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Purpose: Manual delineation of organs-at-risk (OARs) in radiotherapy is both time-consuming and
subjective. Automated and more accurate segmentation is of the utmost importance in clinical appli-
cation. The purpose of this study is to further improve the segmentation accuracy and efficiency with
a novel network named convolutional neural networks (CNN) Cascades.
Methods: CNN Cascades was a two-step, coarse-to-fine approach that consisted of a simple region
detector (SRD) and a fine segmentation unit (FSU). The SRD first used a relative shallow network to
define the region of interest (ROI) where the organ was located, and then, the FSU took the smaller
ROI as input and adopted a deep network for fine segmentation. The imaging data (14,651 slices) of
100 head-and-neck patients with segmentations were used for this study. The performance was com-
pared with the state-of-the-art single CNN in terms of accuracy with metrics of Dice similarity coeffi-
cient (DSC) and Hausdorff distance (HD) values.
Results: The proposed CNN Cascades outperformed the single CNN on accuracy for each OAR.
Similarly, for the average of all OARs, it was also the best with mean DSC of 0.90 (SRD: 0.86, FSU:
0.87, and U-Net: 0.85) and the mean HD of 3.0 mm (SRD: 4.0, FSU: 3.6, and U-Net: 4.4). Mean-
while, the CNN Cascades reduced the mean segmentation time per patient by 48% (FSU) and 5%
(U-Net), respectively.
Conclusions: The proposed two-step network demonstrated superior performance by reducing the
input region. This potentially can be an effective segmentation method that provides accurate and
consistent delineation with reduced clinician interventions for clinical applications as well as for qual-
ity assurance of a multicenter clinical trial. © 2018 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.13296]
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1. INTRODUCTION

Modern radiotherapy techniques, such as intensity-modulated
radiotherapy (IMRT), volumetric-modulated radiotherapy
(VMAT), and TOMO therapy, have the ability to create
highly conformal dose distributions to the tumor target and
therefore better spare individual organs-at-risk (OARs) to
reduce radiation-induced toxicities. The increasing precision
of radiotherapy treatment planning requires accurate defini-
tion of OARs in computed tomography (CT) images to fully
realize the benefits afforded by these technological advances.
However, this procedure is usually carried out manually by
physicians, which is not only time-consuming but may also
need to be repeated several times during a treatment course
due to significant anatomic changes (such as from tumor
response). The delineation accuracy also depends on the
physicians’ experience, and considerable inter- and intraob-
server variations in the delineation of OARs have been noted
in multiple disease sites including head-and-neck (H&N)
cancer.1–3

A fully automated method of OARs delineation for radio-
therapy is helpful to relieve physicians from this demanding
process and to increase accuracy and consistency. Artificial
intelligence (AI), especially the Convolutional Neural Net-
works (CNN),4–7 is a potential tool for solving this problem.
AI has the potential to change the landscape of medical phy-
sics research and practice8–10 and the utility of CNN in seg-
mentation is a general trend. CNN consists of several
convolutional and pooling layers. Multiple level visual fea-
tures are extracted and predictions are made automatically.
There has been increasing interest in applying CNN to radia-
tion therapy.11–15 The group (Ibragimov and Xing) pioneered
the introduction of CNN into radiotherapy contouring11 and
achieved better or similar results in H&N site compared with
state-of-the-art algorithms. Soon, some varietal network mod-
els12,13 succeeded in other anatomical sites and qualified for
clinical use.14,15 These methods improved contouring consis-
tency and saved physicians’ time to some extent. However,
improved accuracy and efficiency are highly desirable for
widespread adoption.
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One of the main drawbacks of CNN is its poor scalability
with large input image size that is common for medical
images. When performing segmentation of an isolated organ,
the background is often uncorrelated and acts as a distraction
to the primary task. The CNN is therefore burdened by rela-
tively large background datasets, which affect the segmenta-
tion performance, especially for the smaller organs. Our work
is inspired by the method by which physicians perform organ
segmentation tasks. For an individual organ (e.g., the spinal
cord) in a large image, they usually first focus on a relatively
smaller region of interest (ROI) (e.g., the vertebral column)
and then delineate the individual organ within the ROI. Here,
we proposed CNN Cascades for segmentation of OARs in a
similar fashion. It applied two cascaded networks of which
the first for location and the second for precision segmenta-
tion. By filtering out the distractors in the big image, the pro-
posed method could focus processing power on the specific
discerning features of the organs, while simultaneously
reducing time required for segmentation. There have been
similar mechanisms named “attention models” for many
computer vision tasks,16,17 and recently, He et al.18 proposed
a Mask R-CNN that added a branch for predicting an object
mask in parallel with the existing branch for bounding box
recognition detection. This study has three main new contri-
butions as compared with existing methods. First, the pro-
posed method does not need a large number of additional
manual annotations of the bounding boxes as required for the
instance segmentation methods (e.g., the Mask R-CNN). It
has the benefit that it adopts a self-attention mechanism to
focus on the ROI and only requires the ground truth of the
contours. This will greatly reduce the complexity of data
preparation for training. Second, we trained two deep CNN
separately, that is, the SRD to predict segmentation mask to
shrink the input region and the FSU to achieve fine segmen-
tation. It allows the usage of any existing method in each
component of the process, and each model could be fine-
tuned for more accurate final segmentation. Finally, the pro-
posed method can rapidly locate the OAR region in the form
of a rectangular box which includes useful information
around the OAR. Only the small region is used for fine seg-
mentation which has greatly improved efficiency.

2. METHODS AND MATERIALS

2.A. Data and preprocessing

The imaging dataset used for this study is publically avail-
able via the cancer imaging archive (TCIA).19 It consists of
100 head-and-neck squamous cell carcinoma (HNSCC)
patients’ images and DICOM RT data.20,21 Simulation CT
was scanned with the patient in the supine position. CT
images were reconstructed with a matrix size of 512 9 512
and slice thickness of 2.5 or 3.0 mm. In total, there were
14,651 two-dimensional (2D) CT slices. The pixel size was
0.88–1.27 mm with a median value of 1.07 mm. The radio-
therapy contours were directly drawn on the CT by expert
radiation oncologists and thereafter used for treatment

planning.20 The relevant OARs studied in this research were
the brainstem, spinal cord, left eye, right eye, left parotid,
right parotid, and mandible.

The image data were preprocessed in MATLAB R2017b
(MathWorks, Inc., Natick, Massachusetts, USA). The original
CT data read from Dicom image were of 16-bit. It was
converted to an intensity image in the range 0–1 with the
function “mat2gray” and then multiplied with 255 to create
the 8-bit data. A contrast-limited adaptive histogram equal-
ization (CLAHE) algorithm22 was followed to enhance the
contrast. The final data used for CNN were the 2D CT slices
and the corresponding contour labels. These processes were
fully automated.

2.B. CNN Cascades for segmentation

In this study, we introduced an automated segmentation
method for OARs delineation using ROI-based serially con-
nected CNN. Figure 1 depicts the flowchart of the CNN Cas-
cades. It was an end-to-end segmentation framework that
could predict pixel class labels in CT images. Different from
the current single CNN methods, we used two cascaded net-
works to improve the accuracy and efficiency, including a
simple region detector (SRD) and a fine segmentation unit
(FSU). The SRD and FSU used the deep dilated CNN12 and
the very deep dilated residual network (DD-ResNet),13

respectively. Both were segmentation nets using CNN to clas-
sify every pixel of the object in the image into a given cate-
gory. The SRD used a relative shallow network to identify
the ROI where the organ was located, and the ROI image was
then used by the FSU with a very deep network to fine
segment the organs.

Specifically, the input of SRD was the 2D CT image (CT
with size: M 9 M) and the output was the course segmentation
(size: M 9M) of one OAR. Then, the center (C) of the seg-
mented OAR was calculated and located in each CT slices. Tak-
ing the point C as the center, a square ROI with a dimension of
M
n � M

n (n = 2 for big organs, 4 for small organs) encompassing
the OAR was selected in the CT image. Next, enlarging the
ROI by n times to the original size M 9 M rendered an
enlarged CT image (CTROI), which was used as the input to
FSU for fine segmentation. The final result was restored from
the output of FSU in the original image. The SRD may have
generated either false-negative or false-positive ROIs. The
slices containing false-positive ROIs will introduce more
images to the second step of the fine segmentation, which does
not affect the final performance; however, the slices containing
the false-negative ROIs will be lost. According to our experi-
ence, the maximum number of slices at the boundary that may
be ignored by our coarse segmentation was 3. In order to avoid
losing such information, we took five more slices into consider-
ation at the superior and inferior borders, respectively. The cen-
ter of the segmented OAR was estimated with linear
extrapolation method in these CT slices. With the ROI selection
and fine segmentation operations, CNN Cascades could learn
to focus processing and discriminatory power on the section of
the image that is relevant for the specific organ.
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2.C. Experiments

The performance of CNN Cascades was evaluated with
fivefold cross-validation. The dataset was randomly divided
into five equal-sized subsets. For each loop of validation,
80% of the data were used as the training set to “tune” the
parameters of the segmentation model, and the remaining
20% cases were used as the test set to evaluate the perfor-
mance of the model.

For data augmentation, we adopt some most popular and
effective methods, such as random resize between 0.5 and 1.5
(scaling factors: 0.5, 0.75, 1, 1.25, and 1.5), random cropping
(crop size: 417 9 417), and random rotation (between �10°
and 10°) for training dataset. This comprehensive scheme
greatly enlarged the existing training dataset and made the
network resist overfitting.

The two nets, SRD and FSU, were trained independently
and were combined only during the inference stage. The
model parameters for each network were initialized using the
weights from the corresponding model trained on ImageNet
and were then “fine-tuned” using training data. We used a
batch size of 12 for SRD with shallow network and 1 for FSU
with deep network due to memory limitations. The input
images and their corresponding segmentation labels were
used to train the network with the Stochastic Gradient Des-
cent implementation of Caffe23 We used the “poly” learning
rate policy with initial learning rate of 0.0001, learning rate
decay factor of 0.0005, and momentum of 0.9, respectively.
Both SRD and FSU models were fine-tuned for 80 K
iterations.

2.D. Quantitative evaluation

The cross-validation set was used to assess the perfor-
mance of the model. All the 2D CT slices of the validation set
were segmented one by one. The input was the 2D CT image
and the final output was pixel-wise classification (1 for

segmented target and 0 for background). The boundary of the
segmented target was extracted as the contour. Manual seg-
mentations (MS) generated by the experienced physicians
were defined as the reference segmentations. The segmenta-
tion accuracy was quantified using two metrics: the Dice sim-
ilarity coefficient (DSC)24 and the Hausdorff distance
(HD).25 Both of them measure the degree of mismatch
between the automated segmentation (A) and the manual seg-
mentation (B). The DSC is calculated as DSC = 2TP/
(2TP + FP + FN) using the definition of true positive (TP),
false positive (FP), and false negative (FN). It ranges from 0,
indicating no spatial overlap between the two segmentations,
to 1, indicating complete overlap. The HD is the greatest of
all the distances from a point in A to the closest point in B.
Smaller value usually represents better segmentation
accuracy.

In addition, the performance of our CNN Cascades was
compared with the state-of-the-art CNN methods (U-Net7

and FSU) in medical segmentation. We also evaluated the
accuracy of the coarse segmentation with SRD. The DSC
and HD values for each OAR with the four methods were
analyzed and compared. All values are presented as
mean � SD. A multigroup comparison of means was first
carried out by one-way analysis of variance (ANOVA) test.
If it was significant, then a post hoc test by least significant
difference (LSD) test was performed to detect whether a
significant difference lies between the proposed method
and each of the other methods. All analyses were per-
formed with a P < 0.05.

3. RESULTS

3.A. Accuracy

The detailed results of are shown in Tables I and II. It can
be seen from the quantitative evaluation metrics that the pro-
posed CNN Cascades approach gave the best accuracy

FIG. 1. The overall framework of the CNN Cascades. [Color figure can be viewed at wileyonlinelibrary.com]
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compared with other methods. The advantage over U-Net and
SRD was significantly for all the OARs (P < 0.05). Although
the LSD test showed some of the metrics (DSC of left eye
and Mandible, and HD of left eye, right eye, and left parotid)
between CNN Cascades and FSU were not so significant,
CNN Cascades had the highest mean DSC values and the
lowest mean HD values for each OAR.

The mean values of evaluation metrics for all the OARs
with the different methods were evaluated. CNN Cascades
was also the best with mean DSC of 0.90 (SRD: 0.86, FSU:
0.87, and U-Net: 0.85) and the mean HD of 3.0 mm (SRD:
4.0, FSU: 3.6, and U-Net: 4.4).

Figure 2 shows the visualization organ segmentation in
axial cross sections. The autosegmented contours with all the
methods were in good agreement with the reference contours.
However, the single CNN (U-Net and FSU) missed some
contours for mandible and parotids, especially at the superior
and inferior border and small regions. At the same time,
U-Net produced some wrong scattered points for mandible.

3.B. Time cost

The mean time for automated segmentation with FSU,
U-Net, and CNN Cascades was about 10.6 (SD � 0.8) min,
5.8 (SD � 0.4) min, and 5.5 (SD � 0.3) min per patient,
respectively, using Amazon Elastic Compute Cloud with
NVIDIA K80 GPU. The proposed CNN Cascades

significantly reduced the mean segmentation time by 48%
(FSU, P < 0.05) and 5% (U-Net, P < 0.05), respectively.

4. DISCUSSION

This study proposed a two-step CNN Cascades model to
improve the segmentation accuracy of OARs in radiotherapy.
For all the OARs, CNN Cascades performed well with good
agreement to the delineations contoured manually by clinical
experts. It can be seen from Table I that the CNN Cascades
outperformed the current state-of-the-art nets (U-Net and
ResNet) significantly. The reasons for the better performance
of the proposed method can be explained as follows: The
segmentation using CNN achieves pixel-wise prediction
based on the features extracted from images with a set of
convolutional filters. As for the CT image for radiotherapy,
the image is big and there is no organ to be segmented in
some slices. CNN needs to classify the pixel into two
regions (organ and background) using lots of different fea-
tures for all the slices. Some features might be more relevant
to the organ in the image while others might be more rele-
vant to the background. Each filter extracts a different fea-
ture; however, the number of filters is fixed in a certain
CNN. The first net in out method could predict segmenta-
tion mask to shrink the input region. In this way, it can
ignore the big background and focus on optimizing the
parameters of the filters used for segmentation. This means

TABLE I. DSC values of the OARs segmentation.

OARs

Methods

P-value

ANOVA

LSD test

1. SRD 2. FSU 3. U-Net 4.CNN Cascades 4 vs 1 4 vs 2 4 vs 3

Brainstem 0.86 � 0.03 0.87 � 0.02 0.84 � 0.04 0.90 � 0.02 <0.001 =0.001 =0.017 <0.001

Spinal cord 0.86 � 0.02 0.86 � 0.02 0.85 � 0.03 0.91 � 0.01 <0.001 <0.001 <0.001 <0.001

Left eye 0.89 � 0.03 0.91 � 0.02 0.88 � 0.04 0.93 � 0.01 <0.001 <0.001 =0.060 <0.001

Right eye 0.89 � 0.02 0.90 � 0.02 0.89 � 0.02 0.92 � 0.02 =0.002 <0.001 =0.037 =0.001

Left parotid 0.82 � 0.03 0.83 � 0.04 0.81 � 0.03 0.86 � 0.03 <0.001 <0.001 =0.010 <0.001

Right parotid 0.81 � 0.06 0.82 � 0.04 0.80 � 0.05 0.86 � 0.03 =0.001 =0.001 =0.013 <0.001

Mandible 0.89 � 0.02 0.90 � 0.02 0.87 � 0.04 0.92 � 0.02 <0.001 =0.005 =0.159 <0.001

TABLE II. Hausdorff distance (mm) of the OARs segmentation.

OARs

Methods

P-value

ANOVA

LSD test

1. SRD 2. FSU 3. U-Net 4. CNN Cascades 4 vs 1 4 vs 2 4 vs 3

Brainstem 3.9 � 0.5 3.4 � 0.3 4.3 � 0.7 2.9 � 0.3 <0.001 <0.001 =0.017 <0.001

Spinal Cord 2.3 � 0.3 2.2 � 0.3 2.4 � 0.4 1.7 � 0.2 <0.001 <0.001 <0.001 <0.001

Left Eye 2.3 � 0.4 2.0 � 0.4 2.6 � 0.6 1.7 � 0.3 <0.001 <0.001 =0.062 <0.001

Right Eye 2.5 � 0.5 2.1 � 0.4 2.7 � 0.6 1.8 � 0.3 =0.001 =0.004 =0.152 <0.001

Left Parotid 6.4 � 1.4 5.9 � 1.4 7.0 � 1.6 5.1 � 1.1 =0.002 =0.008 =0.130 <0.001

Right Parotid 7.1 � 1.5 6.5 � 1.4 7.6 � 1.5 5.4 � 1.1 =0.001 =0.002 =0.045 <0.001

Mandible 3.2 � 0.4 3.0 � 0.4 4.0 � 1.0 2.4 � 0.4 <0.001 =0.001 =0.022 <0.001

Medical Physics, 46 (1), January 2019

289 Men et al.: Improve segmentation with CNN Cascades 289



using more parameters to solve the simplified problem,
which is bound to improve accuracy.

We compared the DSC value that is the most common
evaluation index reported in the literature with other studies
(Table III) and found our results to of similar or improved
accuracy. Our segmentation was done on CT images; how-
ever, magnetic resonance imaging (MRI) may be recom-
mended for a better delineation of the low-contrast region36

due to its superior soft-tissue visualization compared with CT
for some organs. Further studies combining CT with MRI
could improve the segmentation accuracy further.

We quantitatively evaluated the time efficiency of the pro-
posed two-step framework. The proposed method had one
more step in the process than single CNN; however, the seg-
mentation time was less. The reason may be that the first net-
work is very shallow and can define the region where the

OAR located fairly quickly, while the second deep network
only used reduced CT images for the fine prediction, saving
inference time for 2D CNN.

One limitation of this study is the lack of an independent
test set. The reason is that the data available are limited and
separating an independent test set will drastically reduce the
number of samples for training a robust model. The general
approach in medical research to work around this limitation
is a procedure called k-fold cross-validation. The dataset is
split into k smaller sets. A model is trained using k � 1 of
the folds as training data and tested on the remaining part of
the data. This step is repeated until k models are trained. The
average performance is then used as the evaluation index of
the studied method. This approach can be computationally
expensive, but it takes full advantage of the entire dataset,
especially when the number of samples is very small. This

FIG. 2. Segmentation results of CNN Cascades. [Color figure can be viewed at wileyonlinelibrary.com]
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approach can also demonstrate how the trained model is gen-
eralizable to unseen data to avoid deliberately choosing data
with superior results for testing.

The proposed method achieved more accurate segmentation
with a relatively smaller input region than the state-of-the-art
networks used in the field of radiotherapy for automated con-
touring. Efficiency and accuracy are highly desirable for radio-
therapy segmentation. Unlike the networks which require the
annotation of the bounding boxes, our method features a self-
attention mechanism to focus on the ROI only with the label-
ing of contour. Moreover, the previous two-step networks usu-
ally need to be trained together; it is, therefore, more difficult
to fine-tune the two networks independently. In contrast, we
are able to fine-tuned the two networks separately and optimize
each. Since the proposed model is flexible, effective, and effi-
cient, we hope that it is a promising solution to further improve
automated contouring in radiotherapy.

5. CONCLUSIONS

The proposed CNN Cascades with ROI identification and
fine segmentation with very deep network from reduced
image regions demonstrated superior performance in both
accuracy and efficiency. It has the potential for implementa-
tions into radiotherapy clinical workflow as well as for qual-
ity assurance needs of multicenter clinical trials.
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