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A scientometric review of genome-wide
association studies
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This scientometric review of genome-wide association studies (GWAS) from 2005 to 2018

(3639 studies; 3508 traits) reveals extraordinary increases in sample sizes, rates of discovery

and traits studied. A longitudinal examination shows fluctuating ancestral diversity, still

predominantly European Ancestry (88% in 2017) with 72% of discoveries from participants

recruited from three countries (US, UK, Iceland). US agencies, primarily NIH, fund 85% and

women are less often senior authors. We generate a unique GWAS H-Index and reveal a

tight social network of prominent authors and frequently used data sets. We conclude with 10

evidence-based policy recommendations for scientists, research bodies, funders, and editors.

S ince the human genome was first sequenced in 2003, almost 3700 genome-wide association
studies (GWAS) have agnostically identified thousands of genetic risk variants and their
biological function1–3. Unlike Mendelian disorders caused by a single genetic defect, most

complex diseases such as diabetes or coronary heart disease rely on multiple genetic variants and
their exposure to—and interaction with—social and environmental factors. Contemporary
GWAS combine data from participants across multiple data sets in the form of a meta-analysis4

to analyze millions of these variants. Discoveries have led to clinical findings from diseases such
as breast cancer and Alzheimer’s to anthropometric and behavioral traits, with momentum
moving from the study of association to biological function5.

Although excellent narrative reviews document the scientific contributions of GWAS1,2,5,6,
there has been no systematic scientometric study as yet. Such a study is crucial for researchers,
data providers, editors, and consortiums working in this area to understand the strengths and
potential gaps in current research and is essential to plan future investments in data collection
and science policy for funders, research bodies, and national governments. Furthermore,
research evaluations and funding exercises increasingly rely on scientometric rankings of
author productivity, such as the H-index to measure the productivity and impact of scientists.
Funders and national governments also strive to find useable metrics to trace the impact and
usage of their scientific investments (such as large data collection infrastructures or invest-
ment in scientists). They also endeavor to measure whether policies to enact change have
been realized. This includes initiatives such as the National Institute of Health’s (NIH)
Revitalization Act, for instance, which mandates the inclusion of minorities as subjects. Most
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funding bodies and Universities have likewise noted lower
levels of women and ethnic minorities in senior biomedical
positions and implemented policies to counteract these trends,
but there are limited metrics for evaluation across the genomic
landscape7–9.

We first study participant demographics, sample sizes,
ancestry, the geographic distribution of participant recruitment,
the number and p values of genetic associations, journal
diversity, and disease focus. We draw on over 13 years of
GWAS discoveries (March 2005 to October 2018) from the
NHGRI-EBI GWAS Catalog (hereafter, the Catalog) produced
by the US National Human Genome Research Institute
(NHGRI) in conjunction with the European Bioinformatics
Institute (EBI)10,11. We then link the Catalog to external
PubMed and United Nations (UN) population data and
manually curate the most frequently used data sets, which cover
over 85% of all GWAS by cumulative sample size across
approximately a third of all papers. We rank and map top
funders by ancestry and disease, isolate key consortiums,
engage in an analysis of gender and authorship, create a
unique GWAS H-Index and undertake a social network
analysis of author centrality. This unique overview allows us
to formulate 10 concrete evidence-based policy recommenda-
tions. Our accompanying, Supplementary Methods and Sup-
plementary Note 1 describe the methods and data used to
produce the results and dynamically pull in new data,
which will regularly update our analyses, creating an open, live
database over time.

Sample sizes, associations found, diseases studied, and
journal diversity
Figure 1 shows the explosion in GWAS research since 2007.
Although the first entry within the GWAS Catalog is dated 10
March 2005, only 10 entries were made in 2005 and 2006. A
major breakthrough occurred in 2007, with a widely heralded
paper published by the Wellcome Trust Case Control Con-
sortium12, later termed a masterwork of diplomacy owing to the
aggregation of the data involved6. As of 29 October 2018, the
Catalog records 3639 individual research papers, which span 5849
unique Study Accessions (unique identifiers ascribed to studies of
specific traits within a paper) across 3508 unique diseases/traits,
which map to 2532 unique Mapped Experimental Factor
Ontology traits. The average number of associations or hits per
study is 15.3, with an average p value of 1.3729 × 10–6. Only
49,451 out of 89,588 (55.20%) reported associations meet the
heralded p ≤ 5×10–8 threshold, with most remaining within or
below the borderline level, with recent work suggesting a possible
relaxation in the current threshold13. Nature Genetics has been
the most frequent publisher over time, although in 2017, GWAS
were most frequently published by Nature Communications. At
the time of writing, the largest study in the Catalog presently
contains 1,030,836 subjects.

Ancestral diversity, geographical concentration, and data
sets used
Considerable attention has been paid to the disparities underlying
the ancestral diversity of study participants for technical reasons
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Fig. 1 The growth of GWAS, 2007–2017. The upper panel shows the number of study accessions published per quarter over time colored according to
sample size to show the growth of larger (100,001≤ N) GWAS. The lower left panel shows the strong positive correlation between the number of
associations found and the number of participants used in GWAS over time. The lower right panel shows the growth in the number of unique traits
examined as well as the number of unique journals publishing GWAS over time. 2007–2017 is selected since only 10 entries occurred before 2007. Each
panel contains full calendar years only. Source: NHGRI-EBI GWAS Catalog
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such as population stratification14, reduced linkage dis-
equilibria15, genetic diversity and admixture16, cultural distrust
and social misuses, and interpretations17,18. Including diverse
participants is crucial for understanding genetic heterogeneity in
disease phenotypes and the creation of an equitable distribution
of personalized medicine19. There is also a limited portability of
polygenic scores across populations, which we return to in our
final discussion20.

Figure 2 visualizes a customized Broader Ancestral Category21

field, which subsumes hundreds of combinations of seventeen
different broad ancestral categories mapped to seven unique
broader categories. Our results (when dropping rows of the
Catalog that contain any unrecorded ancestries) concur with
existing estimates21,22, showing that on aggregate, ancestry in
genetic discovery has been highly unequal and dominated by
participants of European ancestry (86.03% discovery, 76.69%
replication, 83.19% combined). Other prominently studied
ancestries are Asian (9.92% discovery, 17.97% replication, 12.37%
combined), African American or Afro-Caribbean (1.96% dis-
covery, 1.96% replication, 1.96% combined), Hispanic or Latin
American (1.30% discovery, 1.33% replication, 1.30% combined),
Other or Mixed (0.48% discovery, 1.77% replication, 0.87%
combined) and African (0.31% discovery, 0.28% replication,
0.30% combined) ancestry. Table 1 shows that the percent per
annum of European ancestry samples fluctuates considerably and
has been as high as 90.76% in 2016 and as low as 71.98% in 2012.
In 2008, not a single study utilized participants of African
ancestry. By partitioning the data into discovery and replication
samples, we show that the percent of European ancestry samples
used for initial discovery is substantially higher than for replica-
tion, and that samples of Asian ancestry make up a considerably
higher share of replications than for initial discovery.

A regular expression-based exercise to extract information
from the free text related to discovery and replication sample
descriptions identifies 212 and 150 unique terms, respectively for
classifying participants in terms of their race, region, country,
ethnicity, or ancestry. This ranges from the most common term

of European, to hybrid terms such as Caucasian Eastern Medi-
terranean along with multiple other examples of polyvocality.
Our accompanying replication material provides a more
empirically transparent and rigorous evidence base compared
with previous research that reported that around a fifth of papers
use classification schemes in logically ambiguous ways23 and
estimates that there were up to 26 terms to describe participants
of African ancestry22.

This decomposition of the free text field also allows us to
examine categorizations of Native or Indigenous populations.
These groups have had a particularly complex relationship with
genomics research, but have also revealed some key genetic
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Fig. 2 GWAS Participant Ancestry over Time, 2007–2017. The main panel shows a disaggregation of our broad ancestral categories field, which is a direct
mapping from the 17 broad ancestral categories identified in the Catalog. We drop all rows where any proportion of the ancestry is not recorded, and for
combinations of ancestries (e.g., European and African) we create a new field: Other/Mixed. The inset aggregates this across the entire sample but
partitions the data across discovery and replication phases. 2007–2017 is selected since only 10 entries occurred before 2007 and we have complete
information for the year 2017. Source: NHGRI-EBI GWAS Catalog and author mapping

Table 1 Percent of broader ancestry Group in GWAS over
time, 2007–2017

Year Ancestry

European Asian African Hispanic/
Latin
American

Other/
Mixed

African
American
or Afro-
Caribbean

2007 95.47 2.14 0.01 0.72 1.18 0.49
2008 95.29 2.95 0 0 1.22 0.54
2009 88.17 7.10 0.26 0.22 3.36 0.88
2010 86.85 9.89 0.27 0.06 2.44 0.49
2011 78.23 15.82 0.16 0.4 1.71 3.68
2012 71.98 19.47 0.31 0.88 2.87 4.48
2013 82.20 11.69 0.39 0.79 0.62 4.32
2014 76.61 18.62 0.25 1.15 0.98 2.4
2015 87.81 9.43 0.28 0.77 0.53 1.18
2016 90.79 4.65 0.17 1.47 1.10 1.83
2017 87.96 6.33 0.57 1.2 0.67 2.13

A disaggregated temporal breakdown of our synthetic Broader ancestry field. Any ancestries
that are in any part not recorded are dropped. All numbers are percentages. 2007–2017 is
selected since only 10 entries occurred before 2007 and we have complete information for the
year 2017
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associations17,24. Our analysis shows eight terms that explicitly
use nomenclature related to Native, Indigenous, or Aboriginal
populations, such as Aboriginal Canadian (a term seen twice, 15
observations in total), Martu Australian Aboriginal (a term seen
thrice, 752 observations in total) or various terms related to
Native Hawaiians (a term seen 11 times, 3179 observations in
total) and that they contribute 0.006% of all samples used (with
the term Native Hawaiian used most frequently, and Alaska
Natives mentioned thrice). When using a curated lookup table
based on the United Nations Declaration on the Rights of Indi-
genous Peoples (to include terms such as Pima Indians)25, this
number increases to 0.022%.

Uniquely, we also provide the first systematic breakdown of
recruitment of GWAS subjects by examining the Country of
Recruitment field21 provided by the Catalog for studies where
only a single country was recruited from (Fig. 3). We show that
71.80% of participants are recruited from only three countries; the
US, UK, and Iceland. Although participants from the United
States are most frequently the basis for the largest number of
studies (41.01% of all studies), the United Kingdom dominates in
terms of the number of participants (40.50% of all participants)
analyzed. Conversely, although 1.13% of recorded studies involve
Icelandic participants, the small Icelandic population (around
334,000) represents 11.52% of all participants contributed to
GWAS research. In terms of the ratio of the number of obser-
vations contributed by a country relative to the population of the
country26, Iceland is by far the largest (19.13), followed by the
United Kingdom (0.32). Note that owing to the way in which data
on recruitment from multiple countries is curated, these numbers
can only be used to compare between countries, rather than in
absolute terms. This result is predominantly driven by data from
deCODE genetics, a major biotech company founded in 1996 in
Reykjavík, Iceland. Aggregating to the continental level, Table 2
illustrates a similar but distinct global picture of genomic
research: European countries contribute 58.54% of recruited
participants and North America a further 19.99% (29.09% and
42.57% of all studies, respectively).

We manually extracted a list of the most frequently used
datasets (sometimes referred to cohorts) across the majority of

the largest 1250 GWAS as of 29 August 2018, with the objective
of providing the first systematic estimate of the frequency and
identification of data sources used in GWAS (Table 3). The most
frequently used data sets have several key distinguishing fea-
tures27. First, echoing our geographic analysis, frequently used
data are from industrialized countries (Netherlands, US, UK,
Ireland, Germany, Iceland), which share similar rates of disease
prevalence and population profiles. Second, most engaged in
random probability or population sampling to gain as repre-
sentative a sample as possible, something that is not characteristic
of emerging large data sets such as the healthy, older and higher
socioeconomic status participants in the UK Biobank28 or direct-
to-consumer genetic data. Third, they are cohorts that are deeply
and richly phenotyped across many diseases, future-proofing
them for multiple needs. Fourth, many are older populations with
disease diagnosis aimed at unraveling the pathways to disease and
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Fig. 3 A Choropleth Map of the Concentration of GWAS Participant Recruitment. A choropleth map (Robinson projection) detailing the geographic
recruitment of GWAS participants. Source: NHGRI-EBI GWAS Catalog, Natural Earth (v4.0.0) and the CIA World Factbook. Replication material provides a
per-capita population adjusted version

Table 2 Breakdown of GWAS participants by top countries
and continents

Country Continent Count N Count
(%)

N
(%)

Per
Rec

United
Kingdom

Europe 662 22521698 10.54 40.50 0.34

United
States

North
America

2576 10997635 41.01 19.78 0.03

Japan Asia 481 7940622 7.66 14.28 0.06
Iceland Europe 71 6409109 1.13 11.52 19.13
China Asia 500 2059693 7.96 3.70 0.00
Finland Europe 218 1193333 3.47 2.15 0.22
South Korea Asia 256 857072 4.08 1.54 0.02
Netherlands Europe 175 663477 2.79 1.19 0.04
Germany Europe 175 434824 2.79 0.78 0.01
Australia Oceania 110 320458 1.75 0.58 0.01

Catalog’s Country of Recruitment field cleaned and aggregated to continent level (CIA World
Factbook definitions). The Per Rec field relates to number of observed recruitments (with
overlap) divided by 2017 UN population estimates. The time period is all studies from 2007 to
2017
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disability in old age. In this respect, they miss the longer-term
development of disease and intervention possibilities that an
asymptomatic younger population might afford (except for the
1958 British Birth Cohort or additional data collection in cohorts
such as the FHS). Fifth, they are all prospective longitudinal data
sets, following individuals or birth cohorts over a longer period,
thus facilitating a life-course approach to understanding the
pathways to certain diseases, disability, and mortality. Sixth, all
but one of these cohorts is comprised of predominantly female
participants (ranging from 48 to 100%). This sex ratio imbalance
is rarely addressed, yet sexual dimorphism or sex differences in
disease are highly relevant29,30. Finally, although many started as
focused hypothesis-driven clinical samples to study one type of
disease, most have expanded to contain a breadth of phenotypes
and document a trend of adding new samples or generations over
time.

GWAS researchers: impact, networks, and gender bias
In total, we estimate that there have been 122,141 authorship
contributions made by 39,893 unique authors. GWAS meta-
analysis has traditionally involved a collaboration of many
authors contributing a data set or expertize, with 33.71 authors on
average per paper returned from the PubMed database. The
highest number of authors on one paper is 559, who collaborated
on a study of type 2 diabetes and metabolic traits31.

Table 4 shows the 10 authors with the highest score in our
newly derived GWAS H-Index (Supplementary Methods), which
goes beyond a standard H-Index to estimate the importance,
significance and impact of a scientist’s cumulative GWAS-related
research contributions (the replication material outlined in Sup-
plementary Note 1 provides a full ranking of all authors who have
been involved in more than one GWAS and have more than 10
citations). These key authors share several striking traits. Many
(Stefánsson, Thorsteinsdóttir, and Thorleisfsson) are from
deCODE Genetics; pioneers in terms of large sample size, detailed
genetic and medical information and the development of new
statistical tools. The upper realms of the table also feature key
academics at the center of prominent data sets such as Uitter-
linden, Hofman, van Duijin, and Rivadeneira, who are key
investigators of The Rotterdam Study and Generation R Study. In
a recent Nature article describing hyperprolific authors, Uitter-
linden provides a candid explanation of his authorship. In

addition to making long hours he attributes his success to the
richness of the phenotypes and diseases available in the data at his
disposal. Regarding his high number of co-authorships, he argues
that it is not problematic, but rather reflects the sheer magnitude
of the network and effort required to achieve these types of sci-
entific discoveries (Supp Mat)32. A third group of authors are
individuals who have led multiple key consortiums (e.g.,
CHARGE) focused on prominent traits such as obesity, type 2
diabetes and cardiovascular disease. Their high GWAS H-Index
comes in part from their ability to contribute the same data sets to
examinations of multiple traits and renewed rounds of study on
the same trait which incorporate larger and larger sample sizes.
Nine of the top 10 researchers are based at European institutions
(and Albert Hofman was at the Erasmus Medical Center, Neth-
erlands until 2016).

We also examined the most frequently returned Consortiums
(termed Collectives in the PubMed database). Of all unique
PubMed IDs queried, 844 refer to at least one consortium, with
an estimated total of 1654 contributions from 681 unique con-
sortia. The top five consortiums ordered by the number of
(cleaned and harmonized) returns are: Wellcome Trust Case
Control Consortium (49 returns), CHARGE (46), Wellcome
Trust Case Control Consortium 2 (36), the LifeLines Cohort
Study (30), and DIAGRAM (29).

In Table 4, only two of the 10 senior authors are female,
leading us to explore different aspects of gender imbalance. A
growing number of studies have flagged gender imbalance in
scientific publications and funding8,33,34. We estimate that men
contribute 63.03% of all authorships and represent 59.62% of all
unique authors. This allows us to naively infer that men con-
tribute more papers on average (per author) than women. These
results are best examined in the context of recent work35,36 based
on the entire JSTOR corpus, which estimates that 27.27% of
academic authorships between 1990 and 2011 are on aggregate
female. This figure increases to 29.3% when filtering for author-
ships in the field of Molecular and Cell Biology (and to 32.4% for
the specific subdiscipline of Human Genomics). Our estimate of
36.97% is higher than these figures, and even more so when
compared with the historical average of women undertaking
research in Molecular and Cell Biology (20.7% between 1665 and
1989).

We build on work showing the historical under-representation
of women in the first and last authorship positions36–40. Our

Table 3 Most frequently utilized data sets across the largest GWAS

Cohorts Count N Country of
recruitment

Ager
range

Study design Female
(%)

Rotterdam Study (RS) 398 14,926 Netherlands 55–106 Prospective cohort 57
Cooperative Health Research in the Region of
Augsburg (KORA)

255 18,079 Germany 24–75 Population-based 50

Framingham Heart Study (FHS) 207 15,447 US 5–85* Prospective cohort, three
generation

54

Atherosclerosis Risk in Communities Study (ARIC) 204 15,792 US 45–64 Prospective cohort,
Community

55

Cardiovascular Health Study (CHS) 179 5888 US 65+ Prospective cohort 58
British 1958 Birth Cohort Study (1958BC/NCDS) 156 17,634 UK 0+ Prospective birth cohort 48
UK Adult Twin Register (TwinsUK) 140 12,000 UK, Ireland 18–97 Longitudinal entry at various

times
84

European Prospective Investigation into Cancer
CANCER (EPIC)

132 521,330*** 10 EU countries 21–83** Prospective cohort 71

Nurses Health Study (NHS) 129 121,700 US 30–55 Prospective cohort 100
Study of Health in Pomerania (SHIP) 127 4308 Germany 20–79 Prospective cohort 51

The top 10 most frequently utilized cohorts across the majority of the largest third of all GWAS studies as of 29 August 2018 (with studies ranked by the number of times they are involved in a GWAS),
manually extracted and harmonized. Additional fields (country of recruitment, age range, and study design) manually curated from web searches. * denotes originally 30–62 years, ** denotes variation by
country, *** denotes full sample, including non-genotyped participants
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analysis shows that 44.04% of the authors in the first author or
junior position are female: substantially higher than the all
positions estimate. This decreases to just 29.66% for authorships
in the senior last author position: substantially lower than the all
positions estimate (albeit still higher than other estimates span-
ning 1990–2011 in the Human Genome subdiscipline36) or first
authors of commentaries in Nature (20.0% in 2016)33. This is
potentially owig to a historic gender imbalance in educational
attainment in scientific fields, with fewer women obtaining doc-
torates in the past than today. We found similar average GWAS-
Indexes for female (4.85) and male (5.34) authors and compared
the average number of papers published by females (6.15) and
males (7.17) and the average number of citations (648.44 for
females, 780.73 for males). Finally, we examined whether there
are gender differences across the most frequently studied EFO
terms. Here, we find a striking concentration of female authorship
in studies of Breast Carcinoma (51.0%), whereas male authors are
concentrated on Schizophrenia and Type 2 Diabetes with only
31.0% and 33.0% female authorships, respectively (with these
numbers almost wholly invariant as to how we split the EFO
terms in the Catalog).

Funders: US and UK dominate
To understand geographic concentration, we examined the
funding sources of research. Using the PubMed database, we find
a total of 136 different funding agencies, with funding being
spread across a total of 12,790 unique Grant IDs. Each study has
an average of 13.52 contributing grants. We measure each unique
grant contributing to one study (PubMed ID) as one acknowl-
edgment with the five most frequently acknowledged funders
being: NHLBI NIH HHS (National Heart, Lung & Blood Insti-
tute; 25.88%), NCI NIH HHS (National Cancer Institute;
10.64%), NIA NIH HHS (National Institute on Aging; 8.37%),
MRC UK (Medical Research Council; 7.21%), and NIMH NIH
HHS (National Institute of Mental Health; 5.50%). The most
commonly acknowledged single grant (P30 DK063491, 207
times) is from the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK) and is a Core Centre Grant
supporting the UCSD/UCLA NIDDK Diabetes Research Center.

Most of the funding acknowledgments are to US agencies
(85.11%) and primarily relate to programs funded by the NIH
(apart from the Public Health Service). This is followed by the UK
(14.37% of total), with a high number of acknowledgments not

just to the MRC, but also to the Wellcome Trust (3.73%), and
Cancer Research UK (1.23% of total). This contrasts with other
returned countries including: Canada (0.36%), ‘International’
(0.14%), Austria (0.01%), and Italy (0.01%).

We also summarize the broad ancestral patterns and the dis-
tribution across broad disease categories studied when tabulated
across various funding agencies in Fig. 4. The NIH Revitalization
Act of 1993 (Subtitle B, Part I)41 implemented a policy regarding
the inclusion of minorities as subjects in clinical research (where a
minority is defined as a readily identifiable subset of the US
population that is distinguishable by racial or cultural heritage)42.
The Medical Research Council (the largest UK funder) has no
similar restriction, although one fund that forms part of the UK’s
Wellcome Trust solicits proposals, that promote diversity and
inclusion, and engages people and communities who are affected
by social and economic disadvantage43. An important feature of
the figure is the comparatively lower ratio of European to non-
European ancestries in NIH-funded research in comparison with
UK-funded research, which is not legislated to diversify partici-
pants. In terms of traits, we see the expected clustering around
terms corresponding to the missions of each respective funder.
For example, the most frequently funded term from the National
Cancer Institute (NCI) is Cancer.

Future directions
Recommendation One: prioritize the inclusion of multiple
types of diversity. These findings lead us to 10 evidence-based
policy recommendations. Recommendation One is that
researchers, editors, funders, and commercial companies prior-
itize the inclusion of multiple types of diversity in data, namely:
ancestral, geographical, environmental, temporal and demo-
graphic, and recognize the impact that this lack of diversity has
on research findings. First, ancestral diversity needs to increase
beyond the replication phase to include more non-European
ancestry populations. Significantly extending previous compar-
isons22, we show that diversity levels fluctuated markedly. Fol-
lowing the full release of the UK Biobank and increased reliance
on large direct-to-consumer data, we predict that diversity in
GWAS ancestry may decrease even further, given that 94.23% of
the 488,377-genotyped UK Biobank participants are in the white
ethnic group44 and 23andMe has a sample with 77% European
ancestry45.

Table 4 The top 10 most prominent GWAS authors

Name author N-papers Citation
count

GWAS H-
index

Network
betweenness

Network
centrality

Country Institution

Kári Stefánsson 177 27568 84 0.020 0.308 Iceland deCODE genetics
Unnur þorsteinsdóttir 142 23633 77 0.006 0.241 Iceland deCODE genetics
Albert Hofman 267 25534 76 0.013 0.345 U.S. University of Harvard
André G. Uitterlinden 280 23337 76 0.018 0.367 Netherlands Erasmus MC
Cornelia M van Duijn 188 20879 71 0.008 0.294 Netherlands Erasmus MC
Gudmar Thorleifsson 119 20408 70 0.006 0.232 Iceland deCODE Genetics
Christian Gieger 166 22562 70 0.011 0.272 Germany Helmholtz Zentrum

München
Panos Deloukas 109 20323 68 0.009 0.233 U.K. Queen Mary University

of London
H-Erich Wichmann 112 20266 68 0.007 0.220 Germany Helmholtz Zentrum

München
Fernando
Rivadeneira

198 17976 65 0.009 0.282 Netherlands Erasmus MC

Automated and manual (web search) curation of details regarding authors ranked within the 10 highest GWAS H-Index (an estimate of the importance, significance, and broad impact of a scientist’s
cumulative GWAS-related research contributions). N-Papers refer to the number of times the author features as an author (at any position) within the Catalog. Information on citations comes from
PubMed Central. Betweenness and Degree centrality calculated with Network-X. All characters converted to ASCII to ensure maximum matches of the same authors across papers
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The benefits of increased ancestral diversity are multiple;
GWAS that utilize data from diverse populations will provide
more accurately targeted therapeutic treatments to more of the
world’s population, extend insights into the architecture of traits
and uncover rare variants with significant effect sizes, which
replicate across ancestries. Isolated populations–owing to bottle-
neck events, genetic drift, adaptation, and selection–are of
importance owing to higher frequencies of rare variants, which
increase the power to detect associations with clinically important
phenotypes46. Discovery is often boosted in populations with
high rates of homozygosity such as those with a tradition of
consanguineous marriage. A recent study of exomes of British
Pakistani adults with high parental relatedness, for instance,
discovered rare-variant homozygous genotypes that predicted
“knockouts” (loss of gene function) in hundreds of genes47.

Although the focus has primarily been on increasing ancestral
diversity, we also call for an expansion of both geographical and
environmental diversity. Although ~ 76.2% of the current world
population reside in Asia or Africa48, we estimate that 72% of
genetic discoveries emanate from participants recruited from only
three countries (US, UK, Iceland). By examining only
genotype–phenotype associations, GWAS have largely ignored
the fact that complex traits have a strong geographical component
involving genetic predisposition and environmental exposure.
There is little reflection on how environmental variation or

Gene–Environment (G×E) interaction impacts results or even
shapes the traits that are prioritized for research49. The US, UK,
and Iceland have distinct histories and social systems that have
fundamentally shaped exposure to certain disease factors or traits.
Those predisposed to obesity for instance, face radically different
environmental stimuli in the US than in other nations. Or, those
with a higher genetic predisposition to skin cancer would have
their risk exacerbated if they resided in areas with higher sunlight
exposure. GWAS regularly combine data sets from vastly
different countries and historical periods with little recognition
of the consequences, implicitly assuming the impact of genetic
loci on traits is universal across time and place. A recent study
shows that for complex traits, a large proportion of genetic effects
are hidden or watered-down when disparate data across different
countries and historical periods are combined50.

We also advocate an increased temporal diversity of individuals
across different birth cohorts, historical periods and life-course
stages. We estimate that the most frequently used data sets are
disproportionately populated by older individuals, yet the
prevalence and measurement of disease varies considerably with
age. There is only a moderate positive correlation between midlife
and old-age measures for body mass index, glucose, and systolic
blood pressure, for instance, which all increase with age51.
Samples of older individuals also suffer from mortality selection
and exclude a non-random subset of the population52. This issue
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Fig. 4 Distribution of Funder Acknowledgments by Ancestry and Trait Categories. Heatmap showing the distribution of Grant Contributions of the 10 most
frequently observed agencies tabulated against our synthetic broader ancestral category term and Parent Term fields (higher level trait or disease
categories). All agencies are based in the US, other than the Medical Research Council (MRC) and Wellcome Trust. In the US, other than Public Health
Service, the rest are part of the National Institute of Health (NIH). Replication material provides an alternative mapping to Broad EFO category where
comma separated entries are not split but dropped. Source: NHGRI-EBI GWAS Catalog and the PubMed database
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is compounded by healthy volunteer selection and participants
with a high socioeconomic status, both of which occur
disproportionately in prominent large data sets such as the UK
Biobank28. Finally, we call for more discussion related to the
gender diversity of GWAS participants, particularly regarding
specific diseases as there is growing evidence of sexual dimorph-
ism in traits linked to obesity29, reproduction30,53, and others.

Recommendation Two: monitoring with funding consequences.
Beyond policy formation regarding diversity or gaps in research to
intensive monitoring with consequences for funding. Our scien-
tometric approach that links funders, researchers, and grant IDs to
ancestral and geographical coverage provides a cost-effective first
step toward transparent monitoring in this direction with the
potential to expand and locate knowledge gaps in research into
certain clinical traits.

Recommendation Three: careful interpretation of genetic dif-
ferences. European ancestry-based polygenic scores derived from
GWAS explain only half as much of the variability in the phe-
notype for non-Hispanic Black samples as compared with non-
Hispanic Whites20,54 and many cancer associations fail to repli-
cate in other populations55. There is a danger that the inability to
apply polygenic scores from European ancestry studies to other
groups is misinterpreted to reflect biological differences between
different ethnic or racial groups. This misnomer was carefully
discussed, for instance, in a recent GWAS of educational attain-
ment56. Genetic variation needs to be distinguished from the
social, cultural, and political meanings ascribed to different
human groups57,58. Race is not a biological category, as genetic
variation is traced to geographical locations and does not map
into our perpetually evolving and socially defined racial or ethnic
groups. Dictionary-based exercises herein have revealed categor-
izations that often combined geographical, migration, and
ancestral background. Populations are the product of repeated
mixtures over tens of thousands of years20. Although we use the
dominant broad ancestral categories common in the field, by
noting these issues we recognize that a more sophisticated cate-
gorization scheme is required.

Recommendation Four: local participant and researcher
involvement. Previous research has noted lack of local participant
and researcher involvement when collecting genetic material in
underrepresented communities57,59. There are encouraging
endeavors to increase genotyping outside of North America and
Europe such as the African Genome Variation Project60. Many
projects that collect non-European samples have funding from
large research bodies such as the NIH or Wellcome Trust, granted
primarily to researchers working in those countries. The danger,
however, is that helicopter science—collecting and then exporting
genetic data—may compound existing inequalities, with partici-
pants and researchers from those countries not being the main
benefactors. African researchers have recently noted that many
have accepted restrictive terms offered by foreign partners owing
to a lack of resources to handle large genomic data sets61. We
recommend the inclusion of meaningful local intellectual con-
tributions and, if required (in addition to data collection), the
supply of training, computational resources, and infrastructure
development to enable local scientists to build the capacity to
work independently.

Recommendation Five: action to reduce inequalities in
authorship and investigators. We estimate that women author
on average fewer GWAS papers, have fewer citations than men,
are more frequently junior first authors and less frequently senior

authors. The latter observation is remarkably similar to NIH
figures, where women constitute only 30% of principal investi-
gators on grants62. This suggests a relationship between acting as
a senior author and functioning as a PI on grants and may
contribute to women’s lower peer review scores on funding
panels8. The NIH has established initiatives such as the Women
in Biomedical Careers Working Group and the 2017 Next Gen-
eration Research Initiative. Policies such as these which target
early career researchers are more likely to reach this goal since
these groups are more often more ethnically diverse and popu-
lated by a higher percent of women9. Female researchers them-
selves need to be cognizant of these disparities, as should those
who conduct research appraisals and funding reviews.

We were unable to control for maternity or care leaves, which
may have a role in productivity and serving as a PI, particularly in
some European countries where women may take up to 1 year
leave63. This echoes recent findings that women had a lower
longevity in funding, witnessed by a lower likelihood to renew
projects, lower submission rates, and lower funding per year8.
Women face distinct work-life reconciliation issues and may
require additional mentoring and support to encourage them to
submit and renew applications or serve as a PI. Increased gender
diversity in science may also lead to fundamentally new
discoveries. That can have real clinical consequences: consider
for instance that symptoms of cardiac arrest in women were
ignored and misdiagnosed for decades. This has been attributed
to the notion that coronary disease was considered a male only
health concern, largely studied in male subjects by male scientists.

Recommendation Six: reform incentive structures that inter-
twine the role of authorship, data ownership, and dating
sharing. GWAS demand collaboration through the formation of
large consortiums, resulting in multiple authorships. As illu-
strated (Fig. 1. and Fig. 2), large samples are required owing to the
relatively small effect sizes, with the number of detected asso-
ciations typically increasing with sample size. Central authors
within the GWAS network are the holders of large longitudinal
data sets or those who lead large consortiums, with many top
GWAS scientists classified as hyperprolific32. We reinforce the
necessity of conventions related to author transparency in con-
tributions, such as via the Vancouver Regulations which describe
the contributions of individual authors32. With hundreds of
authors, full transparency and reporting remains a challenge. A
related suggestion could be to distinguish between authors and
contributors who provide data. Another could be to provide data
producers with a 6–12-month grace period before making data
publicly available to similarly interested researchers. This, how-
ever, has the potential to generate its own incentive-based
anomalies and pressures.

These solutions, however, do not align with current incentive
and reward structures. When the PI and participating researchers
are evaluated, it occurs at the individual level. In the UK’s
national Research Excellence Framework (which ranks depart-
ments and institutions according to research excellence), for
instance, authorship is a key return. To remove individuals from
GWAS authorship demands a broader discussion of incentive
systems applicable to data generators. Some observers argue that
the authorships of scientists who obtained the funding, designed
the study, supervised staff and students, and often supervise data
collection and analyses should be removed. Yet, without such
labor-intensive endeavors, GWAS would not exist. We also call
for the careful application of research metrics such as the H-
Index, particularly when comparing scientists and academics
across scientific disciplines. As a leading GWAS author and
holder of one of the most used GWAS data sets carefully warns:
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“…for comparing these authorships across different scientific
disciplines (biomedical and beyond) I think we should revisit this
issue with a critical appraisal to create a better understanding
among fellow scientists”. (p. 104 Supp Mat)32.

Recommendation Seven: create digital object identifiers
(DOIs) for data sets and enforce ORCID iDs for authors. An
implicit part of this, related to Recommendation Six, is the
invitation to publish Data Resource style articles, which generate
DOIs for each data source to reward data collection. Surprisingly,
our manual curation of data sets revealed a striking lack of
transparency and inconsistency in describing the basic data
source or additional sample restrictions utilized in many papers.
Even in the most eminent journals, descriptions of data were
cryptic and sources unclear or untraceable, raising issues of
transparency and reproducibility of research. The opening of
publicly funded databases has enabled this review to take place,
and newly emerging Application Programming Interfaces repre-
sent just one small part of the sweeping advancements. However,
the implementation of DOIs for common data sets, and the
encouraged use of ORCID iDs for authors—in the same way that
PubMed IDs identify papers and EFO terms represent experi-
mental variables—would enable better scientometrics and a more
accurate reflection of genomic science.

Recommendation Eight: coordinated governance from multi-
ple stakeholders. There have been repeated calls to remove
barriers and increase trans-border cooperation, such as
UNESCO’s reiteration that it is a human right to benefit from
shared scientific advancements64. There are striking differences
in national regulations for data sharing and a patchwork of
Institutional Review Board (IRB) positions. International
models of genomic data sharing do exist, such as those pio-
neered by the International Cancer Genome Consortium. A
recent evaluation of genomics data sharing across multiple
countries reveals complexity, contradiction, and confusion64.
Data transfer to third countries outside of China, for instance,
is prohibitive owing to overlapping and complex data regula-
tions. The US has a fragmented data protection regime with
oversight across IRBs and data access committees65.
Europe’s recent General Data Protection Regulation (GDPR)
brought new restrictions related to the transfer of data across
borders, complicated by additional unique country–and
institutional–specific interpretations66. An international geno-
mics group could create a more transparent code of conduct
and shape the interpretation of GDPR’s rules. Closely related to
this is the further development of the regulatory protection and
data sharing across borders in relation to cloud based storage
providers. Those who store the data are dependent on cloud
providers who often shift data across geographical locations
with limited notification or oversight67.

Recommendation Nine: enforce the sharing of GWAS sum-
mary results. Just as data can serve as a valuable commodity, so
can summary results. Although such sharing is a requirement of
many major journals, it remains a policy gray area and they are
regularly not released, even after directly contacting authors.
Others share only when co-authorship is granted. An effective
deterrent could be the threat of retraction of the article unless
summary results are shared or prohibiting applications or
granting future funding until past discoveries are made publicly
available.

Recommendation Ten: utilize influence for the good of more
people. Our last recommendation highlights the fact that data
sharing, ethics, and transparency is frequently discussed with the
implicit assumption that funders, ethics boards, and universities
are the only bodies with the power to govern this ecosystem. But
what if researchers do not need funding or operate outside of
universities and their incentive systems? The growth of direct-to-
consumer companies such as 23andMe and biomedical compa-
nies, many of whom hold the largest genomic data sets, often fall
outside of regulations of funders or universities. By virtue of their
position, data sharing, and release of results often follow different
rules than publicly funded data sets. Some impose the restricted
release of GWAS summary statistics (i.e., the information that is
used by other researchers to create polygenic scores and addi-
tional analyses). Considering the recent sales of blocks of direct-
to-consumer data to pharmaceutical companies68, scientific col-
laboration also has the potential to be restricted. Although
commercial genomics companies generally operate with different
demands and incentive structures, most still require external
validation of their results published in top scientific journals,
placing editors, and journals in a key position of power. We
conclude thus by calling upon all parties in the genomics eco-
system to utilize their influence for the good of more people as
part of the ongoing genomic revolution.

Conclusions. Our systematic scientometric review of genomic
discovery quantifies multiple known and unknown assumptions
about this domain. We observe considerable fluctuation in the
ancestral diversity of participants over time. By ranking the most
frequently used data sets, we also went beyond ancestral diversity
to show other types of selectivity. We mapped the geographical
recruitment of GWAS participants and core funders by ancestry
and disease coverage, explored gender disparities in authorship
and provided evidence of a tightly knit social network of
researchers and consortiums. A central finding was that our
results once again emphasized the potential for a cycle of dis-
advantage for underrepresented communities and despite con-
tinued efforts, infusing diversity into genomics remains
challenging.

Code availability. A full standalone GitHub repository (github.
com/crahal/GWASReview), which predominantly runs off a
Jupyter Notebook and supporting functions accompanies this
article as Replication Material. This repository also contains the
latest versions of all outputs discussed in the text, in terms of full
lists of author rankings, funder acknowledgments, and so forth.
The generalized code will enable clones of the repository to
provide dynamic advancements over time.
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