
Research Article
In Vitro Murine Hematopoiesis Supported by Signaling from a
Splenic Stromal Cell Line

Hong Kiat Lim ,1 Pravin Periasamy,2 and Helen C. O’Neill 1

1Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Australia
2Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Correspondence should be addressed to Helen C. O’Neill; honeill@bond.edu.au

Received 3 August 2018; Revised 4 October 2018; Accepted 14 October 2018; Published 25 December 2018

Academic Editor: Hector Mayani

Copyright © 2018 Hong Kiat Lim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

There are very few model systems which demonstrate hematopoiesis in vitro. Previously, we described unique splenic stromal cell
lines which support the in vitro development of hematopoietic cells and particularly myeloid cells. Here, the 5G3 spleen stromal cell
line has been investigated for capacity to support the differentiation of hematopoietic cells from progenitors in vitro. Initially, 5G3
was shown to express markers of mesenchymal but not endothelial or hematopoietic cells and to resemble perivascular reticular
cells in the bone marrow through gene expression. In particular, 5G3 resembles CXCL12-abundant reticular cells or perivascular
reticular cells, which are important niche elements for hematopoiesis in the bone marrow. To analyse the hematopoietic support
function of 5G3, specific signaling pathway inhibitors were tested for the ability to regulate cell production in vitro in cocultures
of stroma overlaid with bone marrow-derived hematopoietic stem/progenitor cells. These studies identified an important role
for Wnt and Notch pathways as well as tyrosine kinase receptors like c-KIT and PDGFR. Cell production in stromal cocultures
constitutes hematopoiesis, since signaling pathways provided by splenic stroma reflect those which support hematopoiesis in the
bone marrow.

1. Introduction

Multiple interactions occur between HSC and the stromal
niche in the bone marrow, acting as essential triggers for
hematopoiesis. Known signaling events include CXCL12/
CXCR4 and SCF/c-KIT receptor-ligand interactions and
Wnt and Notch signaling [1–4]. It is well known that the sol-
uble factors CXCL12 and SCF produced by perivascular
reticular cells are important mediators of hematopoietic stem
cell (HSC) migration and maintenance, respectively [1, 5].
Wnt signaling is crucial for HSC self-renewal, and HSC from
Wnt3a−/− mice are severely compromised in repopulation
capacity [6]. The role of Notch in hematopoiesis in vivo is
disputable. However, inhibition of Notch in cocultures of
CD146+ perivascular cells with human HSC gave increased
B cell development with fewer HSC, suggesting a role for
Notch in HSC maintenance [2]. Despite a wealth of informa-
tion on the signaling pathways and niches which support
hematopoiesis in the bone marrow, there are very few
examples whereby hematopoiesis can be induced in vitro

either through provision of growth factors or through
coculture with stromal niche cells.

This laboratory previously reported a stromal cell line
5G3 isolated from murine spleen which supports in vitro
production of specific myeloid cell subsets [7]. This finding
in relation to stromal cells in spleen evokes interest in the
spleen as a hematopoietic niche, and of spleen as a secondary
site supporting hematopoiesis. 5G3 stroma was shown to
support transient production of myeloid precursors and
long-term production of a novel distinct dendritic-like cell
type, namely, “L-DC” [7]. Previous studies identified L-DC
as highly endocytic with the ability to activate CD8+ T
cells, but not CD4+ T cells [8, 9]. 5G3 provides contact-
dependent support for hematopoiesis [8]. It is a clonal
isolate of the long-term spleen culture STX3 and does not
resemble mature endothelial or fibroblastic cells in gene
expression, although it was shown to have weak ability com-
pared with endothelial cells to form tube-like structures in
Matrigel [10, 11]. This property has since been associated
with pericytes and perivascular stromal cells [12].
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The 5G3 stromal line has therefore been investigated
further for marker expression to determine lineage origin in
relation to mesenchymal and perivascular reticular cells as
components of HSC niches described in the bone marrow.
In order to address the question whether cocultures involving
5G3 support hematopoiesis in terms of differentiation of
HSC to give progeny cells, as opposed to proliferation or
expansion of hematopoietic cells, signaling pathways which
regulate hematopoiesis in the bone marrow have been inves-
tigated. Inhibitors of known signaling pathways including
Notch, Wnt, and the tyrosine kinases c-KIT and PDGFR
have been tested in coculture assays for impact on cell pro-
duction, maintenance of progenitors, and production of
myeloid cells including L-DC.

2. Materials and Methods

2.1. Animals. Specific pathogen-free C57BL/6J (H-2Kb:
CD45.2) mice aged 4 to 8 weeks were obtained from
the John Curtin School of Medical Research (JCSMR:
Canberra, ACT, Australia). Animal experimentation was
performed in accordance with the Australian Code for the
Care and Use of Animals for Scientific Purposes (8th Edition,
2013). All procedures were approved by the Animal Experi-
mentation Ethics Committee at the Australian National
University (ANU: Canberra, ACT, Australia) under protocol
A2013/11.

2.2. Stromal Cell Cultures. Spleen long-term cultures (LTC)
have been established over many years in this laboratory
through continuous culture of whole spleen cell suspension
[13, 14]. These have been shown to comprise a stromal cell
monolayer which continuously supports the production of
distinct myeloid cell types. The STX3 stromal line was
derived from a spleen LTC which ceased the production of
hematopoietic cells over time and passage in vitro [10].
STX3 was cloned through single cell deposition using flow
cytometry and then clones grown to confluence, recloned,
and tested for hematopoietic support capacity. Several cloned
lines including 5G3 studied here were selected as the hemato-
poietic supporter cell line [15]. 5G3 was originally classified
as an early endothelial-like cell line on the basis of ability to
form tube-like structures in Matrigel [16]. It did not,
however, express markers of mature endothelial cells, and
its lineage origin has been unclear.

Frozen stocks of 5G3 were banked so that experimenta-
tion has always involved cells passaged 3–4 times from frozen
stocks. 5G3 cells grown from frozen stocks were cultured
under conditions described previously and passaged by
scraping cells [7]. Briefly, cells were cultured at 37°C in
5% CO2 in air with 95% humidity in Dulbecco’s modified
Eagle’s medium (DMEM) (Sigma-Aldrich: Castle Hill, NSW,
Australia) supplemented with 10% fetal calf serum (FCS),
5× 10−4M 2-mercaptoethanol, 10mM HEPES, 100U/ml
penicillin, 100ug/ml streptomycin, 4mg/l glucose, 6mg/l
folic acid, 36mg/l L-asparagine, and 116mg/l L-asparagine
hydrochloric acid (sDMEM). Trypsin treatment was used
to dissociate stromal cells for experimentation.

2.3. Flow Cytometry. Cells were stained with antibodies
diluted in fluorescence-activated cell sorting (FACS) buffer
(DMEM/0.1% sodium azide/1% FCS). Antibody specific for
FcγII/IIIR (CD32/CD16) (eBiosciences: San Diego, CA,
USA) was used at 5μg/106 cells in 1ml to block nonspe-
cific antibody binding to cells. Fluorochrome or biotin-
conjugated antibodies for CD11b, CD11c, MHC-II, F4/80,
CD3, B220, CD150, CD48, Ly6G, CD45.2, CD29, CD51,
CD54, CD31, gp38, CD105, Thy1.2, Sca-1, VCAM1,
CD140a, Flt3, NK1.1, CD19, Gr-1, Ter119, and c-Kit, as well
as streptavidin-PE-Cy7, streptavidin-PE, and streptavidin-
FITC, were purchased from BioLegend (San Diego, CA,
USA). Staining with 1μg/ml propidium iodide (PI) (Sigma-
Aldrich) was used to discriminate live cells. Isotype-
matched control antibodies were used to set gates to assess
specific antibody binding. Median fluorescence intensity
(MFI) was calculated as the net change in median channel
fluorescence for specific antibody above isotype control.
Fluorescence minus one (FMO) controls were used to set
gates for specific antibody binding in multicolour staining
experiments. Flow cytometric analysis was carried out using
BD FACSDiva (Becton Dickinson) and FlowJo software
(Tree Star: Ashland, OR, USA).

2.4. Preparation of Bone Marrow Progenitors. Single cell
suspensions were prepared by passing the bone marrow
through a fine mesh sieve. Red blood cell lysis and lineage
(Lin) depletion was carried out using MACS® magnetic
bead technology (Miltenyi Biotec: Gladbach, Germany) as
described previously [8, 17].

2.5. Isolation of Hematopoietic Stem and Progenitor Cells.
Lineage-depleted (Lin−) bone marrow progenitors were pre-
pared and stained with fluorochrome-conjugated antibodies
to CD150, Flt3, c-Kit, and Sca-1 to delineate long-term-
(LT-) HSC andmultipotential progenitors (MPP) for sorting.
Antibodies specific for lineage markers were used to gate
out mature hematopoietic cells. LT-HSC were sorted as
the CD150+Flt3− subset of Lin−Sca-1+c-Kit+ (LSK) cells
and MPP as the CD150−Flt3+ subset of LSK cells [17].
Sorting was performed on a BD FACSAria™ II cell sorter
(Becton Dickinson).

2.6. Stromal Coculture Assays. To assess in vitro hematopoie-
sis, Lin− bonemarrow cells were overlaid at 1–5× 104 cells/ml
above 5G3 monolayers of 80–90% confluency. LT-HSC and
MPP were overlaid at 1–5× 103 cells/ml. Control cultures
included stroma or Lin− bone marrow cells only and
LT-HSC or MPP cultured alone. In these controls, no
hematopoietic cell survival was evident within 7 days of
culture. Inhibitors used included Imatinib (inhibitor of
FLT3, PDGFRA/B, and c-KIT tyrosine kinases; Sapphire
Bioscience: Waterloo, NSW, Australia), Plerixafor (CXCR4
inhibitor/CXCL12 signaling; Sapphire Bioscience), XAV939
(WNT/β-catenin inhibitor; Sigma-Aldrich),WntC59 (PORCN
inhibitor of WNT activation; Sigma-Aldrich), and DAPT
(NOTCH/γ-secretase inhibitor; Sigma-Aldrich). These were
titrated for concentration-dependent effects in trial experi-
ments. They were replenished in cocultures at biweekly
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medium change. To assess cell production in cocultures,
nonadherent cells were collected every 7 days by aspiration
and replacement of medium.

2.7. Microscopy. Cell morphology was observed and photo-
graphed using an EVOS® FL digital fluorescence microscope
(Electron Microscope Sciences: Hatfield, PA, USA) equipped
with a Sony® ICX445 CCD camera (Sony: Minato, TKY, JP).

2.8. Transcriptome Analysis. Total RNA was prepared using
an RNeasy mini kit (Qiagen: Clifton Hill, VIC, Australia)
for transcriptome analysis using Murine Genome 430 v2

genechips (Affymetrix, Santa Clara, CA, USA). Double-
stranded cDNA from extracted RNA was synthesised in a
two-step process. First-strand cDNA was produced using
T7-(dT)24 primers and Superscript II reverse transcriptase
(Invitrogen Life Technologies: Mount Waverley, VIC,
Australia). Second-strand cDNA was synthesised from
the first. cRNA was then transcribed in vitro and biotin
labelled from double-stranded DNA using the BioArray
High Yield RNA Transcript Labelling Kit (Affymetrix).
cRNA was hybridized to genechips which were washed and
stained on the Affymetrix Fluidics station. The Affymetrix
GeneArray® Scanner was used to analyse genechips.
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Figure 1: Identification of 5G3 lineage origin. Cells were stained with antibodies to mesenchymal, endothelial, and hematopoietic cell
markers. Red histograms show isotype controls, and blue show specific antibody binding. MFI is shown in the top right corner of plots,
and % specific staining is shown at the centre. Spleen and bone marrow cells were used as controls.
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2.9. Statistical Analysis. Data are presented as the mean±
standard error (SE) for sample size n. Statistical analysis
involved a pairwise comparison of replicated cultures
with controls. These were established at the same time
and, in some cases, assayed at several time points. The
statistical procedure therefore involved a Bonferroni cor-
rection to the significance level of Student’s t-test
(p ≤ 0 05), reflecting the fact that multiple comparisons
were made together.

3. Results and Discussion

3.1. 5G3 Is a Mesenchymal Cell. To characterize the lineage
origin of 5G3, cells were stained with antibodies specific for
cell surface markers. Stroma was shown to express CD105,
CD29, Sca-1, and Thy1 in common with mesenchymal
stem cells. Cells also expressed the VCAM1, CD51, and
CD140a (PDGFRA) markers of perivascular reticular cells
(Figure 1). They are also stained for gp38, a known marker
of fibroblastic reticular cells [18]. 5G3 did not express the
CD31 or CD54 endothelial markers (Figure 1). That 5G3

stroma is not endothelial and was confirmed by tran-
scriptome analysis in Figure 2 which showed no expression
of Cdh5, Fli-1, or Erg [19, 20]. 5G3 also expressed no markers
of hematopoietic cells including myeloid and lymphoid
subsets (Figure 1).

3.2. 5G3 Stroma Supports Myelopoiesis. The hematopoietic
support capacity of 5G3 was demonstrated in cocultures
grown for up to 7 weeks involving overlay of Lin− bone
marrow cells [7] (Figure 3(a)). A history of work from this
lab shows that such cocultures produce four main cell types
[7, 8, 17, 21, 22]. A diagrammatic representation of cells
produced in stromal cocultures overlaid with Lin− bone
marrow is shown in Figure 3(b). Multiple experiments
over 10 years have identified no production of T, B, or
erythroid cells, but long-term production of myeloid den-
dritic cells is sustained since cocultures maintain myeloid
progenitors [7, 8, 16, 17].

Nonadherent cells produced in cocultures were collected
from the supernatant and stained with antibodies specific for
CD11b, CD11c, MHC-II, and F4/80, for flow cytometric
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identification of cells produced. The total myeloid popula-
tion was first gated as a CD11b+CD11c+/− population. The
L-DC population was then gated as CD11b+CD11c+/−F4/
80+MHC-II− cells, conventional (c)DC-like cells as CD11b+

CD11c+/−F4/80−MHC-II+ cells, and immature myeloid
cells or “progenitors” as CD11b+CD11c+/−F4/80−MHC-II−

(Figure 3(a)). The CD11b−CD11c−F4/80−MHC-II− popula-
tion is not a pure population of progenitors but is enriched
for myeloid progenitors and precursors. After 14 days, L-
DC constituted 61.3% of cells produced, with cDC-like cells
(13.2%) and myeloid cells (12.3%) as minor populations
(Figure 3(a)). After 21 days, a dominant population of L-
DC was evident, representing 92.6% of cells, with minor pop-
ulations of myeloid cells (4.2%) and putative progenitors
(10.4%) also evident (Figure 3(a)). cDC-like cells and
myeloid cells are produced only transiently from precursors
present in Lin− bone marrow and disappear by 21 to 28 days
of culture [7, 8, 21].

3.3. Wnt Signaling Controls Production of Myeloid Cells in
Cocultures. Gene profiling was performed in two replicate
experiments comparing 5G3 stroma with cells produced in
LTC. For these experiments, 5G3 cells were grown and
passaged thrice before RNA collection, and LTC were estab-
lished for 6 weeks before collection of total cells for RNA
preparation. Based on transcriptome analysis, 5G3 stroma
expresses Wnt ligands (specifically Wnt5a) and Wnt recep-
tors including Frizzled receptor 2 (Fzd2) and Frizzled recep-
tor 7 (Fzd7) (Figure 2). Control hematopoietic cells expressed
Fzd7 andWnt6 (Figure 2). Both 5G3 and hematopoietic cells
expressed high levels of Ctnnb which encodes β-catenin, an
essential transcriptional regulator of Wnt signaling, and Axin
which regulates β-catenin. To assess whether Wnt signaling
was important for in vitro hematopoiesis, two different inhib-
itors were added into cocultures established with Lin− bone
marrow cells. XAV939 disrupts Wnt signaling by degrading
β-catenin [23]. WntC59 is a potent inhibitor of PORCN
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cells at 14 and 21 days. Nonadherent cells were collected from the supernatant and stained with antibodies specific for CD11b, CD11c,
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representation of cell types characterized in cocultures of Lin− bone marrow over 5G3 stroma.
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required for Wnt palmitoylation, thereby blocking activation
of Wnt family proteins [24].

XAV939 treatment gave a significant decrease in cell
production compared with controls across all time points at
10μg/ml and 1μg/ml but was ineffective at lower concentra-
tions (Figure 4(a)). XAV939 acts on β-catenin, essential for
cell survival and proliferation [25]. In contrast, the WntC59
inhibitor gave significantly increased cell production across
all time points at a concentration of 10μg/ml but had no
effect at lower concentrations (Figure 4(a)). WntC59 blocks
the activation of Wnt family proteins expressed on 5G3 and
may release progenitors from a state of maintenance and

self-renewal, so giving increased differentiation of myeloid
cells. β-Catenin and other Wnt proteins are also expressed
by hematopoietic cells isolated from cocultures, so that
inhibitors may be acting on either or both hematopoietic
and stromal cells (Figure 2). However, in the case of Wnt
signaling, the specific cell target of inhibition is secondary
to evidence that Wnt signaling controls hematopoiesis in
this system.

3.4. Imatinib Inhibits Myelopoiesis in 5G3 Stromal
Cocultures. Gene profiling of 5G3 revealed the expression of
genes encoding growth factors like SCF, CXCL12, PDGFA,
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VEGFA, IGF2, and CSF1 but not FLT3L, CSF2, or CSF3
(Figure 2). The expression of Cxcl12 and KitL (CSF) is consis-
tent with the hypothesis that 5G3 reflects a perivascular
reticular cell type in the spleen. To investigate a role for
SCF or CXCL12 in hematopoiesis in vitro, the specific inhib-
itors Imatinib and Plerixafor were titrated into cocultures
established with Lin− bone marrow cells. Plerixafor is an
antagonist of the CXCR4 receptor for CXCL12. However,
Plerixafor-treated cocultures gave continuous cell production
in all treated cocultures compared with controls across a
range of concentrations (Figure 4(b)). No inhibition of
cell production was achieved, but enhancement of cell
production was achieved over time, giving significantly
higher cell production in cultures treated with 10μg/ml and

1μg/ml (Figure 4(b)). This increase could relate to the role
of CXCL12 in HSC migration, such that inhibition of migra-
tion may lead to increased differentiation over time. Imatinib
is a selective tyrosine kinase inhibitor of the c-KIT receptor
for SCF, and it also inhibits other tyrosine kinases including
PDGFR (CD140) and FLT3 [26]. The production of ligands
PDGFA and VEGFA by hematopoietic cells (Figure 2) sug-
gests that PDGFRA and PDGFRB could also be targets for
Imatinib inhibition. A role for FLT3/FLT3L interaction is
not indicated as important based on the absence of gene
expression (Figure 2). Addition of Imatinib at 10μg/ml
significantly inhibited cell production from 7 days of culture
(Figure 4(b)). Imatinib would appear to act by slowing cell
development at the level of progenitors, perhaps inhibiting
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Figure 5: The specific effect of Notch inhibition on hematopoiesis in vitro. LT-HSC (Lin−Sca-1+c-Kit+Flt3−CD150+) and MPP (Lin−Sca-1+c-
Kit+Flt3+CD150−) were sorted from murine bone marrow and cultured above 5G3 stroma for a period of 21 days. Cocultures were
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self-renewal, maintenance, or survival. Imatinib could be
inhibiting through binding to c-KIT on progenitors or
through binding to PDGFRA or PDGFRB (CD140a/b)
expressed by stromal cells. Inhibition of either or both of
these signaling pathways is consistent with cell production
through hematopoiesis.

3.5. Role for Notch Signaling in Hematopoiesis in Cocultures.
Gene profiling in Figure 2 identified several Notch pathway
genes expressed by stroma including Dll1, Dlk1, and Dtx2
and by hematopoietic cells, namely, Dtx2, Jag1, and Notch1.
A role for Notch signaling in in vitro hematopoiesis was
therefore investigated. The γ-secretase indirect Notch
inhibitor, DAPT, was used since it abolishes signaling by
preventing cleavage of the Notch intracellular domain and
translocation into the nucleus for gene activation. In trial
experiments of Lin− bone marrow cocultured over 5G3, the
number of L-DC produced was found to be noticeably
higher in cocultures treated with DAPT at 10.0μM. Sub-
sets of L-DC, cDC-like cells, and myeloid cells and the
CD11b−CD11c− subset enriched for progenitors were enu-
merated. This was consistent with earlier findings which
showed that cocultures established with HSC and MPP over
5G3 produce only L-DC and no other myeloid or DC subsets,
although they did maintain a progenitor population [17].
The inhibitory effect of 10.0μM DAPT was therefore tested
in cocultures of LT-HSC and MPP over 5G3. L-DC were
gated as CD11b+CD11c+/−F4/80+MHC-II− cells and “pro-
genitors” as CD11b−CD11c−F4/80−MHC-II− cells, with no
myeloid cells (CD11b+CD11c+/−MHC-II−F4/80−) or cDC-
like cells (CD11b+CD11c+/−MHC-II+F4/80−) produced. The
gating strategy used is shown in Figure 5(a).

Significantly higher numbers of L-DC were produced in
MPP cocultures given 10.0μM DAPT compared with
controls (Figure 5(b)). It is well known that Notch, along
with Wnt signaling, is necessary to maintain HSC and MPP
in an undifferentiated state [27]. The observed increase in
L-DC production and drop in progenitor numbers in MPP
cocultures suggests that Notch signaling may be required
for the maintenance of MPP in 5G3 stromal cocultures such
that inhibition leads to differentiation and greater production
of L-DC. In contrast, DAPT did not affect cell production in
HSC cocultures [2, 28]. One explanation could relate to
signaling redundancy, such that 5G3 stroma provides an
array of signaling molecules for HSC but a more restricted
signaling repertoire for MPP. Blocking Notch signaling could
have a more profound effect on L-DC production from MPP
than from HSC. Previous work from this lab showed that
L-DC can derive from both HSC and MPP and that HSC
give rise to MPP in cocultures with the development of
L-DC being a FLT3-dependent process [17].

4. Conclusions

Evidence for specific support for in vitro hematopoiesis by
spleen stromal lines raises the possibility that in vivo spleen
contains niches for hematopoietic stem/progenitor cells.
The description of the splenic stromal line 5G3 as a perivas-
cular reticular cell now supports that hypothesis in line with

similar niches in the bone marrow. 5G3 clearly expresses
mesenchymal markers and is closely aligned with CXCL12-
abundant reticular cells described in the bone marrow in
terms of cell surface markers and gene expression [5].
While the phenotype of cultured cells might differ from
their in vivo counterparts, cell line models taken in context
do provide important information. Here, we now define a
specific role for 5G3 stroma in in vitro hematopoiesis, with
evidence for at least Notch, Wnt, c-KIT/SCF, and PDGFR/
VEGF signaling.
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