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Abstract Overall Goal: This study was designed to
evaluate the impact of pentosan polysulfate (PPS) treatment
on mice with mucopolysaccharidosis (MPS) type IIIA
(Sanfilippo A syndrome; OMIM 252900).

Protocol: Three groups of MPS IIIA mice were
evaluated: 1-week-old mice treated with subcutaneous
(subQ) PPS at 25 mg/kg once weekly for 31 weeks (group
1); 5-month-old mice treated with subQ PPS once weekly
at 50 mg/kg for 12 weeks (group 2); and 5-week-old mice
treated by continual intracerebroventricular (ICV) PPS
infusion for 11 weeks (60 mg/kg/day). Treated MPS IIIA
mice and controls were assessed by measuring plasma
cytokine levels, histologic analyses of systemic organs, and
analyses of various neuroinflammatory, neurodegenerative,
and lysosomal disease markers in their brains. Neuro-
behavioral testing also was carried out.

Results: As seen in other MPS animal models, subQ PPS
treatment reduced plasma cytokine levels and macrophage
infiltration in systemic tissues. ICV administration did not
elicit these systemic effects. SubQ PPS administration also
significantly impacted brain neuropathology, inflammation,
and behavior. The effect of early subQ treatment was more
significant than dose. Surprisingly, ICV PPS treatment had
intermediate effects on most of these brain markers, perhaps
due to the limited dose and/or duration of treatment.

Consistent with these neuropathological findings, we also
observed significant improvements in the hyperactivity/
anxiety and learning behaviors of the MPS IIIA mice
treated with early subQ PPS.
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CNS Central nervous system
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Introduction

Mucopolysaccharidosis type III (MPS III), or Sanfilippo
syndrome, refers to one of four inherited neurodegenerative
lysosomal storage disorders (LSDs) caused by
the deficiency of enzymes involved in heparan sulfate
(HS) degradation, including sulfamidase (MPS IIIA; EC
3.10.1.1; Kresse 1973), a-N-acetylglucosaminidase (MPS
IIIB; EC 3.2.1.50; von Figura 1977), heparan-a-glucosa-
minide N-acetyltransferase (MPS IIIC; EC 2.3.1.78; Klein
et al. 1978), and N-acetylglucosamine 6-sulfatase (MPS
IIID; EC 3.1.6.14; Kresse et al. 1980). Among the
Sanfilippo diseases, MPS IIIA is the most common subtype
and is considered the more severe form, characterized by
progressive mental deterioration, distinct behavioral dis-
turbances, dementia, and a markedly shortened lifespan.

There is currently no effective treatment for the MPS III
diseases and the clinical management remains mainly
supportive. Hematopoietic stem cell transplantation (HSCT)
has been performed in patients with MPS IIIA and IIIB, but
the neurological benefits have been questioned (Boelens
et al. 2010). Direct delivery of recombinant human
heparan-N-sulfatase to the central nervous system (CNS)
by intrathecal injection in MPS IIIA patients also has been
evaluated, but such an approach is considered challenging
due to the enzyme’s relatively short half-life, the limited
distribution of enzyme throughout the CNS after injection,
and the potential toxic effects associated with the procedure
(Jones et al. 2016). Several gene therapy clinical trials also
are under evaluation (Gaffke et al. 2017; Tardieu et al.
2017).

Our previous studies have demonstrated that systemic
administration of the FDA/EMA approved drug, pentosan
polysulfate (PPS), reduced inflammation and glycosamino-
glycan (GAG) storage in MPS VI rats and dogs, and
resulted in significant pathological and clinical improve-
ments (Schuchman et al. 2013; Frohbergh et al. 2014;
Simonaro et al. 2016). Based on these findings, a proof-of-
concept phase 1/2 clinical trial also has been undertaken in
MPS I patients, and the safety and potential efficacy of this
approach has recently been published (Hennermann et al.
2016). We have hypothesized that PPS should be effective
in other MPS types as well since it inhibits the NFkbeta
pathway that is activated in many of these diseases, and a
recent clinical study in Japanese MPS II patients suggests
that this hypothesis may be correct (Orii et al. 2016). Of
particular relevance to the use of PPS in the neurologic
MPS III diseases is the fact that our studies in MPS I dogs
showed that subcutaneous (subQ) treatment reduced
inflammatory markers not only in systemic organs and
plasma but also in the cerebrospinal fluid (CSF) (Simonaro
et al. 2016). Recent findings suggest that the blood brain
barrier (BBB) may be structurally and functionally

impaired in MPS IIIA and MPS IIIB patients (Garbuzova-
Davis et al. 2011, 2013), which may facilitate the
development of such systemic therapies for these disorders.

The present study was therefore designed to validate the
impact of PPS on a mouse model of MPS IIIA. Although
the pathophysiological mechanisms underlying the CNS
manifestation of this disease are not fully understood,
previous studies have revealed that neuroinflammation and
neurodegeneration are significant neuropathological pheno-
types of the diseased brain (Wilkinson et al. 2012; Archer
et al. 2014). Two approaches for PPS administration were
evaluated: once weekly subQ injection and continual
intracerebroventricular (ICV) infusion. The effects on
neuroinflammation, neurodegeneration, and behavior were
examined.

Materials and Methods

Experimental Animals

MPS IIIA (Bhaumik et al. 1999) and age-matched, wild-
type mice were bred, housed, and maintained in the animal
facility of the Icahn School of Medicine at Mount Sinai. All
animal protocols were approved by the Mount Sinai
Institutional Animal Care and Use Committee (protocol
#08-0108), and were performed in accordance with NIH
guidelines. All mice were genotyped using established
protocols (Gliddon and Hopwood 2004). Euthanasia was
performed using carbon dioxide inhalation.

PPS Administration

PPS (Bene pharmaChem, Germany) administration was
performed in MPS IIIA mice through ICV infusion or subQ
injections. For ICV, 5-week-old MPS IIIA mice were
anesthetized in an induction chamber with 4% isoflurane,
and were maintained anesthetized during stereotaxic sur-
gery with 1.5% isoflurane. The scalp was incised and holes
were drilled at appropriate locations in the skull with a
dental drill, using the following coordinates: AP – 0.5 mm
from Bregma, 1.1 mm from midline. The cannula of a brain
infusion kit (Alzet, Cupertino, CA) was aseptically
implanted into the right lateral ventricle through the hole,
and the cannula was secured to the skull with cyanoacrylate
adhesive. The infusion system was connected to a mini
osmotic pump (Model 2006, Alzet), which was placed
subcutaneously between the scapulae. The pump was
assembled and prepared according to the manufacturer’s
instructions, and the fully assembled pump was soaked and
primed in bacteriostatic sodium chloride at 37�C for 60 h.
The mice were infused with 60 mg/kg of PPS/day for up to
11 weeks. This PPS dose was based on previous ICV
studies in patients with Creutzfeldt-Jakob disease (CDJ)
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(Terada et al. 2010). Local (bacitracin ointment) and
systemic antibiotic (ampicillin 100 mg/kg, intramuscular
every 12 h for the first 48 h post-op) treatments were
administered to prevent post-operative infections. Bupre-
norphine (0.1–0.5 mg/kg subQ) was administered twice
daily for the first 72 h, and then on an as-needed basis if the
animals appeared to be in pain. A total of 11 MPS IIIA
mice received stereotaxic surgery (8 received PPS infusions
and 3 received sham saline infusions). Three of the ICV
PPS-infused animals died during weeks 3–7 post-implanta-
tion from infections or other procedure related complica-
tions. The remaining three sham and five PPS-infused
animals were sacrificed at week 16 and analyzed.

For subQ PPS treatment, the MPS IIIA mice were
divided into two groups (n ¼ 10 per group) that were
treated for up to 31 weeks: group 1 animals received
25 mg/kg (human equivalent dose 1 mg/kg) once weekly
starting at 1 week of age, and group 2 animals received
50 mg/kg (human equivalent dose 2 mg/kg) once weekly
starting at 5 months of age. All control mice (wild-type and
sham treated MPS IIIA) were age-matched. PPS was
prepared and administered as described previously
(Schuchman et al. 2013). No adverse events from PPS
treatment were noted in the animals.

Plasma Immunoassays

Blood samples were collected into heparin tubes from the
control and subQ treated animals at various intervals (16,
24 and 32 weeks post-treatment). For animals receiving
ICV PPS infusion, the blood samples were collected at the
time of euthanasia (16 weeks of age; after 11 weeks of
infusion). After centrifugation, plasma stored at �20�C.
The plasma inflammatory cytokines interleukin-1a (IL-1a),
macrophage inflammatory protein-1a (MIP-1a), monocyte
chemoattractant protein-1 (MCP-1), and granulocyte colony
stimulating factor (G-CSF) were measured using mouse
enzyme-linked immunosorbent assay (ELISAs) kits accord-
ing to the manufacturer’s protocols. Mouse ELISA kits for
IL-1a (catalog #MLA00), MIP-1a (catalog #MMA00),
MCP-1 (catalog #MJE00), and G-CSF (catalog #MCS00)
were purchased from R & D Systems (Minneapolis, MN).
All immunoassays were performed in triplicate.

Histology and Immunohistochemistry

Following subQ PPS treatment, the treated and sham
treated MPS IIIA mice, and wild-type, age-matched
littermate mice were perfused with 0.9% saline. Organs
including liver, spleen, and kidney were removed, fixed
in 4% paraformaldehyde and paraffin embedded, and
tissue sections were cut with a cryostat (Leica
Biosystems, Buffalo Grove, IL). The sections were

then stained with hematoxylin and eosin for histological
examination.

To quantify the storage vacuoles in the livers, spleens,
and kidneys, at least three slides/tissue were examined from
each mouse. Three laboratory technicians were blinded to
the study groups, and assessed the number of vacuoles with
the following scoring system: 0 ¼ between 0 and 10
vacuoles; 1 ¼ between 10 and 20 vacuoles; 2 ¼ between 21
and 30 vacuoles; 3 ¼ between 31 and 40 vacuoles;
4 ¼ between 41 and 50 vacuoles; 5 ¼ greater than 50
vacuoles. Slides were scored at the same magnification and
for the same set area of each stained section. Scores were
presented as means +/� standard deviation and Student’s
t test was used to analyze data between untreated and
treated groups. The results were considered significant at
p < 0.001 (Supplementary Fig. 1). Statistics were
performed using Sigma Stat 3.1 (Systat Software).

Brains also were removed and placed in the same fresh
fixative for at least 12 h, and cut using a vibratome (Leica
Biosystems, Buffalo Grove, IL). The sections were washed
with phosphate buffered saline (PBS), and preincubated
with 3% H2O2 for 15 min to remove endogenous peroxi-
dase activity. To minimize nonspecific immunostaining, the
sections were incubated for 60 min with a blocking solution
of 2% bovine serum albumin (BSA) in PBS. The sections
were then reacted overnight at 4�C with primary antibody
against glial fibrillary acidic protein (GFAP; 1:1,000),
lysosomal integral membrane protein-2 (Limp-2; 1:250),
heparan sulfate (HS; 1:100), ganglioside (GM3;
1:125–1:750), isolectin B4 (IL-B4) (1:10) or P-taus262
(1:10–1:20), respectively, in blocking solution plus 0.3%
Triton X-100. Following several washes in PBS for 30 min,
the sections were reacted with a biotin-conjugated second-
ary antibody against the primary IgG or IgM for 60 min at
room temperature. The immunoreaction was completed by
the avidin-biotin-peroxidase method using a Vectastain
ABC kit (Vector Laboratories, Burlingame, CA) suitable
for the secondary antibody, and the color reaction was
visualized using the diaminobenzidine (DAB) substrate
system, enhanced with 2% ammonium nickel(II).

The rabbit polyclonal antibody against GFAP was
purchased from Dako/Agilent (Santa Clara, CA), the
monoclonal anti-Limp-2 antibody was purchased from
Santa Cruz Biotechnology (Dallas, TX), the mouse mono-
clonal antibody against HS and the mouse monoclonal
antibody against GM3 were purchased from Amsbio LLC
(Cambridge, MA), and the rabbit polyclonal antibody
against phosphorylated tau (P-taus262) was purchased from
Abcam (Cambridge, MA). For detection of IL-B4, peroxi-
dase-conjugated lectin from Bandeiraea (Griffonia) simpli-
cifolia was purchased from Sigma (St. Louis, MO, USA).
The biotinylated secondary antibodies: goat anti-rabbit IgG,
rabbit anti-goat IgG, goat anti-mouse IgM, and the
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Vectastain ABC kits were purchased from Vector Labo-
ratories. The DAB chromogen and substrate were pur-
chased from Thermo Scientific (Waltham, MA).

To obtain semi-quantitative data regarding the effects of
PPS treatment, for each of the above staining at least three
slides were read per mouse. Two independent laboratory
technicians read the slides and were blinded to the
treatment group. A scoring system that assessed both the
intensity and the number of positive signals per slide was
established, with 0 being the least and 5 being the most.
Slides were scored at the same magnification and for the
same set area of each stained section. Tissues (liver, spleen,
and kidney) also were collected for total GAG assays and
homogenized according to the BLYSCAN GAG kit
#NC0287381 (Fisher Scientific, Waltham, MA).

Neurobehavioral Evaluations

To evaluate the acquisition of skilled behavior (motor skill
learning) in mice, a modified rotarod test that emphasizes
the learning aspect of the test and minimizes other factors
was used (Shiotsuki et al. 2010). The rotarod apparatus was
equipped with automatic timers and falling sensors (IITC/
Life Science, Woodland Hills, CA), and the mice were
individually placed on a 3.7500 diameter drum. The surface
of the drum was covered with hard chloroethylene, which
does not permit gripping on the surface. Prior to the training
sessions, all of the mice were habituated to stay on the
stationary drum for 5 min. Habituation was repeated daily
for 3 min just before the session. Instead of the typical
rotation acceleration, the rotation in this modified test was
set at a relatively slow but steady speed (14 rpm, 3.9 m/min
on the surface, with a starting speed of 5 rpm, and 15 s
ramp to the top speed), to make the task feasible for the
animals to learn. The animal was placed back on the drum
immediately after falling, up to five times in one session. A
fall was overlooked when the animal remained on the drum
for 120 s. To evaluate long-term memory of the learned
motor skill, the test was repeated daily for four consecutive
days. The latency to falling was recorded automatically by
photocells and the total latencies on the rod on each day
was analyzed.

To assess anxiety-like and/or repetitive-like behaviors of
the animals, a marble-burying test was performed (Boivin
et al. 2017; Thomas et al. 2009). Standard clean cages
(26 cm � 48 cm � 20 cm) were used to habituate and test
the animals. Unscented wood chip bedding was added to
each cage to a depth of 5 cm and the bedding surface was
leveled by inserting another cage of the same size onto the
surface of the bedding. The impressed parallel lines on the
bedding surface were used for marble placement, and 20
standard glass toy marbles (assorted styles and colors,
15 mm diameter) were gently placed on the surface of the

bedding in 5 rows of 4 marbles/row. Following each test,
the marbles were washed in mild laboratory detergent,
rinsed extensively in distilled-deionized water, and dried at
least 1 day prior to each use. During the habituation phase
of the test, the mice were introduced to cages without any
marbles and allowed to explore for 90 min and then
removed. During the testing phase each mouse was placed
in the cage with 20 marbles placed on the bedding surface,
and allowed to explore for 30 min. At the end of the test,
mice were removed from the cage and the number of
marbles buried in bedding up to 2/3 of their depth was
counted. All of the mice in their home cages were
transported to the testing room 60 min before the start of
testing.

Statistics

A Student’s t-test was used to compare values between two
groups, and ANOVA with Tukey post hoc analysis was
used to compare values between three groups. All statistical
analyses were performed using the Sigma Stat software
(Systat Software, Inc., Point Richmond, CA).

Results

Effects of PPS Treatment on Systemic Pathology and
Inflammation in MPS IIIA Mice

Histological examinations revealed moderate to severe,
multifocal infiltration of large foamy macrophages contain-
ing cytoplasmic vacuoles in the livers, spleens, and kidneys
of sham treated MPS IIIA mice at 32 weeks of age (Fig. 1).
A significant reduction of these macrophages and vacuoles
was observed following weekly subQ injections of PPS in
both groups of treated mice, with a more pronounced effect
in group 1 animals (Supplementary Fig. 1). Subcutaneous
treatment also attenuated systemic inflammation in both
groups, as indicated by ELISA immunoassays of the
plasma inflammatory markers IL-1a, MCP-1, MIP-1a,
and G-CSF (Fig. 2). Sham treated MPS IIIA mice exhibited
age-progressive (16, 24 and 32 weeks) increases in each of
these cytokines, and group 1 animals exhibited significantly
reduced levels at each age. Group 2 animals (who were
started on treatment at 5 months of age) were only assessed
at 32 weeks of age, and PPS significantly reduced the levels
as well. In comparison, MPS IIIA animals receiving PPS
via ICV infusion at the dose of 60 mg/kg/day for 11 weeks
did not exhibit reduced cytokine levels in their plasma
(Fig. 2), nor did they exhibit a reduction in macrophage
infiltration into the systemic tissues (data not shown). It is
notable that the levels of these cytokines were higher in the
ICV treated mice at 16 weeks of age compared to sham
treated 16-week control MPS IIIA mice, suggesting that an
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Fig. 1 Systemic effects of subQ PPS administration in MPS IIIA
mice as assessed by histopathology. Panels (a, e, and i) are

representative images from wild-type mice; panels (b, f, and j) are
representative images from sham treated MPS IIIA mice; panels (c, g,
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inflammatory reaction was occurring from the insertion of
the infusion pumps and/or the local, continuous administra-
tion of PPS.

We also measured total GAGs in the livers, spleens, and
kidneys of the subQ treated PPS animals, although this
analysis is complicated by the fact that PPS cross-reacts
with most of the established GAG assays, and the fact that
that animals were euthanized within 48 h after the last PPS
injection, a time when the levels of PPS remain high in the
tissues. As shown in Supplementary Fig. 2, we did observe
reductions in liver or spleen GAGs in the treated mice,
although we hypothesize that this is due to the remaining
PPS and the fact that the drug is known to accumulate in
these tissues after injection (Greenslade et al. 1983). In
contrast, in the spleen where less residual PPS will be
present, significant GAG reductions were observed.

Effects of PPS Treatment on Neuropathological Markers in
MPS IIIA Mice

SubQ Administration Immunohistochemical assessments of
various brain regions were carried out for both groups of
subQ treated animals. Overall, the impact of PPS on the
CNS was much more evident in the group 1 animals who
started treatment at 1 week of age and were treated for
31 weeks. Although double the dose was used in the group
2 animals (50 vs. 25 mg/kg), little or no evidence of CNS
effects was found. This could be due to the fact that
treatment was started at 5 months of age, and/or the fact
that the duration of treatment was only 12 weeks.

For example, sham treated MPS IIIA animals exhibited
significant astrocyte activation, as evidenced by strongly
positive GFAP staining in different brain regions, including
the thalamus, cortex, and hippocampus, and this staining
was greatly reduced in the group 1 treated animals (Fig. 3).
Intense staining for Limp-2, an important regulator of
lysosomal/endosomal transport that is frequently elevated
in tissues from lysosomal storage disease animal models,
including MPS IIIA mice and dogs (Beard et al. 2017;
Reczek et al. 2007; King et al. 2015, 2017), also was found
in the hippocampus of sham treated MPS IIIA mice, and
this staining was attenuated in the group 1 PPS treated
animals as well (Fig. 4a–d). Neuronal staining for HS, the
accumulating GAG substrate in MPS IIIA, also was found
in different brain regions of the sham treated mice,

including the cortex, thalamus, and hippocampus, and this
was reduced in the group 1 treated mice as well (Fig. 5).

The ganglioside GM3 is a secondary substrate that
accumulates in the CNS of many neurologic lysosomal
storage disease mouse models, including MPS III models
(Ryazantsev et al. 2007; Dawson et al. 2012), and staining
for this glycolipid was evident in the amygdala and cortex
of the sham treated MPS IIIA mice (Fig. 6a). Compared to
the sham treated animals, PPS treated group 1 animals
exhibited reduced GM3 staining in both of these regions
(Fig. 6a). Finally, to evaluate neurodegeneration in the MPS
IIIA mice, a neurodegenerative marker, phosphorylated-tau
protein, P-taus262, also was examined. Figure 7 shows that
accumulation of P-taus262 was found in the hippocampus of
sham treated MPS IIIA mice, especially in the dentate
gyrus. In contrast, in PPS treated group 1 mice P-taus262
staining was markedly reduced.

ICV Infusion Following 11 weeks of continuous PPS ICV
infusion (60 mg/kg/day), the impact on several of these
neuropathological markers also was assessed. For example,
Fig. 4e–h shows the reduction of Limp-2 staining, and
Fig. 6 shows the reduction of GM3 staining. Although the
neuroinflammatory marker GFAP was not assessed in these
animals, we did observe a marked reduction in IL-B4
staining, a marker of microglial activation, in the region
immediately surrounding the site of infusion, as well as in
the cortex, hippocampus, and lateral septum (Fig. 8). We
did not observe differences in HS or P-taus262 staining in
the ICV treated group.

Figure 9 summarizes semi-quantitative data obtained
from the analysis of neuropathologic markers in various
brain regions areas of subQ and ICV PPS treated MPS IIIA
mice. Group 1 mice showed a reduction from 28 to 61% in
HS, p-Tau, GFAP, GM3, and Limp-2 when compared to
sham treated, age-matched MPS IIIA mice (Fig. 9a). A
significant reduction of neuroinflammation (GFAP staining)
also was found, between 39–61% in the cortex, thalamus,
and hippocampus, and a 36–41% reduction in HS also was
seen in these same regions.

ICV treated animals exhibited a significant reduction of
IL-B4, a marker for microglia, also indicating an anti-
inflammatory effect of PPS (Fig. 9b). The ventricle,
hippocampus, and lateral septum showed the most signifi-
cant effects (64–70% reduction) when compared to the
cortex (32%), which is the region furthest from insertion

Fig. 1 (continued) and k) are representative images from MPS IIIA
mice treated at 1 week of age for 31 weeks, once weekly with 25 mg/
kg PPS (group 1), and panels (d, h, and l) are representative images
from MPS IIIA mice treated at 5 months of age for 12 weeks, once

weekly with 50 mg/kg PPS (group 2). A reduction of macrophages
and vacuoles was evident in MPS IIIA mice treated with subQ PPS.
Black arrows point to representative storage vacuoles
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Fig. 2 Plasma cytokine levels in MPS IIIA mice treated with PPS. IL-
1a, MCP-1, MIP-1a, and G-CSF were measured in the plasma of
wild-type, sham treated MPS IIIA, and PPS treated MPS IIIA mice at
various intervals (16, 24 and 32 weeks) by ELISA. G1, group 1; G2,
group 2 (n ¼ 10/group). ICV mice (n ¼ 5) were only assessed at the

end of the treatment period (16 weeks). Cytokine levels were higher in
the ICV treated when compared to the untreated age-matched animals
probably due to the fact that the PPS was not released systemically.
*p < 0.05 compared to sham treated MPS IIIA mice of the same age
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Fig. 3 GFAP immunostaining in the thalamus, cortex, and hippo-
campus of MPS IIIA mice treated by subQ PPS. Panels (a–c) show
representative images from sham treated MPS IIIA mice at 32 weeks

of age. Panels (d–f) show representative images from subQ treated
(group 1) PPS treated mice at the same age
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site of the PPS pump. Overall, both subQ and ICV PPS
treatment led to a reduction in neuropathologic markers.

Effects of PPS Treatment on Behavioral Testing in the MPS
IIIA Mice

Behavioral testing was performed on the sham vs. group 1
treated MPS IIIA mice. We did not assess the group 2 or
ICV treated animals due to the later onset of the treatments

and/or shorter duration. Marble burying performance was
used to assess anxiety-like hyperactivity and obsessive-
compulsive behavior (Fig. 10a). Sham treated MPS IIIA
animals buried more marbles in the 30 min test period
compared to wild-type littermates (wild-type, 3.3 � 2.5;
MPS IIIA, 9.0 � 2.6; n ¼ 10 group), and in the group 1
treated animals there was a significant reduction towards
normal (4.1 � 2.8; n ¼ 10/group). We also assessed motor
skill learning using a modified rotarod test. As shown in
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Fig. 4 Limp-2 immunostaining in the hippocampus of MPS IIIA
mice treated with PPS. Panels (a, b) show representative images from
32-week-old, sham treated MPS IIIA mice, and panels (c, d) show
representative images from group 1 treated mice of the same age.

Panels (e, f) show representative images from 16-week-old sham
treated MPS IIIA mice, and panels (g, h) show images from mice of
the same age treated by ICV infusion. The boxes in panels (a, c, e, and
g) show the areas of magnification
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Fig. 10b, during the testing phase (days 3 and 4) untreated
MPS IIIA mice exhibited poor performance (longer
latency) compared to wild-type mice, indicating poor
learning skills. In contrast, the group 1 treated PPS animals
exhibited a learning behavior that was intermediate and
significantly improved by day 4.

Discussion

Previous studies from our lab and others have shown that
PPS has potent anti-inflammatory properties in various
disease models and patients (e.g., Schuchman et al. 2013;
Frohbergh et al. 2014; Simonaro et al. 2016; Hardi et al.
2016; Sanden et al. 2017; Hennermann et al. 2016).
Consistent with these reports, once weekly subQ PPS
administration to MPS IIIA mice attenuated systemic
inflammation, as shown by the reduction of the elevated
plasma inflammatory markers IL-1a, MCP-1, MIP-1a, and
G-CSF (Fig. 2). TNF-a was not significantly elevated in
this particular mouse model, and was therefore not
evaluated. Overall, there was a significant and similar
impact on the plasma cytokines in both groups of subQ
treated mice. In addition, reduced macrophage infiltration
was observed in the livers, kidneys, and spleens of both
groups, although the effects were more pronounced in
group 1 mice (Fig. 1).

These findings are in agreement with the potent anti-
inflammatory effects of PPS we have observed in the other

MPS models (Frohbergh et al. 2014; Simonaro et al. 2016).
Further, they suggest that the age at which treatment is
initiated is more important than the dose, since group 1
animals were treated with half the dose of group 2 (25 vs.
50 mg/kg), but treatment was started at 1 week of age (as
compared to 5 months). This suggests that for optimal
clinical effects in patients, treatment should be initiated as
early as possible to prevent irreversible damage. It is also
important to note that group 1 animals were treated for a
longer period of time (31 weeks), as compared to 12 weeks
for group 2 animals.

As expected, ICV infusion for up to 11 weeks (60 mg/kg/
day) did not reduce plasma cytokine levels or systemic
tissue macrophage infiltration, which confirms that the ICV
administration procedure was specific for the CNS. Of note,
the cytokine levels in the ICV mice were moderately
elevated compared to sham treated controls, indicating that
an inflammatory reaction might have occurred in these mice
from the insertion of the infusion pumps and/or the
continuous, local administration of the drug.

Importantly, subQ PPS administration also had an
impact on the brains of the MPS IIIA mice, suggesting
that the administered PPS may cross the BBB. It is
important to note that impairment of the BBB has been
previously described in this mouse model (Garbuzova-
Davis et al. 2011), as well as in patients with MPS IIIA and
IIID (Garbuzova-Davis et al. 2013). We have also previ-
ously detected reduction in CSF cytokine levels in MPS I
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Fig. 5 HS immunostaining in the thalamus, cortex, and hippocampus of MPS IIIA mice treated by subQ PPS. Panels (a–c) show representative
images from sham treated 32-week-old MPS IIIA mice, and panels (d–f) show representative images from group 1 treated animals
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dogs treated by subQ PPS (Simonaro et al. 2016), which
further suggests penetration of the drug into the CNS
following systemic administration. In the current study, at a
dose of 25 mg/kg, once weekly for 31 weeks (starting at
1 week of age; group 1), subQ PPS treatment reduced
astrocyte activation, as evidenced by GFAP staining
(Fig. 3), and attenuated overexpression of Limp-
2 (Fig. 4), HS (Fig. 5), and GM3 (Fig. 6). Although it is
well known that PPS is a potent anti-inflammatory drug that
impacts peripheral organs (Wu et al. 2011; Herrero et al.

2015; Simonaro et al. 2016), this is the first clear evidence
that systemic administration of the drug also has an impact
on the brain.

Subcutaneous PPS administration also resulted in a
reduction of the neurodegenerative marker, P-taus262, in
the MPS IIIA mice (Fig. 3). The presence of hyper-
phosphorylated tau protein and tau aggregates in patients
with Niemann–Pick disease type C (Love et al. 1995), and
in mouse models of MPS IIIA (Bhaumik et al. 1999), IIIB
(Ohmi et al. 2009), and IIIC (Martins et al. 2015), has been
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Fig. 6 GM3 immunostaining in the amygdala and cortex of PPS
treated MPS IIIA mice. Panels (a, b) show representative images from
32-week-old, sham injected MPS IIIA mice. Panels (c, d) show

representative images from group 1 mice treated with PPS. Panels (e,
f) show representative images from the amygdala of 16-week-old
sham and ICV treated MPS IIIA mice, respectively
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previously shown, and it has even been suggested that the
MPS III diseases should be considered “tauopathies,” a
diverse group of diseases associated with dementia,
including Alzheimer’s disease. The current finding that
PPS attenuated the abnormal accumulation of P-taus262 in
MPS IIIA mice therefore suggests that PPS might have
neuroprotective effects in other neurodegenerative diseases,
in line with an earlier report that PPS exerted neuro-
protective actions in a rodent model of ischemia (Sakurai-
Yamashita et al. 2006).

PPS also acts competitively with endogenous HS to bind
prion protein on the cell surface, and several studies have
indicated its efficacy in animal models and patients with
CJD (Larramendy-Gozalo et al. 2013). For example,
intracerebral administration of PPS increased the survival
of mice in a dose-dependent manner after prion infection
(Farquhar et al. 1999; Bone et al. 2008; Honda et al. 2012),
and continuous intraventricular infusion of PPS in seven
CJD patients was well tolerated over a large dose range
(11–110 mg/kg/day). Survival in all seven exceeded the
mean survival of untreated patients.

In addition to subQ administration, PPS was directly
delivered to the CNS of 5-week-old MPS IIIA mice via
continual ICV infusion (60 mg/kg/day) for up to 11 weeks,
and overall the findings were intermediate between those
observed in the group 1 and 2 subQ treated animals. Clear
reductions of Limp-2 and GM3 staining were observed, but
there were no changes in HS or P-taus262. Although we did
not perform GFAP staining on these mice, we did observe a
marked reduced of IL-B4, another marker of neuroinflam-
mation that indicates microglial activation. While it is
somewhat surprising that we did not observe more signifi-
cant neurological effects via this direct CNS delivery

method, it is also important to note that we used a relatively
low PPS dose and that the animals could only be
maintained on treatment for a maximum of 11 weeks due
to clogging of the infusion pumps and/or the risk of
infection.

Finally, we assessed the behavioral phenotype of the
treated MPS IIIA mice using two different tests. We
focused these analyses on the group 1 treated animals since
we observed the most significant neuropathological effects
in these mice. Behavioral testing was performed at the end
of the treatment period (32 weeks of age). When assessed
with the marble burying test, the sham treated MPS IIIA
animals showed anxiety-like hyperactivity and obsessive-
compulsive behavior compared to age-matched healthy
littermates, as indicated by more marbles buried during
the 30 min test period (Fig. 9a). A significant difference in
the number of buried marbles between the PPS treated and
control MPS IIIA mice also was observed, suggesting that
early subQ PPS treatment might attenuate the neuro-
behavioral deficits in this disease. We confirmed these
findings using a modified rotarod test (Shiotsuki et al.
2010). After a brief learning period on the apparatus, sham
treated PPS mice exhibited poor performance (longer
latency) during the testing period, indicating a reduced
learning skill. Group 1 PPS treated animals exhibited
significantly reduced latency, consistent with improved
learning behavior. Overall, these behavioral improvements
were consistent with the neuropathological improvements
we observed in this group of PPS treated mice.

In conclusion, the current study shows for the first time
that subQ PPS treatment reduced neuroinflammatory and
neurodegenerative markers in the brains of MPS IIIA mice
and that neurobehavioral deficits were attenuated as well.
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Fig. 7 P-taus262 immunostaining of MPS IIIA mice treated by subQ PPS. Panels (a, b) show representative images from sham treated, 32-week-
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The impact of starting the treatment early (1 week of age
vs. 5 months) appeared to be greater than doubling the dose
in older animals (25 vs. 50 mg/kg). ICV PPS infusion had
an intermediate effect, although treatment was only eval-
uated at a low dose and for a relatively short period of time.
There are several limitations to this study that should be
considered, including the relatively small number of
animals evaluated (particularly with regard to the ICV
protocol), and the variability in some of the behavioral
testing. In addition, assessment of the neuropathological

markers by immunocytochemistry, while informative, is
difficult to quantify. We attempted to do this by having two
independent readers blindly assess the slides (at least three
images per mouse per group), and score the staining
intensity and frequency. Overall, the data supports the
conclusion that subQ PPS administration could be benefi-
cial in MPS IIIA and perhaps other neurological LSDs,
particularly if the treatment is started early in life, and
should be evaluated further. Furthermore, the findings on
improvement of systemic inflammation and macrophage
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infiltration in this model support previous findings from
MPS I and VI animal studies, and two proof-of-concept
clinical studies in MPS I and II patients (Frohbergh et al.

2014; Simonaro et al. 2016; Hennermann et al. 2016; Orii
et al. 2016).
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Fig. 9 Semi-quantitative analysis of neuropathologic markers in PPS
treated MPS IIIA mice. Semi-quantitative analysis of the staining
intensities was determined in PPS and sham treated MPS IIIA mice as
described in the Materials and Methods. Two blinded readers
examined and scored at least three slides per mouse per group. The

percent reduction in staining is shown in the PPS vs. the age-matched
MPS IIIA control mice for subQ (group 1, panel a) and ICV (panel b)
treated animals. The mean values are graphed from the six
determinations (two readers and three slides each), and the vertical
lines indicate the ranges
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