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Abstract
Identification of biomarkers for molecular classification of cancer and for differentiation between cancerous and normal 
epithelium remains a vital issue in the field of head and neck cancer. Here we aimed to compare the ability of proteome and 
lipidome components to discriminate oral cancer from normal mucosa. Tissue specimens including squamous cell cancer 
and normal epithelium were analyzed by MALDI mass spectrometry imaging. Two molecular domains of tissue compo-
nents were imaged in serial sections—peptides (resulting from trypsin-processed proteins) and lipids (primarily zwitterionic 
phospholipids), then regions of interest corresponding to cancer and normal epithelium were compared. Heterogeneity of 
cancer regions was higher than the heterogeneity of normal epithelium, and the distribution of peptide components was 
more heterogeneous than the distribution of lipid components. Moreover, there were more peptide components than lipid 
components that showed significantly different abundance between cancer and normal epithelium (median of the Cohen’s 
effect was 0.49 and 0.31 in case of peptide and lipid components, respectively). Multicomponent cancer classifier was tested 
(vs. normal epithelium) using tissue specimens from three patients and then validated with a tissue specimen from the fourth 
patient. Peptide-based signature and lipid-based signature allowed cancer classification with a weighted accuracy of 0.85 and 
0.69, respectively. Nevertheless, both classifiers had very high precision (0.98 and 0.94, respectively). We concluded that 
though molecular differences between cancerous and normal mucosa were higher in the proteome domain than in the analyzed 
lipidome subdomain, imaging of lipidome components also enabled discrimination of oral cancer and normal epithelium. 
Therefore, both cancer proteome and lipidome are promising sources of biomarkers of oral malignancies.

Keywords  Head and neck cancer · Mass spectrometry · Molecular classification · Molecular imaging · Lipidomics · 
Proteomics

Abbreviations
MALDI–MSI	� Matrix-assisted laser desorption ioniza-

tion mass spectrometry imaging
HNSCC	� Head and neck squamous cell carcinomas

Introduction

Cancer located in the head and neck region is the sixth most 
common cancer worldwide, accounting for above 4% of can-
cer cases overall (Jemal et al. 2011). In excess of 95%, these 
are head and neck squamous cell carcinomas (HNSCC), a 
term which refers to cancers derived from stratified squa-
mous epithelium lining mucosa of the upper aerodigestive 
tract, including the mouth, pharynx, sino-nasal tract and lar-
ynx. In most cases, the etiology of HNSCC is clearly under-
stood and involves exposure to tobacco and alcohol, which 
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are key factors, with an increasing proportion of oropharynx 
cancers associated with human papillomavirus. Globally, 
HNSCC accounts for about 600,000 new cases and 300,000 
deaths per annum. However, HNSCC remains a relatively 
under-researched cancer with continued poor prognosis and 
significant treatment challenges. Despite recent improve-
ments in treatment, HNSCC prognosis remains unfavorable, 
with less than 50% of patients remaining alive after 5 years. 
HNSCC is a heterogeneous disease and cases with similar 
pathologic features can differ in clinical outcome. The analy-
sis of data available in The Cancer Genome Atlas revealed 
the existence of genetically distinct subgroups of HNSCC 
that could be further separated based on transcriptional pro-
filing (Leemans et al. 2018). The generally accepted molecu-
lar biomarkers to guide management of HNSCC patient are 
still missing, hence therapeutic decisions are solely based on 
tumor localization and traditional staging. Therefore, there is 
a constant and urgent need to identify and validate biomark-
ers for molecular classification and stratification of HNSCC 
(Corvò 2007; Bose et al. 2013). HNSCC is managed with 
surgery and/or chemoradiotherapy. Since surgery is the pri-
mary treatment in most HNSCC cases, uncompleted resec-
tion of primary tumor could be a reason for treatment failure 
due to local recurrence. The histopathological examination 
is used to determine the adequacy of surgical resection of 
the tumor. However, this analysis could miss out sub-micro-
scopic and/or pre-cancerous spots. Thus, determination of 
molecular factors discriminating between cancerous and 
normal mucosa for proper delineation of tumor area remains 
another critical issue in the field of molecular diagnostics of 
HNSCC (de Carvalho et al. 2012).

Mass spectrometry imaging (MSI) is a powerful approach 
allowing for a unique combination of molecular and mor-
phological information. In this technique series of pixels 
across the surface of tissues are scanned with the use of 
a mass spectrometer, which generates multiplex space-cor-
related mass spectra. Mass profiles of different molecular 
species (proteins, lipids, metabolites, etc.) revealed by MSI 
can be spatially resolved and annotated with morphological 
and histological structures. This feature makes MSI not only 
complementary but also superior to the classical pathology 
(rev. in Caldwell and Caprioli 2005; Cornett et al. 2007; 
McDonnell and Heeren 2007; Seeley and Caprioli 2011). 
MSI based on MALDI ionization (MALDI–MSI) remains 
the most popular technique in biomedical research, which 
proved its role as a powerful tool in clinical proteomics, with 
obvious applicability in biomarker research and molecular 
tissue classification. This approach was used for molecular 
characterization of different types of cancer, including lung, 
breast, prostate, gastric, larynx cancers and brain tumors 
(rev. in: Aichler and Walch 2015; Schwamborn and Caprioli 
2010; Schöne et al. 2013). The particular advantage of MSI 
in cancer research is an allocation of molecular profiles to 

specific types of cells and tissues. Moreover, MSI can be 
used in studies aimed at the interface between tumor and 
normal tissue (e.g., tumor niche and molecular margins), 
the contribution of heterotypic material in solid tumors and 
intra-tumor heterogeneity (Caldwell et al. 2006; Oppenhe-
imer et al. 2010; Kang et al. 2010; Jones et al. 2013; Alex-
androv et al. 2013; Balluff et al. 2015).

MALDI–MSI was recently used to characterize proteome 
profile of oral cancers. This approach allowed to detect dif-
ferences between normal mucosa and squamous cell cancer, 
and to reveal different tumor sub-regions putatively corre-
sponding to the cancerous epithelium and cancer-modified 
stroma (Widlak et al. 2016). Lipidome is another molecular 
component of cells involved in proliferation and differen-
tiation, immunity and inflammation. Hence, metabolism 
of lipids and their specific cellular distribution is related to 
growth and invasion of cancer (Santos and Schulze 2012; 
Beloribi-Djefaflia et al. 2016). MALDI–MSI showed that 
lipid profiles could discriminate cancer and stroma cells 
in oral tumors (Uchiyama et al. 2014). Here we matched 
molecular pictures derived from imaging of two domains 
of molecular components of HNSCC — proteins, and 
lipids, aimed at direct comparison of their ability to dis-
criminate cancerous and normal oral mucosa and to estimate 
their potential usefulness as a source of novel hypothetical 
biomarkers.

Materials and methods

Clinical material

Tissue material was collected from four patients (three 
males and one female; 36–59 years) who underwent surgery 
due to head and neck squamous cell carcinoma located in 
tongue: Case_1 — cancer stage T4N2M0, Case_2 — stage 
T4N2bM0, Case_3 — stage T1N0M0, Case_4 — stage 
T2N0M0. In all cases, surgery was the primary treatment 
(no neo-adjuvant chemo- or radiotherapy was involved). The 
fresh post-operative material was evaluated by an experi-
enced pathologist, then tissue specimens were immediately 
frozen and stored at − 80 °C. Each tissue sample was cut into 
10 µm serial sections using a cryostat, then H&E stained and 
examined by a pathologist either without or post-MSI analy-
sis. The study was approved by the appropriate Ethical Com-
mittee (Maria Skłodowska-Curie Institute, approval number 
KB/430-17/13 from 12/03/2013), and performed in accord-
ance with European, national and institutional guidelines.

Preparation of samples for MALDI–MSI

Cryo-cut 10 µm tissue sections were placed onto ITO-coated 
conductive slides and dried under vacuum for 40 min. For 
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peptide imaging slides were washed twice in 70% ethanol 
and once in 100% ethanol (each wash for 1 min), followed by 
1 h drying, then coated with a solution of trypsin (Promega, 
20 µg in 200 µL of 50 mM NH4HCO3) using an automatic 
spraying device (ImagePrep; Bruker Daltonik, Bremen) and 
incubated in a humid chamber for 18 h at 37 °C to perform 
tryptic digestion of proteins. No additional sample pre-
treatment was performed for lipid imaging. To obtain opti-
cal images, the slides were scanned using a flatbed scanner 
before matrix deposition. Both for peptide and lipid imaging 
a solution of 2,5-dihydroxybenzoic acid (DHB; 30 mg/mL 
in 50% methanol and 0.2% TFA) was deposited onto the 
surface of tissues with the use of ImagePrep device (using 
the Bruker’s standard matrix coating program with doubled 
phase 5).

MALDI–MSI analysis

Tissue sections were imaged using a MALDI-TOF/TOF 
ultrafleXtreme mass spectrometer (Bruker Daltonik, 
Bremen) equipped with a smartbeam II™ laser operating at 
1 kHz repetition rate. Ions were accelerated at 25 kV with 
PIE time of 100 ns. Spectra were acquired in positive reflec-
tron mode in the 800–4000 mass range for peptide imaging 
or in the 300–1200 mass range for lipid imaging; external 
calibration with Bruker’s Peptide Calibration Standard or 
cesium triiodide clusters was performed for peptide and lipid 
imaging, respectively. A raster width of 100 µm was applied, 
400 spectra were collected from each ablation point. Com-
pass 1.4 for FLEX series (Bruker Daltonik, Bremen) was 
employed for spectra acquisition, processing and creation of 
primary images. After analysis slides were rinsed twice in 
100% ethanol to remove the matrix, stained with hematoxy-
lin and eosin, and scanned for co-registration with MALDI 
images using FlexImaging 4.1 software (Bruker Daltonik, 
Bremen). Original files with spectra were converted into 
.txt files using FlexAnalysis 1.4 software (Bruker Daltonik, 
Bremen) for further analyses.

Spectra processing

The basic preprocessing steps included: spectrum resam-
pling, adaptive baseline correction (Bednarczyk et al. 2017), 
identification of the outlying spectra (as those with too big 
or too small TIC) with the use of Bruffaerts’ criterion for 
extremely skewed distributions (Bruffaerts et al. 2014), spec-
tra alignment to the average spectrum based on Fast Fourier 
Transformation (Wong et al. 2005), and TIC normalization. 
Gaussian mixture model (GMM) approach (Polanski et al. 
2015) was used for the average spectrum modeling and peak 
detection. GMM components of high variance and/or low 
amplitude were filtered out reducing the data dimensionality. 
The GMM components modeling the right-skewed spectrum 

peaks were identified and merged with the left-neighboring 
major component. The final set of GMM components was 
termed molecular components hereafter, which represents 
peptide and lipid species detected by MS. The abundance of 
the particular molecular component was estimated by convo-
lution of GMM components and every spectrum.

Comparative analysis

The coefficient of variation was used as the measure of 
molecular components’ dispersion. The Lilliefors test was 
performed to verify the hypotheses on the normality of 
molecular component abundance distribution across the 
tissue, while F test was applied to check on variance homo-
geneity. The significance of differences in abundance of each 
molecular component between cancer ROIs and normal epi-
thelium ROIs was calculated by Mann Whitney U test with 
Benjamini–Hochberg correction for multiple testing. The 
Cohen’s effect was estimated based on trimmed mean and 
pooled Winsorized standard deviation (Wilcox and Tian 
2011). Pairwise similarity index was calculated based on 
the mean spectra of cancer and epithelium ROIs for a dif-
ferent number of top peptide and lipid components (Frank 
et al. 2008).

Molecular image segmentation

A spectra clustering procedure, named divisive iK-means 
algorithm (Mrukwa et al. 2016) was used to determine sub-
regions in tissue preparations. The algorithm was used for 
each tissue specimen separately and for all samples com-
bined. The splitting was stopped if the cluster size was less 
than the a priori assumed threshold value (1% of the original 
tissue size) and/or the intra-cluster distance distribution was 
unimodal.

Spectra classification

The logistic regression technique was applied to the prob-
lem of spectra classification between cancer and (normal) 
epithelium ROIs. The classifier was trained on the sample 
set composed of Case_1, Case_2, and Case_3; using the 
multiple random validation scenario (50 iterations) with 
the split: 50% for training and 50% for testing set. Due to 
a significant imbalance of ROIs size (overrepresentation of 
cancer regions), the random downsampling procedure was 
applied to correct after it. Bayesian Information Criterion 
was used for model selection. The molecular signatures 
found in each of the random validation iterations were 
used to rank the features. The feature scoring performed 
for every iteration was calculated based on the model accu-
racy obtained for the testing set, the presence of the feature 
in the particular signature, and, finally, the importance of 
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the feature in the classifier signature (the first feature cho-
sen during the classifier training was treated as the most 
important, while the last one — as the least important). 
The obtained scoring allowed to construct the rank of 
features that helped in the selection of the final classifier 
signature. The knee rule supported by the analysis of the 
classifier stability were used to select the features. The 
obtained classifier was then validated on an independent 
tissue sample (Case_4). Pairwise Pearson’s correlation 
coefficients between the features from the final classifier 
signatures were calculated and only those statistically sig-
nificant and of high effect size were reported.

LC–MALDI MS/MS analysis and identification 
of molecular components

Each tissue sample analyzed by MALDI MSI was used 
for protein identification using shotgun LC–MS/MS 
approach. Protein lysates were prepared according to Pro-
tocol 1 and subjected to tryptic digestion according to a 
modified version of a combination of FASP with Stage-
Tip fractionation (Wiśniewski et al. 2009) as described 
in Protocol 2, both given in the Supplementary Material. 
Tryptic peptides were then separated using an EASY-nLC 
nano-liquid chromatograph (Proxeon) coupled with PRO-
TEINEER fc II fraction collector (Bruker) and analyzed 
using ultrafleXtreme MALDI–TOF/TOF mass spectrom-
eter. A detailed description of instrumental settings of 
the LC–MALDI–MS/MS system is given in the Supple-
mentary Material (Protocol 3). Registered MS/MS spec-
tra were exported to ProteinScape 3.1 software (Bruker 
Daltonik) and analyzed using Mascot Server 2.5.1 (Matrix 
science, London, UK); for details see Protocol 4 (Supple-
mentary Material).

The hypothetical identity of molecular components was 
established via assignment of m/z values of peptide and 
lipid species detected by MALDI MSI to masses of species 
with a known identity. M/z values of peptide components 
were attributed to measured masses of peptides identified 
in LC–MALDI–MS/MS experiment described above. The 
assignment was performed allowing ± 0.05% mass toler-
ance. M/z values of lipid components were annotated using 
SimLipid (PREMIER Biosoft) software. Search parameters 
were set according to MALDI-MSI experiment conditions, 
specifying positive ion mode with protonated ion [M+H]+ 
and two cation adducts: [M+Na]+ and [M+K]+. Targeted 
lipids were determined for three main categories: glycerolip-
ids, glycerophospholipids, and sphingolipids. The acceptable 
error tolerance for m/z values was set to 0.5 Da. In the case 
of more than one matched lipid per MSI molecular compo-
nent, the most probable hit (with the lowest mass delta) was 
attributed.

Results

Four tongue tissue specimens containing squamous cell 
cancer and normal epithelium (i.e., oral mucosa) were ana-
lyzed by MALDI–MSI. Serial sections of each specimen 
were processed to allow imaging of molecular components 
corresponding to peptides (in principle resulting from 
proteins digested with trypsin; spectra registered in the 
800–4000 mass range) and lipids (mostly “neutral” zwit-
terionic phospholipids; spectra registered in the 300–1200 
mass range). There were 2435 spectral components identi-
fied in the peptide domain and 2108 spectral components 
identified in the lipid domain, which represented differ-
ent molecular species and their isotope envelops. There 
were 5000–12,000 space-oriented spectra registered for 
each tissue specimen. Three tissue specimens (Case_1, 
Case_2, and Case_3) were used as a training set to estab-
lish molecular differences between cancerous and normal 
epithelium, while the fourth specimen (Case_4) was used 
only for validation of the obtained cancer classifier.

Tissue regions corresponding to cancer and (normal) 
epithelium were delineated by an expert (i.e., an expe-
rienced pathologist) after molecular image registra-
tion (Fig. 1a), and spectra from these two types of ROIs 
(regions of interest) were exported for further analyses; 
average spectra registered for cancer ROIs and epithelium 
ROIs are presented in Fig. 1b. In general, average “lipid” 
spectra from cancer and epithelium ROIs were more simi-
lar than the corresponding “peptide” spectra. This obser-
vation was illustrated in Fig. 1c, where a similarity index 
between pairwise analyzed cancer versus epithelium ROIs 
was estimated in the peptide and lipid domains.

The variability/uniformity of intensities (abundances) 
of peptide and lipid components through all spectra (i.e., 
measurement points) from the training set was first com-
pared. Histograms in Fig. 2a represent the distribution of 
coefficient of variation calculated for each component; 
more variable components were characterized by a higher 
coefficient of variation. In general, variation in abun-
dance of peptides was higher than variation in abundance 
of lipids. This is noteworthy, however, that variation in 
abundance of both peptides and lipids was higher within 
cancer than within normal epithelium. To further com-
pare uniformity of peptide and lipid components unsuper-
vised segmentation of molecular images was performed 
(Fig. 2b), and the size of the resulting clusters was com-
pared. In general, there were similar numbers of clusters 
and average sizes of clusters found in both peptide and 
lipid domains (Table 1). However, the size of the largest 
clusters was usually 2–4 higher in the domain of lipids, 
which also reflected higher overall homogeneity of lipid 
images.



5Journal of Molecular Histology (2019) 50:1–10	

1 3

Considering a higher variation of peptide components 
than lipid components we hypothesized that discrimination 

between different tissue regions could be easier in the pep-
tide domain. To verify this hypothesis we searched for 

Fig. 1   Analysis of oral cancers by MALDI–MSI. a Tissue specimens 
stained with H&E to visualize basic histology; cancer and epithelium 
ROIs were delineated with red and blue lines, respectively (shown 
are samples imaged for peptides). b Average peptide and lipid spectra 

computed for cancer and epithelium ROIs from Cases 1–3. c Simi-
larity index between cancer and epithelium ROIs from Cases 1–3. 
(Color figure online)
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components whose abundance was significantly different 
between cancer ROIs and epithelium ROIs. The analysis was 
performed either for each tissue specimen separately or for 
combined ROIs representing all specimens from the training 
set. Differences between peptide and lipid domains are illus-
trated below using combined cancer ROIs and epithelium 
ROIs since pictures obtained for all specimens were similar 
(see details in the Supplementary Tables S1 and S2). There 
were 98% of peptide components and 85% of lipid com-
ponents that showed statistically significant differences in 
abundance between normal epithelium and cancer (corrected 
p-value < 0.05). However, classical “p-value statistics” could 
overestimate the significance of differences between groups 
with extremely numerous samples (which is typical for MSI, 
where very large numbers of spectra are registered and com-
pared). Hence, to estimate the significance of differences 
between compared ROIs the effect size was calculated for 
each component, which is independent of the number of 
samples; the Cohen’s d value above 0.5, 0.8 and 1.2 corre-
sponded to medium, large and very large effects, respectively 
(Cohen 1988). We found that medium, large and very large 
effect size was observed for 31%, 13%, and 5.7% of peptide 
components, respectively, and 17%, 9.8%, and 4.3% of lipid 
components, respectively; the median d-value was 0.49 and 
0.31 in the case of peptides and lipids, respectively (Fig. 2c). 
Hence, there were generally more peptide components than 
lipid components whose abundances were different between 
cancer and normal epithelium.

To further compare the ability of peptide and lipid com-
ponents to discriminate normal and cancerous epithelium 
cancer classifiers were built and validated using molecular 
signatures obtained for both domains. Cancer/epithelium 
classifiers were build using the training set composed 
of three tissue samples (Case_1, Case_2, and Case_3). 
The training step allowed to establish the rank of features 
(i.e., molecular components) that were the most important 
for classification, and the top features were selected to 
build a final classifier that was validated using the inde-
pendent fourth sample (Case_4). Rank of discriminatory 
components in the tested classifiers is shown in Fig. 3a 
(see details in the Supplementary Tables S1 and S2). The 
number of top components selected for the final classifier 
was based on the knee rule applied to the feature scoring 
plotted in decreasing order, combined with detection of the 

Fig. 2   Variability of abundances of molecular components detected 
by MALDI-MSI. a Uniformity of components estimated by their 
coefficient of variation in whole tissue specimens or cancer and epi-
thelium ROIs. b Results of unsupervised image segmentation; each 
tissue specimen was processed individually. c The significance of dif-
ferences between cancer and epithelium ROIs. Combined cancer ROI 
and epithelium ROI of three samples from the training set were ana-
lyzed

Table 1   Results of unsupervised 
image segmentation

Size of an average and the largest cluster is presented as a percentage of the whole specimen area

Molecular domain Case_1 Case_2 Case_3

Peptides Lipids Peptides Lipids Peptides Lipids

Number of clusters 1251 1535 962 1479 1719 1633
Average size of a cluster (%) 0.08 0.07 0.10 0.07 0.06 0.06
Size of the largest cluster (%) 6.88 10.45 4.68 19.93 3.10 10.83
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plateau (saturation) point for weighted accuracy, classifier 
sensitivity, and specificity curves (Fig. 3b). There were 14 
top peptide features and 18 top lipid features selected for 
validated cancer/epithelium classifier. pairwise correlation 
of features from the final classifier signatures was much 
stronger among peptides than among lipids (Fig. 3c). Both 
classifiers performed well and allowed classification of 

registered spectra from cancer ROI and epithelium ROI 
with very high precision and specificity. This is note-
worthy, however, that all indices of cancer/epithelium 
classifier built on peptide signature were higher than the 
corresponding indices of a classifier built on lipid signa-
ture (Table 2). Moreover, the probability of being classi-
fied as “cancer” was estimated for each image pixel (i.e., 

Fig. 3   Cancer classifier based 
on components detected by 
MALDI–MSI. a Rank of top 
50 components with decreasing 
weight in the tested classifiers. 
b Performance of classifiers 
(sensitivity, specificity, and 
weighted accuracy) built with 
panels of features with an 
increased number of compo-
nents. c Pairwise correlation 
plot for 14 peptide and 18 lipid 
components selected for the 
final classifiers (underlined 
are top components with the 
counterclockwise decreasing 
weight of a component); con-
nected are components of at 
least high effect size correlation 
(width of the line represents the 
strength of the correlation). d 
Results of classification of basic 
segments (registered spectra) in 
the validation sample (Case_4); 
the heat maps illustrate the 
probability of being classified as 
< cancer> (grey and black lines 
delineate expert-determined 
normal epithelium and cancer, 
respectively). (Color figure 
online)
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registered spectrum) from the validation sample Case_4 
using the same classifiers. In general, good concordance 
between the expert knowledge and the results of molecular 
classification was obtained for both classifiers (Fig. 3d).

The hypothetical identity of MSI components could be 
established by attributing masses (m/z values) of imaged 
molecular components to masses of species with a known 
identity. To look at factors discriminating normal and can-
cerous epithelium, molecular components with signifi-
cantly different abundances between cancer and epithelium 
(d > 1.2) and important for classification of cancer (the top 
50) were selected; there were 179 peptide and 124 lipid com-
ponents that fulfilled either criterion. M/z values of peptide 
components were attributed to measured masses of peptides 
identified by the LC–MS/MS in lysates from the same tissue 
specimens (allowing ± 0.05% mass tolerance limit). Hypo-
thetical identity could be attributed to 147 molecular compo-
nents detected by MSI (Supplementary Table S3). However, 
this type of annotation was not unique and more than one 
identified peptide could be attributed to the majority of MSI 
components. Nevertheless, proteins whose tryptic fragments 
were the most frequently attributed to discriminatory MSI 
components included Neuroblast Differentiation-Associated 
Protein (AHNAK), Myosin-9 (MYH9), Enolase 1 (ENO1), 
and Alpha-2-macroglobulin (A2M). This is noteworthy 
that all these proteins have known cancer-related attributes. 
Three former ones are highly expressed in several cancer 
types and may have prognostic value [http://www.prote​inatl​
as.org]. ANHAK is involved in migration and invasion of 
cancer cells (Sudo et al. 2014), MYH9 could be a tumor 
suppressor via regulation of p53 (Schramek et al. 2014), 
while ENO1 is involved in Warburg effect and its target-
ing sensitizes cancer cells (Capello et al. 2016). Moreo-
ver, A2M putatively synthesized by macrophages present 
in cancer microenvironment could activate cancer cells 
(Misra and Pizzo 2015). The hypothetical identity of dis-
criminatory lipid components was attributed by annota-
tion of MSI components at the SimLipid database. There 
were 113 such MSI components with at least one specific 
compound associated; the most probable hit was attributed 

to each component based on mass tolerance and expected 
abundance in a tissue (Supplementary Table S4). There were 
56 phosphatidylcholines, 34 sphingolipids, and 16 acylglyc-
erols among compounds hypothetically attributed to lipid 
components discriminating cancerous and normal epithe-
lium. This is noteworthy that among 18 lipid components 
comprising cancer classifier there were six species hypo-
thetically attributed to sphingolipids, which could indicate 
functional importance of this lipid class for cancer-related 
processes. However, because of the relatively low mass res-
olution of MALDI–ToF–MSI, hypothetical annotation of 
components of MSI profiles based on their masses has only 
limited applicability. Hence, actual identification of peptide 
and lipid components discriminating normal and cancerous 
epithelium could be obtained only after on-tissue MS/MS 
analysis, which was not within the scope of the current work.

Discussion

We revealed here that a large number of cellular proteins rep-
resented by their tryptic peptides imaged by MALDI–MSI 
showed significantly different abundances between normal 
and cancerous mucosa. Different proteomics approaches 
already documented numerous proteins characteristic for 
HNSCC (Chen et al. 2015; Malik et al. 2016). Therefore, 
high ability of proteome-based signature to discriminate 
cancer and normal epithelium could be expected. This is 
noteworthy, however, that heterogeneity of the proteome 
profile was much higher within cancerous tissue than within 
normal mucosa. This apparently indicated intra-tumor het-
erogeneity and the presence of different cell populations, 
either actual cancer cells, and cancer-related stroma cells. 
Direct comparison of protein and lipid domain between 
paired tissue regions corresponding to oral cancer and nor-
mal epithelium was already performed using the Raman 
spectroscopy. However, due to relatively low spatial and 
chemical resolution of this approach, the obtained data 
indicated only increased protein/lipid proportion in cancer 
regions (Singh and Krishna 2014). MALDI–MSI enabled 
more specific inspection of a tissue lipidome. In general, 
enhanced lipid synthesis (lipogenesis) and changes in the 
composition of membranes (increased contribution of phos-
phatidylcholines and saturated phospholipids) are typical 
for cancer phenotype. Furthermore, the increased number 
of lipid rafts (enriched in cholesterol and sphingolipids) 
involved in cellular signaling are observed in cancer cells. 
Moreover, several other lipid components (including free 
fatty acids, ceramides, and prostaglandins) participate in 
communication between cancer and stroma cells, which 
also contributes to cancer-characteristic lipid profile (San-
tos and Schulze 2012; Beloribi-Djefaflia 2016; Luo et al. 
2017). The set of lipid components differentiating cancerous 

Table 2   Performance of cancer classifiers built of peptide and lipid 
components and validated using the independent tissue specimen

Classifier indices Peptide classifier(14 
components) (%)

Lipid classifier(18 
components) (%)

Sensitivity 78.7 56.0
Specificity 90.7 82.4
Accuracy 89.5 79.8
Weighted accuracy 84.7 69.2
Precision 97.5 94.4
F-measure 93.9 87.9

http://www.proteinatlas.org
http://www.proteinatlas.org
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and normal mucosa, which putatively included sphingolipids 
and phosphatidylcholines, apparently reflected all the above-
mentioned processes. Nevertheless, differences between 
cancerous and normal mucosa were less obvious when cor-
responding ROIs were compared in respect to the subset of 
the analyzed lipids. One could assume that the majority of 
lipid components detected by MSI represented components 
of cellular membranes. Therefore, the overall similarity of 
lipid profiles between cancerous and normal epithelium 
revealed the similar basic composition of lipid membranes 
in both types of the oral mucosa. Moreover, though variabil-
ity in lipid distribution was higher within cancer than within 
normal epithelium, the observed intra-tumor heterogeneity 
was lower when compared to peptide imaging. However, in 
spite of the general similarity of lipid composition, at least 
in respect to the subset of lipids analyzed by positive mode 
MALDI–MSI, several components with significantly differ-
ent abundance could be found, which enabled discrimination 
of cancerous and normal epithelium based on information of 
lipid distribution. Hence, we concluded that though molecu-
lar differences between cancerous and normal mucosa were 
higher in the proteome domain than in the analyzed lipidome 
subdomain, imaging of lipidome components also enabled 
discrimination of oral cancer and normal epithelium. Cur-
rent proof-of-concept study based on molecular imaging 
of tissues indicated comparably high feasibility of both 
proteomic and lipidomic biomarkers of oral cancer. Suc-
cessively, specific biomarker signatures might be identified 
and validated by high-throughput approaches using lysates 
from dissected tissue specimens.
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