and immunoblots were carried
out as described in previous studies (25).

Electrophysiological recording

293A cells were transfected with GFP, hERG, and RFFL
expression plasmids (or pcDNA3 as control) 48 h before
recording. Whole-cell patch clamp recordings of hERG cur-
rents were performed with an Axopatch-200B amplifier (Axon
Instruments) at room temperature (21–23 °C). Signal was fil-
tered at 1 kHz and analyzed using Origin (Origin Lab). The
pipette solution contained 50 mM KCl, 65 mM potassium gluta-
mate, 5 mM MgCl2, 5 mM EGTA, 10 mM HEPES, 5 mM glucose,
5 mM K2ATP, and 0.25 mM Na2GTP (pH 7.2). Tyrode solution
was used as a standard bath solution and contained 140 mM

NaCl, 5.4 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 0.33 mM

NaH2PO4, 7.5 mM glucose, and 5 mM HEPES (pH 7.4). The
whole-cell recordings of transduced (100 m.o.i., 48 h) ARbCM
were performed in Tyrode solution. The pipette resistance was
2– 4 M� when filled with 120 mM KCl, 5 mM MgCl2, 0.36 mM

CaCl2, 5 mM EGTA, 5 mM HEPES, 5 mM glucose, 5 mM K2ATP,
5 mM Na2CrP, 0.25 mM NaGTP (pH 7.2). IKr recording started
at �40 mV holding potential (HP) followed by a series of 3-s test
pulses that were applied in 10-mV increments to maximum
membrane potential of �40 mV. Control voltage-clamp
recordings were performed at 35 °C in Tyrode solution and
then repeated in the same solution with added specific IKr
blocker E-4031 (5 �M; Abcam). Capacitance and 60 to 80% of
series resistance were routinely compensated. The sampling
frequency was 20 kHz, and �3 dB cut-off frequency was 5 kHz.
IKr amplitude was determined as the peak of E-4031-sensitive
tail current after the end of each depolarizing test pulse. The
currents were normalized to appropriate cell membrane capac-
itance and presented as mean � S.D. Two-way analysis of vari-
ance followed by Tukey’s post hoc test was used to test for

differences in the I-V relationship for normalized peak tail
currents.
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