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Abstract

Background: Anopheles funestus is among the major malaria vectors in Kenya and sub-Saharan Africa and has been
recently implicated in persistent malaria transmission. However, its ecology and genetic diversity remain poorly
understood in Kenya.

Methods: Using 16 microsatellite loci, we examined the genetic structure of An. funestus sampled from 11 locations
(n = 426 individuals) across a wide geographical range in Kenya spanning coastal, western and Rift Valley areas.

Results: Kenyan An. funestus resolved as three genetically distinct clusters. The largest cluster (FUN1) broadly
included samples from western and Rift Valley areas of Kenya with two clusters identified from coastal Kenya
(FUN2 and FUN3), not previously reported. Geographical distance had no effect on population differentiation of
An. funestus. We found a significant variation in the mean Plasmodium infectivity between the clusters (χ2 = 12.1,
df = 2, P = 0.002) and proportional to the malaria prevalence in the different risk zones of Kenya. Notably, there
was variation in estimated effective population sizes between the clusters, suggesting possible differential impact
of anti-vector interventions in represented areas.

Conclusions: Heterogeneity among Kenyan populations of An. funestus will impact malaria vector control with
practical implications for the development of gene-drive technologies. The difference in Plasmodium infectivity
and effective population size between the clusters could suggest potential variation in phenotypic characteristics
relating to competence or insecticide resistance. This is worth examining in future studies.
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Background
The burden of malaria remains high in Africa despite
the gradual decline that has been witnessed over the
last decade. As of 2016, Africa accounted for > 90% of
the 445,000 malaria deaths and 216 million cases were
recorded worldwide [1]. The burden is, however, not
uniform and characterized by spatio-temporal variabil-
ity in different parts of Africa [2, 3]. In Kenya, the dis-
ease has been on the increase in some parts but with
stable or declining parasite infection rates in other
areas [2, 4]. Heterogeneity within vector populations
could impact on spatio-temporal trends in malaria
parasite transmission [5, 6]. This underscores the need
to characterize the genetic structure of key vectors at a

national scale for better assessment of the impacts on
malaria control efforts [6, 7].
Anopheles funesus (s.s.) (hereinafter referred to as

Anopheles funestus) is one of the four major malaria
vector species widely distributed throughout tropical
Africa and a key vector in Kenya [8, 9]. It is the nom-
inal species and primary vector in the An. funestus
group which comprises at least 13 sibling species [8].
The species is highly susceptible to malaria parasites
and has a strong preference to feed on humans which
endows it with a high vectorial capacity [10, 11]. Its po-
tential capacity for rapid evolutionary adaptation is
seen in the exhibition of divergent traits in response to
scale up of long-lasting insecticidal net (LLIN) distribu-
tion. These include a shift toward diurnal [12] and out-
door feeding [13] habits, and development of multiple
insecticide resistance mechanisms [14]. These biological
and phenotypic traits relevant to disease epidemiology can

* Correspondence: dtchouassi@icipe.org
1International Centre of Insect Physiology and Ecology (icipe), P.O. Box
30772-00100, Nairobi, Kenya
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ogola et al. Parasites & Vectors           (2019) 12:15 
https://doi.org/10.1186/s13071-018-3252-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-018-3252-3&domain=pdf
http://orcid.org/0000-0001-9910-4704
mailto:dtchouassi@icipe.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


be genetically determined with potential influence on the
evolution of vector species or populations [15].
There have been a few studies on the population struc-

ture of An. funestus in Kenya. These date back to more
than a decade ago preceding large scale LLIN measures
which are known to have influenced vectorial systems
and potentially associated selective adaptive responses in
malaria vectors [16, 17]. Based on chromosomal inver-
sions, Kamau et al. [18] observed levels of genetic differ-
entiation among Kenyan An. funestus populations. A few
studies in Kenya have employed microsatellite markers
in determining the genetic structure of An. funestus,
known to be highly informative for fine-scale population
genetic analysis and lineage reconstruction [19, 20].
Braginets et al. [21] using microsatellites, found differen-
tiation between An. funestus populations from coastal
and western Kenya. This study was, however, limited in
scope with just four sample sites (two from each region)
and five loci. A pan-African microsatellite-based study
found two population subdivisions in An. funestus [22];
however, this was not so useful for national scale infer-
ence. Delineating the fine-scale population structure of
disease vectors such as An. funestus is crucial for un-
derstanding their epidemiological significance and their
potential response to current and future vector control
measures [6].
Effective malaria control towards elimination targeting

vectors in Kenya will benefit from improved knowledge
of the genetic heterogeneities of vector populations, es-
pecially An. funestus. Being among the key malaria vec-
tors in Africa, this species has recently been implicated
in persistent malaria transmission [23] with increases in
the relative abundance following roll-out of LLINs in
parts of Kenya [4]. Furthermore, the success of gene
drives as developing strategies in the fight against mal-
aria [24, 25] hinges on knowledge of the extent of gen-
etic relatedness among local population of the target
species. As part of the HEG Target Malaria Project, this
study used 16 microsatellite loci to investigate the gen-
etic structure of geographically distinct An. funestus
samples from 11 locations spanning diverse malaria en-
demicities (coastal, western, Rift Valley) of Kenya. Our
goal was to quantify the population structure of An.
funestus with the objective of associating identified geno-
types with geographical locations and explore possible
links with malaria endemicity based on Plasmodium infec-
tion prevalence.

Methods
Sampling
We used DNA of An. funestus (s.s.) (hereinafter referred
to as An. funestus) samples reported in a previous study
[9]. The samples were from 11 sites spanning malaria risk
areas in coastal, Rift Valley and western Kenya (Fig. 1,

Table 1). The samples were identified using primers
targeting the internal transcribed spacer region 2 (ITS2) of
ribosomal DNA [26] as previously described [9].

Detection of Plasmodium malaria parasites
We further screened the specimens for Plasmodium in-
fections using PCR and melting analysis of amplicons in
a RotorGene Q thermocycler (Qiagen, Hilden, Germany)
targeting non-coding mitochondrial sequences (ncMS)
[27] and/or amplification of the cytochrome c oxidase
subunit 1 (cox1) gene [28] as previously described [9].

Microsatellite genotyping
Anopheles funestus samples were genotyped at 16 poly-
morphic microsatellite markers spanning the genome
[29, 30]. The markers were optimized into four multiplexes
based on suitable primer annealing temperatures and
non-overlapping expected allele size ranges (Additional file
1: Table S1) using the program Multiplex Manager v.1.0
[31]. Microsatellite detection from gDNA samples from
each site (8–102 per site, n = 426) were run using the
Type-it Microsatellite PCR kit (Qiagen): 6.25 μl of the
2X Type-IT master Mix, 2.5 μl of primer mix (2 μM
each), 1 μl of RNase-free H2O and 4 μl of gDNA as
template (10 ng/μl ≤ x ≤ 20 ng/μl). Thermal cycling
conditions in a SimpliAmp Thermal Cycler (Applied
Biosystems, Loughborough, UK) were as follows: initial
denaturation at 95 °C for 5 min; followed by 35 cycles
of denaturation at 95 °C for 30 s, annealing (at 52–57 °C,
depending on the multiplex) for 90 s and extension at
72 °C for 30 s; with a final extension at 60 °C for 30
min. Next, 1.25 μl of the PCR product was reconsti-
tuted in 3.75 μl of water and outsourced for fragment
analysis at the DNA Sequencing Facility, University of
Illinois at Urbana-Champaign, Urbana, Illinois, USA.
The PCR fragments were separated on an ABI 3730XL
(Applied Biosystems) sequence analyzer using the Gen-
eScan™ 500LIZ™ size standard. The allele sizes were
scored using GeneMarker software v.2.6.7 (SoftGenetics,
LLC, Pennsylvania, USA) with each allele size score
double-checked manually. Genotyping errors possibly due
to null alleles, large allele dropouts and scoring of stutter
peaks were initially checked using MICRO-CHECKER
v.2.2.3 [32].
We estimated genetic diversity in the different geo-

graphical populations by calculating number of alleles
per locus per population (A), allelic richness (RS), esti-
mated population differentiation (FST) and inbreeding
coefficients (FIS) per locus for each pair of population
using FSTAT v.2.9.3 [33]. We assessed linkage disequilib-
rium (LD) between locus pairs within each population and
deviations from Hardy-Weinberg equilibrium tested using
Markov chain default parameters in GENEPOP [34]. An
analysis of molecular variance (AMOVA) was performed
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on all geographical populations and a principle coordi-
nates analysis (PCoA) based on FST run in GenAIEx
v.6.5 [35]. We further plotted a neighbor-joining tree
using pairwise population FST estimates to compare the
structure of the different populations. Population struc-
ture was analyzed using Bayesian cluster analysis soft-
ware STRUCTURE v.2.3.4 [36] using the admixture
model with 50,000 for burn-in, 100,000 iterations and
repeated 20 times for each value of K ranging from 1

to 12. The most likely number of populations, KMAX,
was estimated using the Evanno method [37] imple-
mented in CLUMPAK [38]. A correlation analysis com-
paring the genetic distance and geographical distance for
all populations was conducted using a Mantel test with
100,000 randomizations in IBD v.1.52 [39]. To investigate
whether any of the populations experienced recent genetic
bottlenecks, a Wilcoxon sign-rank test for heterozygosity
excess was applied under a two-phase model (TPM) with

Fig. 1 Map of Kenya showing the sampling locations
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20% non-single step mutation using the program Bottleneck
v.1.2.02 [40].

Results
Genetic diversity in Anopheles funestus populations
All samples amplified reliably across the 16 loci showing
the robustness of the multiplex design. The number of
samples in each population ranged between 8–102 indi-
viduals with 8 of the 11 populations having ≥ 20 individ-
uals (Table 1).
Genetic diversity estimates across all populations are

shown in Additional file 1: Table S2. The levels of micro-
satellite polymorphism across loci and samples were
moderate to high with the mean observed heterozygosity
(HO) values within each of the geographical mosquito
populations ranging from 0.48 in Njoro to 0.74 in
Lwanya-Bumala. Following adjustment for variances in
the number of individuals in each population, allelic
richness (AR) ranged from 3.3 in Njoro to 5.1 in Ahero.
We made a total of 1320 pairwise comparisons for LD of

which 84 (7%) were significant (P < 0.005). Analysis of
molecular variation (AMOVA) indicated significant mo-
lecular variation within and among the populations with
84% of the variation within individuals, 10% among
individuals, and 6% among populations. The pairwise
estimates of genetic differentiation among the 11 geo-
graphical populations ranged from -0.002 between
Ahero and Lwanya -Bunyala to 0.32 between Njoro and
Jaribuni (Table 2).
To visualize the genetic relatedness among individ-

uals, we first performed PCoA. The top three PCoA
components explained 54.21, 18.25 and 9.95% of the
total variance and grouped the individuals into three
main clusters (Fig. 2a). Similarly, a neighbor-joining
(NJ) tree, based on pairwise FST estimates, showed
three distinct populations for An. funestus (Fig. 2b). In
support of population structuring, Bayesian clustering
analysis with STRUCTURE showed that three population
clusters (k = 3) best explain the genetic variance present
in our data (Fig. 2c, Additional file 2: Figure S1). The first

Table 1 Anopheles funestus sampling sites in Kenya and number of specimens analyzed

Region County Location
(abbreviation)

Malaria endemicitya Collection date
(DD/MM/YY)

Collection
method

Sample
size

Western Kisumu Ahero (H) Lake Endemic 4–16/11/2015 CDC (Out) 68

Siaya Usenge (US) Lake Endemic 23/7/2015 IR 31

Siaya West Alego (AL) Lake Endemic 1/7/2017 CDC (In/Out) 61

Siaya Mageta (MAG) Lake Endemic 8/6/2014 IR 8

Busia Bunyala (BUN) Lake Endemic 3/7/2017 CDC (In/Out) 51

Busia Samia (SAM) Lake Endemic 30/6/2017 CDC (In/Out) 102

Busia Lwanya-Bumala (LN) Lake Endemic 3/7/2017 CDC (In/Out) 17

Rift Valley Baringo Kamnarok (B) Highland Epidemic and semi-arid, seasonal 12/8/2015 IR 11

Coastal Kilifi Jaribuni (J) Coast Endemic 8/6/2017 CDC (In/Out) 31

Kwale Fihoni (FH) Coast Endemic 7/6/2017 CDC (In/Out) 22

Taita-Taveta Njoro (T) Coast Endemic 6/7/2017 IR 24

Collection methods included indoor resting (IR) and CDC light traps (CDC) conducted indoors (In) and/or outdoors (Out)
a[2]

Table 2 Pairwise comparison of genetic diversity (FST) among the 11 geographical A. funestus populations sampled

Ahero Kamnarok Usenge Mageta Bunyala West Alego Njoro Jaribuni Lwanya-Bumala Fihoni

Kamnarok 0.0184

Usenge 0.0047 0.0252

Mageta 0.0161 0.0336 0.0086

Bunyala -0.0017 0.0341 0.0043 0.0122

West Alego 0.0028 0.0329 0.0065 0.0209 0.0002

Njoro 0.2553 0.2995 0.2798 0.2957 0.2734 0.2554

Jaribuni 0.092 0.0924 0.0949 0.1125 0.0896 0.0866 0.3235

Lwanya-Bumala 0.0137 0.017 0.0196 0.0322 0.0149 0.0132 0.2814 0.0889

Fihoni 0.0482 0.0618 0.0526 0.0782 0.0465 0.0353 0.3132 0.0389 0.0491

Samia 0.01 0.038 0.0117 0.0285 0.0089 0.0066 0.2665 0.1005 0.0256 0.0353

The bold values indicate comparisons that were significant following Bonferroni correction
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and largest subgroup (hereafter FUN1) comprised most
An. funestus specimens collected in western Kenya
(Ahero, Usenge, Lwanya-Bumala, Bunyala, W. Alego,
Samia and Mageta Island) and Kamnarok, a riverine
area of Baringo County in the Rift Valley. The second
group (hereafter FUN2) included individuals from the
coastal Kenyan sites of Fihoni and Jaribuni, while the
smallest subgroup (hereafter FUN3) was associated with
individuals exclusive to Njoro (Taita Taveta County) (Fig.
2c). The membership coefficients of geographical samples
to their respective clusters/subgroup were relatively high,
ranging between 79–98% for subgroup FUN1, 92–97% for
subgroup FUN2 and 96% for subgroup FUN3 (Table 3).
We further examined the extent of differentiation between
the three subgroups within An. funestus by estimating the
genotypic differentiation in GENEPOP using Markov
chain default parameters. We found strong divergence
among the clusters (P < 0.005) corroborating patterns of
population structure observed within the species. Mantel
tests on correlation between pairwise genetic and geo-
graphical distances indicated a weak and non-significant
positive association between genetic and geographical dis-
tances (Mantel test: r = 0.33, P = 0.798) (Fig. 2d).

Phenotypic patterns across identified clusters
Having observed three distinct clusters, we asked whether
there is any phenotypic variation among these populations
by examining the Plasmodium infectivity as a measure
of malaria risk. We thus assessed the proportion of
Plasmodium infectivity attributable to An. funestus of
the total An. funestus group specimens analyzed per

site representative of each cluster. Results revealed that
mean Plasmodium sporozoite infectivity varied signifi-
cantly between the clusters (χ2 = 12.1, df = 2, P =
0.002) being 8.4% (52/619; 95% CI: 6.4–10.9%), 3.1%
(10/324; 95% CI: 1.6–5.8%) and 0% (0/29; 95% CI: 0–
14.6%) for clusters FUN1, FUN2 and FUN3, respect-
ively. We next estimated the effective populations (Ne)
for each cluster using NeEstimator v.2 (Do et al. [41]
based on linkage disequilibrium (LD). We found Ne to
be 483.9 (95% CI: 419.8–566.9), 17.7 (95% CI: 15.0–
20.9) and 71.2 (95% CI: 30.9–∞) for FUN1, FUN2 and
FUN3, respectively.

Fig. 2 Population structure of Anopheles funestus in Kenya. a Principle coordinates analysis plot based on pairwise population FST estimates showing
three clusters. b Neighbor-joining tree based on the FST pairwise estimates using 16 microsatellites. c Bayesian-based structure patterns K = 3 showing
separation into 3 distinct clusters. d Isolation by distance comparing genetic distance versus geographical distance based on the Mantel test. The
cluster FUN1 broadly include sites from western and Rift Valley, Kenya; coastal clusters FUN2 (Fihoni, Jribuni) and FUN3 (Njoro-Taita Taveta). Site
abbreviations are indicated as in Table 1

Table 3 Proportion of memberships in each of the three identified
clusters

Population Group Cluster

1 (%) 2 (%) 3 (%) n

Ahero FUN1 95 5 1 68

Kamnarok FUN1 81 18 0 11

Usenge FUN1 96 3 1 31

Mageta FUN1 98 1 1 8

Bunyala FUN1 96 3 0 51

West Alego FUN1 94 4 2 61

Samia FUN1 79 20 0 102

Lwanya-Bumala FUN1 79 20 1 17

Jaribuni FUN2 3 97 0 31

Fihoni FUN2 8 92 0 22

Njoro FUN3 3 1 96 24
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Discussion
Gillies & De Meillon [42] had noted several polymorphic
inversions in An. funestus and suggested possible genetic
differentiation into locally adapted populations through-
out its distribution range in tropical Africa. Collins &
Besansky [10] further posited that greater discontinuities
are not unexpected for this species given its breeding
habitat in semi-permanent water bodies. The population
genetic structure of this species has, however, been found
to be shallow within local scales [22]. A similar shallow
resolution has been observed for this species in West Af-
rica using a combination of markers (chromosomal inver-
sions, microsatellites and mitochondrial nad5 gene), with
notable microsatellite differentiation of chromosomal
forms facilitated by chromosome 3R inversions [43]. Here,
we found An. funestus to be genetically subdivided across
its range in Kenya. Most of the genetic variation was
accounted for by within-population differences among
individuals, consistent with previous findings [22, 43].
Nonetheless, we found population subdivision resulting in
three genetically distinct clusters within An. funestus
supported by Bayesian clustering (structure) analysis, NJ
phylogeny and PCoA (Fig. 2a-c). The largest cluster
(FUN1) broadly included samples from western Kenya
(Ahero, Usenge, Bunyala, West Alego, Lwanya-Bumala,
Samia, Mageta) and Kamnarok in the Rift Valley. Two
clusters were recovered from coastal Kenya: FUN2 com-
prising samples from Jaribuni (Kilifi County) and Fihoni
(Kwale County) and FUN3 unique to Njoro (Taita-Taveta
County). Our findings indicate a much higher genetic
diversity and subdivision for this species than previously
reported in Kenya [18, 21]. Previous studies have
highlighted significant genetic population differenti-
ation between coastal and western Kenya populations,
although with no evidence for genetic structure within
coastal populations. Our recovery of additional structure
in coastal Kenya could be attributed to the sampling scale
with more sites and high number of loci employed.
Improving our understanding of the population

structure and what drives genetic differentiation among
mosquitoes will inform effective disease control. Hetero-
geneity within vector species resulting from evolution
contributes to variability in malaria cases spatially and
temporally [5, 6]. A few studies have examined patterns of
genetic variation in relation to malaria epidemiological out-
comes [44]. We found representation of samples within the
clusters mirroring the degree of malaria endemicity or
prevalence in Kenya. Western Kenya (represented by clus-
ter FUN1) classified as Lake Endemic risk zone remains the
hotbed of malaria in Kenya with a recent overall malaria
prevalence of 27% [2]. About three-fold lower prevalence
was estimated for the coastal region averaging 8%. Esti-
mated mean Plasmodium infectivity attributed to An.
funestus was 8.4% (52/619) for FUN1 (western Kenya) and

3.1% (10/324) for the coastal cluster FUN2, propor-
tional to the mean malaria prevalence in the different
risk zones of Kenya as highlighted earlier. Specimens
from Kamnarok (riverine area in the Rift Valley)
strongly assigned to the western cluster FUN1 (Fig. 2c).
This site is a malaria hotspot within Baringo County
with the overall highest prevalence rate of 23%, com-
pared to less than 1% for the rest of the county [45].
Furthermore, estimated effective population sizes for
An. funestus were 6 to 28-fold higher in cluster FUN1
(483) representing western Kenya, compared with the
clusters from coastal Kenya [17 (FUN2) and 71
(FUN3)], a trend also exhibited in the genetic diversity
measured by the number of alleles and observed het-
erozygosity (Additional file 1: Table S2). The size of a
vector population correlates directly with its vectorial
capacity [46]. Our findings on estimated population
sizes are consistent with field data that indicate an in-
crease in abundance of An. funestus, especially in west-
ern Kenya in recent times [4] following the dwindling
importance Anopheles gambiae (s.s.) in malaria trans-
mission. Given that efficient transmission translates to
more infectivity in mosquitoes [47], our findings sug-
gest variation in vectoral capacity among discrete popu-
lations of An. funestus which may impact differently on
the epidemiology of malaria transmission across the
different risk zones of Kenya. We recognize, however,
that variation in mosquito infectivity rates could vary
between sites [9, 48] likely influenced by other processes.
For instance, different malaria transmission settings will
impose a different malaria “reservoir” size in the human
population, contributing to differences in mosquito infec-
tion rates. Nonetheless, it is worth noting that not all in-
fections translate into infectivity, likely determined in part
by vector factors (e.g. age structure, vector competence,
biting preferences) [49] which may vary among the differ-
ent clusters found in this study. Such difference in effect-
ive population size between the clusters could also relate
to the extent anti-vector interventions in the represented
areas as previously reported for other malaria vectors in
West Africa [46]. Future research examining correlation
in genetic structuring and malaria transmission should
consider the contribution of other possible anopheline
vectors within a given locality.
The Rift Valley has been identified as a barrier to

gene flow in An. funestus [18] and An. gambiae [50],
although the extent so far remains clear. While An.
funestus has been documented in the Rift Valley [9], we
found specimens from the riverine area (Kamnarok) of
Rift Valley were strongly assigned to the western clus-
ter, FUN1 (Fig. 2c). Further studies including samples
from varied sites covering either side of the Rift Valley
will shed light on the role of the Rift Valley in genetic
structuring of this species. Our data found a weak positive
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correlation between geographical and genetic distance
in An. funestus, indicative of strong genetic differences
between clusters and possibly local adaptation. Samples
from sites separated by between 5–97 km in western
Kenya grouped together in cluster FUN1. We did not
find any evidence of population bottlenecks among any
of the population clusters.
The underlying cause for the population divergence ob-

served between An. funestus in coastal and western Kenya
remains unclear. We mainly encountered An. funestus in-
doors in western Kenya (FUN1) and outdoors at the coast
(FUN2) (data not shown). Could the genetic and behav-
ioral divergence be related to differences in the scale of
vector control interventions between the regions or an ef-
fect of climate change? Such anti-vector interventions
have been found also to impact population size of vector
populations [46]. Mass distribution of long-lasting insecti-
cidal bednets (LLINs) have taken place in Kenya since
2006 [51]. Insecticide resistance in vector populations has
been widespread with large scale exposure resulting in al-
tered abundance, behavioral shifts and general ecology of
major vector populations (e.g. An. funestus, An. gambiae)
[16]. Changes in the distribution among mosquitoes in the
An. funestus group is evident where An. funestus remains
the dominant sibling species in western Kenya and An.
rivulorum in coastal Kenya, represented by cluster FUN2
[9]. As noted in parts of western Kenya, Anopheles funes-
tus has reemerged as main malaria vector despite wide-
spread use of insecticide-treated bednets, partly attributed
to insecticide resistance [52]. Recently, genomic signatures
of a major recent population decline of An. gambiae in
coastal Kenya was reported, although not attributed to
ITNs usage [53]. On the other hand, there are records of
An. funestus having been eliminated from parts of Africa
due to prolonged severe drought, e.g. [54], suggesting
extreme climate variability can affect the survival of this
species. Such a negative relationship between prolong
drought and An. funestus occurrence raises the possibility
of extreme climatic patterns in influencing the structuring
among species. Western Kenya receives more rainfall than
coastal Kenya and a combination of possible differences in
the scale of interventions and climatic factors may be
impacting on An. funestus population dynamics. Certainly,
the factors driving the population structure of An. funestus
in Kenya deserve further research.
Malaria vector control in Kenya will benefit from im-

proved knowledge of the genetic heterogeneities within
populations of An. funestus and their effects on malaria
transmission. The persistent high transmission attrib-
uted to this species in western Kenya and mainly en-
countered indoors [9] will inform targeted measures
such as indoor residual sprays (IRS). Pronounced gen-
etic structure uncovered for this major malaria vector in
Kenya has practical implications for the implementation

of gene-drive technologies for mosquito control. However,
extensive sampling of multiple populations will be needed
to reveal the extent of the variation; this will help inform
the design of such an approach, robust to natural genetic
variation. Perhaps such a genetic approach will require
multiple release points and may be more promising in
western Kenya given the relative genetic uniformity. Since
holistic malaria control using gene drive approaches needs
to target multiple major malaria vectors [25], similar
genetic studies should be extended to other vectors like
Anopheles arabiensis which occurs in sympatry with An.
funestus in most environments of Kenya and Africa as a
whole.

Conclusions
We have unraveled subdivisions within An. funestus in
Kenya revealing three genetically distinct clusters. We
found variation in mean Plasmodium infectivity be-
tween the An. funestus clusters proportional to the
mean malaria prevalence across risk areas of Kenya.
This association does not, however, prove causality, as
other processes could have contributed to the observed
result. A holistic examination of all anophelines con-
tributing to transmission in a given focus and their evo-
lutionary pattern will shed light on the link between
transmission and human malaria prevalence. Vector
surveillance is integral to malaria elimination efforts,
given vectors’ remarkable capacity for evolution and
the need for fine-tuning control strategies in the event
of changes in local transmission [55]. Most importantly, it
is essential to start collecting population genomic data
prospectively as an integral part of vector control inter-
ventions, to identify their responses to such measures, or
the underlying cause of genetic structure and high popula-
tion size of this species in western compared to coastal
Kenya as observed in our data. As pointed out by the
Anopheles gambiae Genomes Consortium [53], each inter-
vention needs to be treated as an experiment and its effect
analyzed on both mosquito and parasite populations. Only
then can we improve the efficacy and sustainability of fu-
ture interventions, while at the same time learn about
basic processes in ecology and evolution.

Additional files

Additional file 1: Table S1. Multiplex design and primer details of the
16 microsatellite markers used to study the genetic population structure
of An. funestus in Kenya. Table S2. Genetic diversity across all populations.
(DOCX 37 kb)

Additional file 2: Figure S1. Evanno delta K, STRUCTURE results for
K = 3 based on microsatellite clustering analysis. (TIF 118 kb)
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