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Abstract 

Porcine rotaviruses cause severe economic losses in the Korean swine industry due to G- and P-genotype mismatches 
between the predominant field and vaccine strains. Here, we developed a live attenuated trivalent porcine group 
A rotavirus vaccine using 80 cell culture passages of the representative Korean predominant strains G8P[7] 174-1, 
G9P[23] PRG942, and G5P[7] K71. Vaccination with the trivalent vaccine or its individual components induced no diar‑
rhea during the first 2 weeks post-vaccination, i.e., the vaccines were attenuated. Challenge of trivalent-vaccinated or 
component-vaccinated piglets with homologous virulent strain(s) did not induce diarrhea for 2 weeks post-challenge. 
Immunization with the trivalent vaccine or its individual components also alleviated the histopathological lesions in 
the small intestines caused by challenge with the corresponding original virulent strain(s). Fecal secretory IgAs specific 
for each of vaccine strains were detected starting at 14 days post-vaccination (dpv), and IgA levels gradually increased 
up to 28 dpv. Oral immunization with the trivalent vaccine or its individual components induced high levels of serum 
virus-neutralizing antibody by 7 dpv. No diarrhea was observed in any experimental piglets during five consecutive 
passages of each vaccine strain. Our data indicated that the live attenuated trivalent vaccine was safe and effective at 
protecting piglets from diarrhea induced by challenge exposure of homologous virulent strains. This trivalent vac‑
cine will potentially contribute toward controlling porcine rotavirus disease in South Korea and other countries where 
rotavirus infections with similar G and P genotypes are problematic.
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Introduction
Group A rotaviruses (RVAs), members of the Reoviridae 
family, are among the most important enteric patho-
gens causing severe dehydrating diarrhea in young chil-
dren and a wide variety of young animals [1–3]. RVA is 
a non-enveloped, triple-layered capsid virus possessing 
eleven double-stranded (ds) RNA segments that encode 
six structural proteins (VP1–V4, VP6, and VP7) and six 
nonstructural proteins (NSP1–NSP6) [1, 4, 5]. Due to 

the nature of a segmented genome, RVAs reassert in cells 
infected with different RVAs, potentially leading to the 
emergence of novel progeny viruses [1].

Each genomic segment of RVA is classified into inde-
pendent genotypes based on nucleotide percentage 
identity cut-off values [6, 7]. The combination of VP7-G 
genotypes (G stands for glycoprotein) and VP4-P geno-
types (P stands for protease-sensitive) is frequently used 
for RVA classifications, as the encoded proteins are 
highly involved in immune protection and commonly 
used in vaccine development [1, 8]. Currently, 35 G and 
50 P genotypes have been identified from various coun-
tries and animal species and resulting in various combi-
nations of G and P genotypes [9].
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Porcine RVAs are identified as a common pathogen 
causing gastroenteritis in neonatal piglets worldwide 
[10]. In pigs, twelve G genotypes (G1 to G6, G8 to G12, 
and G26) in combination with sixteen P genotypes (P[1] 
to P[8], P[11], P[13], P[19], P[23], P[26], P[27], P[32], and 
P[34]) have been identified to date [10]. Among these, 
the most common genotype combinations detected in 
pigs are G5P[7], G4P[6], G4P[6], and G4P[7] [10–13]. 
Given this, pig RVA vaccines worldwide contain porcine 
RVA strains exhibiting these prevalent G and P geno-
types, including the bivalent live ProSystem RCE vaccine 
manufactured by Intervet/Merck Animal Health, which 
contains strains G5P[7] OSU, G4P[6] Gottfried, and 
G7P[7] A2 [10, 14]. Depending on the geographical loca-
tion and the particular time, however, prevalent G and P 
genotypes differ and change [10, 12]. For example, the G 
and P genotype combination of Canadian porcine RVAs 
changed from G5 to P[7] during 1982–1984 to G4, G5, 
G9, and G2 in combination with P[6], P[27], and P[13] 
during 2005–2006 [10].

In South Korea, many pig farms have used porcine RVA 
vaccines that are sold worldwide or domestically devel-
oped. Despite the use of these vaccines, porcine RVA 
infections and associated disease remain widespread and 
highly prevalent at 38.3% in South Korea [15]. Over time, 
molecular genotyping of Korean porcine RVA strains has 
revealed that G- and P-genotype combinations detected 
in Korean porcine RVA strains include G5P[7], G8P[7], 
G9P[7], G9P[23], and G8P[1] [15]. It must be noted that 
the domestic bivalent vaccine (containing G5P[7]-A1 
and G9P[7]-10 strains) or imported vaccines such as the 
ProSystem RCE vaccine may not protect well against 
infections caused by G8P[7], G9P[23], and G8P[1] RVA 
strains. This may explain why porcine RVA infections 
are endemic on Korean pig farms, even though vaccines 
have been used. Therefore Korean swine farmers and vet-
erinarians have strongly demanded that updated porcine 
RVA vaccines be produced, and this demand prompted 
us to develop a live attenuated trivalent porcine RVA vac-
cine using the prevalent South Korean strains. In this 
study, three representative strains, G8P[7] strain 174-
1, G9P[23] strain PRG942, and G5P[7] strain K71, were 
chosen based on findings from a previous molecular epi-
demiological study [15]. The strains were passaged up to 
80 times in MA104 cells and then evaluated for efficacy 
and safety.

Materials and methods
Viruses, cells, and serial passages
African green monkey kidney epithelial MA104 cells 
obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA) were grown in alpha 
minimal essential medium supplemented with 10% fetal 

bovine serum (FBS), 100  U/mL penicillin, and 100  μg/
mL streptomycin. Based on previously reported molecu-
lar epidemiological data [15], three porcine RVA strains, 
G8P[7] 174-1, G5P[7] K71, and G9P[23] PR942, which 
are representative of the most prevalent G and P geno-
type combination, were chosen from archived porcine 
RVA strains in Laboratory of Veterinary Pathology, Col-
lege of Veterinary Medicine, Chonnam National Uni-
versity. These strains were isolated from fecal samples of 
diarrheic piglets in South Korea during 2006–2007 [15]. 
Genotype constellations of these strains are G8-P[7]-I5-
R1-C1-M2-A1-N1-T1-E1-H1 for strain 174-1, G5-P[7]-
I5-R1-C1-M1-A1-N1-T1-E1-H1 for strain K71, and 
G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 for strain 
PRG942 (Additional file  1) [16, 17]. The three strains 
were passaged eighty times in confluent MA104 cells 
including initial adaptation and triple plaque purifica-
tion prior to the attenuation of each strain as previously 
described [15–18].

Cell culture immunofluorescence (CCIF) assay
Virus titers were determined using CCIF assays as previ-
ously described [19, 20]. Briefly, serial dilutions of virus 
supernatants were incubated with 10  μg/mL of crystal-
ized trypsin (Cat. No. 27250-018, Gibco, Fort Worth, 
Texas, USA) for 1  h and inoculated into confluent 
MA104 cells grown on 96-well plates. After incubation 
for 16 h, the cells were fixed with 100% cold acetone for 
10 min and then washed twice with phosphate buffered 
saline (PBS, pH 7.2). The plates were incubated with a 
1:100 dilution of a monoclonal antibody against the VP6 
protein of porcine RVA strain OSU [19] for 1 h at room 
temperature. After washing three times with PBS, the 
plates were incubated with a 1:200 dilution of a fluores-
cein isothiocyanate (FITC)-conjugated goat anti-mouse 
IgG antibody in PBS (pH 7.8). Virus titers were calculated 
as fluorescence focus units per milliliter (FFU/mL).

RNA extraction, reverse transcription‑polymerase chain 
reaction (RT‑PCR), and DNA sequencing
Total RNA from the lysates of RVA-infected MA104 
cells or supernatant of tenfold PBS-diluted fecal samples 
were extracted using an Accuprep® Viral RNA Extrac-
tion kit (Bioneer, Daejeon, South Korea) according to 
manufacturer instructions [16]. To detect the presence 
of viral RNA in the fecal samples from experimental ani-
mals, RT-PCR assays were performed using primer pairs 
specific for a partial region of the RVA VP6 gene (Addi-
tional file  2). The PCR products were electrophoreti-
cally separated and detected on 1.2% agarose gels stained 
with RedSafeTM (iNtRON Biotechnology, Gyeonggi-do, 
South Korea). To determine the full-genomic sequences 
of the 11 genomic segments, RT-PCR and 5′ and 3′ RACE 
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PCR assays using primer pairs specific for each of the 
genomic segments (Additional file 2) were performed as 
described previously [16]. Purification of the PCR prod-
ucts, cloning, and DNA sequencing were all performed 
as previously described [16].

Quantification of viral RNA by real‑time RT‑PCR using SYBR 
Green chemistry
A one step real-time RT-PCR assay using a primer pair 
specific to the VP6 gene of RVAs was performed to quan-
tify the RNA in samples as described previously [21–23]. 
Briefly, total RNA was extracted from clarified superna-
tants of each passage of the porcine vaccine candidates 
using an Accuprep® Viral RNA Extraction kit (Bioneer) 
as indicated in the manufacturer’s instructions. The 
extracted RNA was immediately processed or stored 
at −80  °C until use. Real-time RT-PCR was performed 
using a Corbett Research Rotor-Gene Real-Time Ampli-
fication system (Corbett Research, Mortlake, Australia) 
and SensiFast™ SYBR® Lo-ROX One-Step Kit (Bioline, 
London, UK). A final volume of 20 µL containing 5 µL of 
RNA template, 10 µL SensiFast™ mix, 1 µL each of 0.5 M 
forward and reverse primers (final concentration of each 
primer: 20  nM), 0.25  µL Reverse transcriptase, 0.5  µL 
RNase inhibitor, and 2.25 µL RNase-free water was pre-
pared for the real-time RT-PCR assay. Reverse transcrip-
tion was carried out at 50 °C for 30 min, followed by the 
activation of the hot-start DNA polymerase at 95  °C for 
15  min. Forty-three-step cycles were performed as fol-
lows: 95  °C for 15  s, 51  °C for 30  s, and 72  °C for 20  s. 
Quantification was carried out using a standard curve 
generated from serial tenfold dilutions of an in vitro tran-
scribed complementary RNA (cRNA) amplified in sepa-
rate PCR tubes. Rotor-Gene 6000® software was used to 
calculate the amount of RVA RNA in the samples. The 
threshold was defined automatically in the start of the 
exponential phase, reflecting the highest amplification 
rate. The Rotor-Gene 6000® software created a stand-
ard curve that allowed the determination of the amount 
of RVA RNA present in the samples by linear regression 
analysis.

Polyacrylamide gel electrophoresis (PAGE)
To analyze genotypic patterns of the 11 genomic double-
strand RNAs of the RVA strains, PAGE was performed 
for the original virulent porcine strains 174-1, PRG942, 
and K71 and for every 20th passages of the strains as 
described previously [24, 25]. Briefly, total RNA was 
extracted from the lysate of MA104 cells infected with 
each virulent or attenuated RVA strain, and RNA was 
then analyzed using a 7.5% resolving and 5% stacking 
RNA-PAGE gel. After 20  h of electrophoresis, the gel 

was silver stained as previously described to visualize the 
bands [24].

Molecular characterization of virulent and attenuated 
viruses
The entire nucleotide and deduced amino acid sequences 
of the full-length open-reading frames (ORFs) of each 
genomic segment (nucleotide sequence regions based on 
174-1, PRG942, and K71 strains: VP7: 49 to 1029; VP4: 
10 to 2295~2340; VP6: 24 to 1217; VP1: 19 to 3285; VP2: 
16~17 to 2688~2689; VP3: 50~59 to 2557~2566; NSP1: 
32 to 1492; NSP2: 47 to 1000; NSP3: 26 to 967~979; 
NSP4: 42 to 569; NSP5: 22 to 615) of the original viru-
lent and every 20th passage of the three porcine strains 
(porcine 174-1, PRG942, and K71) and those of the other 
known RVA strains were multi-aligned and trimmed 
using MEGA 6 software [26]. Pairwise distance between 
the study strains and the reference strains was calculated 
at the nucleotide level using the Proportional (p)-dis-
tance model. Phylogenetic trees were constructed using 
the Maximum Likelihood method based on the General 
Time Reversible (GTR) (VP1 to 4, VP6 to 7, NSP1 to 3 
and NSP5) or the Neighbor-joining method based on the 
Kimura-2 model (NSP4) with gamma distributed substi-
tution rates. The robustness of branching patterns was 
tested by 500 bootstrap replicates. Pairwise distance and 
phylogenetic trees were both constructed using Mega 6 
software [26].

GenBank accession numbers
The GenBank accession numbers of the RVA strains used 
in this study are listed in Additional file 3.

Experimental animals
To evaluate the safety of the trivalent and its individual 
components, 72 7-week-old BALB/c mice (15~20 g), 36 
7-week-old Dunkin-Hartley guinea pigs (300–350  g), 
and 18 4-week-old piglets (10  kg) were used. A total of 
91 colostrum-deprived piglets aseptically obtained from 
sows by hysterectomy were maintained in gnotobiotic 
isolator units with automatically controlled tempera-
tures. Piglets for each treatment group were raised in 
separated isolator units. All piglets were seronegative 
for RVA antibodies prior to exposure to RVA virulent or 
vaccine strains. These animals were fed autoclaved com-
mercial piglet formula in liquid form four times a day. 
These piglets were used to evaluate the median diar-
rheic dose (DD50), virulence reversion, and the efficacy 
of each vaccine strain. The number of animals used was 
based on the animal welfare guidelines. All procedures 
were approved by the Institutional Animal Care and 
Use Committee of Chonnam National University (CNU 
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IACUC-YB-R-2016-66) and the Choong Ang Vaccine 
Corporation (160129-04).

Median diarrheic dose (DD50) of the virulent strains
At three days of age, 36 colostrum-deprived piglets were 
randomly divided into twelve groups. Each group of three 
piglets was orally inoculated with diluent (mock inocu-
lated), 1 × 101, 1 × 102, or 1 × 103 FFU/1 mL of each of the 
virulent strains (174-1, K71, or PRG942). Determination 
of diarrhea was evaluated at 3 days post-inoculation (dpi) 
based on fecal consistency scored using a 5-point rating 
system of 0 (normal), 1 (pasty), 2 (semi-mucoid), 3 (liq-
uid), and 4 (profuse diarrhea) [16]. The DD50 was calcu-
lated as previously described and expressed as FFU/mL 
[27].

Efficacy testing
A total of 25 three-day-old colostrum-deprived piglets 
obtained from sows by hysterectomy were used to eval-
uate the efficacy of the live attenuated trivalent vaccine 
and its individual components (strains 174-1V-80, K71V-
80, and PRG942V-80). Each group of five piglets was 
orally immunized with 1 mL of each of three live mon-
ovalent vaccine strains 174-1V80 (5.6 × 103 FFU/mL), 
PRG942V-80 (3.1 × 104 FFU/mL), K71V-80 (3.1 × 103 
FFU/mL) or trivalent vaccine containing the three mon-
ovalent vaccine strains at their respective titers above 
(Table 1). The virus titer of each monovalent vaccine was 
equivalent to 1 × 102 DD50 of its original virulent strain. 
As a negative control, five three-day-old colostrum-
deprived piglets were inoculated with 1 mL supernatant 
from the mock-infected MA104 cell culture supernatant 
(Table 1).

At 2  weeks post-vaccination, piglets were challenged 
with equivalent titers of their respective immunizing 
doses and observed for an additional 2 weeks (Table 1). 
Beginning prior to vaccination and continuing through-
out the experiment, all the piglets were observed daily 
and evaluated for clinical signs such as diarrhea. All 

animals were necropsied at 28  days post-vaccination 
(dpv), and intestinal and extra-intestinal organs were col-
lected and immediately fixed in 10% neutral formalin for 
histopathological examination (Additional file  4). Fecal 
samples were collected daily for the designated periods, 
and their consistency was evaluated as described above 
[17]. Fecal samples were diluted 1:10 in PBS, and the 
supernatants were collected following centrifugation at 
12 000 × g for 10 min at 4  °C. Blood samples were col-
lected at weekly intervals from 0 to 28 dpv. Serum was 
collected following centrifugation at 1000 × g for 10 min 
at 4 °C. The serum samples were heat inactivated at 56 °C 
for 30  min. The fecal supernatants and serum samples 
were analyzed by RT-PCR assays to assess viral genome 
copy numbers, by virus neutralization (VN) assays, and 
by enzyme-linked immunosorbent assays (ELISA) for 
determination of fecal and serum IgM, IgG, and IgA lev-
els [16, 28].

Virus neutralization (VN) assays
Serum samples obtained from the experimental piglets 
were used for determining VN titers against porcine 
RVA strains 174-1, K71, and PR942 as described previ-
ously [28]. Briefly, serially two-fold diluted sera were 
mixed with 500 FFU of each trypsin pre-activated RVA 
strain and incubated for 1 h at 37  °C. Each mixture was 
transferred into each well of 96-well plates confluent with 
MA104 cells and allowed to incubate for 16  h at 37  °C. 
The plates were then fixed with cold acetone, and their 
titers were measured using an indirect CCIF test. The 
VN titers were calculated as the reciprocal of the high-
est dilution that reduced more than 70% of RVA positive 
cells compared to that of rotavirus-infected controls.

Enzyme‑linked immunosorbent assays (ELISAs)
Sera and fecal samples obtained from the experimen-
tal animals were analyzed for RVA-specific antibodies 
by ELISAs as described previously [28]. Briefly, 96-well 
plates were coated with 1 × 106 FFU of each porcine 

Table 1  Efficacy testing of porcine monovalent and trivalent vaccine candidates 

a  Inoculated with serum-free α-MEM.
b  FFU: Fluorescence focus unit.
c  The virus titer of individual vaccine strain equivalent to diarrhea dose 50 (DD50) of its virulent strain.

Vaccine strain/s No. of animals Route of administration Amount given (mL) Titer

174-1V-80 (G8P[7]) 5 Oral 1 5.6 × 103 (FFUb/mL)

K71V-80 (G9P[23]) 5 Oral 1 3.1 × 103 (FFU/mL)

PRG942V-80 (G5P[7]) 5 Oral 1 3.1 × 104 (FFU/mL)

Trivalent (mixture of 174-1V-80, K71V-80, 
PRG942V-80)

5 Oral 1 1 × 102 DDc
50

Mock-inoculateda 5 Oral 1 –
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RVAs strain (174-1, K71, and PRG942) in PBS contain-
ing 5% bovine serum albumin (BSA) and then incubated 
at 4  °C overnight. Aliquots of two-fold serially-diluted 
serum or fecal supernatant in 5% BSA buffer were trans-
ferred into each corresponding 96-well plate and then 
incubated at 37 °C for 1 h. The plates were then incubated 
with biotin-conjugated goat anti-pig IgM, IgA, or IgG 
antibodies. Plates were further incubated with strepta-
vidin and tetramethyl benzidine (KOMA Biotechnology, 
Seoul, South Korea), followed by the addition of a stop 
solution of 1 N HCl. Optical density (OD) was measured 
at 450  nm using an ELISA plate reader (Thermo Fisher 
scientific, MA, USA). The serum antibody titer was cal-
culated as the reciprocal of the highest dilution where the 
mean OD was higher than the cutoff value (= mean OD 
of the negative control well + three standard deviations 
above).

Histopathological examination
Formalin-fixed paraffin-embedded 3  μm sections of 
each small intestinal segment (duodenum, jejunum, 
and ileum) were stained with Meyer’s hematoxylin and 
eosin and microscopically examined. Histopathological 
changes in the small intestinal mucosa were scored using 
criteria including the average villi/crypt (V/C) ratio plus 
the grade of epithelial cell desquamation as described 
previously [29].

Safety test
The pig derived RVAs could be naturally attenuated in 
heterologous experimental animals such as guinea pigs or 
BALB/c mice. If the vaccine is contaminated with other 
virulent pathogens, harmful chemicals, or toxins, it can 
cause disease in laboratory animals. Therefore, the Ani-
mal and Plant Quarantine Agency, Republic of Korea, 
requires that attenuated porcine RVA vaccines should be 
safe to ensure that they do not cause any clinical signs or 
pathology in BALB/c mice, guinea pigs, and piglets. In 
accordance with Agency guidelines, the safety of each 
live attenuated monovalent vaccine was analyzed using 
7-week-old BALB/c mice, 7-week-old Dunkin-Hartley 
guinea pigs, and 4-week-old piglets (Additional file  5). 
Each vaccine strain was inoculated by intraperitoneal 
(IP) inoculation into 24 mice, by intramuscular (IM) 
inoculation into 6 piglets, and by either IM or IP inocula-
tion into six guinea pigs (Additional file  5). All animals 
were evaluated daily for clinical signs and fecal consist-
ency for 7 days post-inoculation and then euthanized and 
necropsied.

Virulence reversion
Pairs of 3-day-old colostrum-deprived piglets were 
orally inoculated with 1  mL (1 × 106 FFU/mL) of each 

80th-passage of vaccine strains (174-1V-80, K71V-80, or 
PRG942V-80 strains). All piglets were monitored daily 
for clinical signs and fecal consistency and euthanized at 
5 dpv. Duodenum specimens and their fecal content were 
aseptically collected from the piglets at necropsy, homog-
enized in PBS (10% w/v) containing 1% gentamicin, and 
then centrifuged at 1000  ×  g at 4  °C for 10  min. The 
supernatants were filtered through 0.2  μm membranes, 
and the virus titers were measured by CCIF assays as 
described above. Filtered supernatants at a dose of 
1 × 106 FFU/mL were inoculated into pairs of 3-day-old 
colostrum-deprived piglets for each group. Serial pas-
sages were conducted a total of five times.

Results
Virus attenuation
Serial passage of porcine RVA strains 174-1, PRG942, and 
K71 was performed in confluent MA104 cells through 
the 80th passage. Virulent and attenuated porcine RVA 
vaccine strains were titered at different passage num-
bers by CCIF assay and real-time RT-PCR assay. The 
virus titer of each strain increased with passaging and 
the genome copy numbers for each passage were ampli-
fied to 10–100 times greater than virus titers (Additional 
file 6). Based on PAGE analysis, there were no distinctive 
changes in the PAGE patterns between the original viru-
lent strains and their passaged strains that were evaluated 
at intervals of every 20th passage (Figure  1). These data 
indicated that the three vaccine strains were well adapted 
to MA104 cells and that genome rearrangements caused 
by serial passage at high multiplicity of infection had not 
occurred during serial passage in the MA104 cells [30].

Phylogenetic and amino acid mutation analyses
Phylogenetic and homology analyses were performed 
on the full-length ORF nucleotide sequences of the 11 
genomic segments obtained from the original strains and 
the 20th, 40th, 60th, and 80th passaged attenuated strains. 
Results showed that the 11 genomic segments of the 
original strain and of each 20-passage-interval strains 
clustered tightly and shared high nucleotide identity 
(Additional files 7, 8, 9, 10). These results revealed that 
the 80 serial passages of each of the original virulent 
strains did not influence any genotypic changes due to 
mutations of large regions.

To determine if amino acid mutation(s) within some 
of the genes were possibly involved in the loss of viru-
lence, the full-length amino acid sequences of the 11 
genomic segments of the 80th-passage attenuated vaccine 
strains were compared with those of the 20th-, 40th-, and 
60th-passage attenuated strains and the original virulent 
strains (Additional files 11, 12, 13). Comparison of the 
174-1V-80 vaccine strain with its original 174-1 strain 
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and its less attenuated strains (174-1V-20, 174-1V-40, 
and 174-1V-60) revealed 26 amino acid substitutions in 
10 of the genomic segments (Additional file 11). Among 
the substitutions at the 80th passage, four out of twenty-
six were reversions to the original amino acid sequences. 
Thus, 22 amino acid substitutions remained (Additional 
file 11). In strain PRG942V-80, 109 amino acid substitu-
tions were found with 45 of these reverting to their origi-
nal sequences at the 80th passage (Additional file 12). In 
strain K71V-80, a total of 69 amino acid substitutions 
were observed with 19 amino acids reverting to origi-
nal amino acid sequences at the 80th passage (Additional 
file 13). These results suggested that some or all of these 
amino acid substitutions may have been involved in 
the loss of virulence. It is of interest that the number of 
amino acid changes acquired during the passaging of 
RVAs was highly variable among the different strains.

Rotavirus vaccine prevents diarrhea caused by virulent 
strains
Before determining the vaccine efficacy, DD50 values 
of the original virulent strains 174-1, PRG942, and K71 
were measured using three-day-old colostrum-deprived 
piglets. Results showed that the DD50 was 5.6 × 101 FFU 
for strain 174-1, 3.1 × 102 FFU for strain PRG942, and 
3.1 × 101 FFU for strain K71, indicating that these strains 
were highly virulent in piglets. Histopathological obser-
vation showed that strains 174-1, PRG942, and K71 
induced severe villous atrophy and fusions, in association 
with severe crypt hyperplasia, throughout segments of 
the small intestine in virus-inoculated piglets (Figure 2).

Each of the three live attenuated monovalent vac-
cines (174-1V-80, PRG942V-80, and K71V-80) and the 
live attenuated trivalent vaccine (a mixture of strains 

174-1V-80, PRG942V-80, and K71V-80) were evaluated 
at 2  weeks post-vaccination for efficacy in protecting 
animals from diarrhea induced by challenge with each 
of the homologous virulent strains or a mixture of three 
homologous virulent strains. Vaccination with the triva-
lent vaccine or its individual strains did not induce diar-
rhea during the first 2 weeks post-vaccination, indicating 
that these vaccines were safe for use in piglets. Addition-
ally, challenge exposures with each of the homologous 
virulent strains in its corresponding monovalent vaccine-
immunized piglets or with a mixture of the three original 
virulent strains in trivalent vaccine-immunized piglets 
did not induce diarrhea for 2 weeks after challenge expo-
sure, indicating that these vaccines were effect in protect-
ing from diarrhea following subsequent exposure to their 
homologous virulent strain(s) (Table 2).

Fecal virus shedding
Although vaccinated piglets had no diarrhea for 
2  weeks following vaccination, all vaccinated piglets, 
regardless of monovalent and trivalent vaccine types, 
exhibited fecal virus shedding for a short period of 
time. Specifically, 174-1V-80 vaccinated piglets shed 
viruses for 4–6  days from the 1  day after vaccination, 
PRG942V-80 vaccinated piglets excreted viruses for 
5–7  days from the 1  day after vaccination, K71V-80 
vaccinated piglets shed viruses for 3–7  days from the 
1  day after vaccination, and trivalent vaccine immu-
nized piglets shed viruses for 5–7 days from the 1 day 
after vaccination (Table 2). Moreover, all piglets exam-
ined after challenge exposure also showed fecal virus 
shedding for a short period of time, where challenge 
of 174-1V-80 vaccinated piglets with the original viru-
lent strain 174-1 caused virus shedding for 2–5  days 

Figure 1  Electropherogram (PAGE) of selected passages in MA104 cells of three porcine RVA strains. The RNA genomic segments of three 
vaccine strains from different passage numbers were separated by PAGE and visualized using silver staining. The original virulent strains and each 
passage of 174-1 (A), K71 (B), and PRG942 (C) demonstrated typical RVA’s RNA segment patterns of 4-2-3-2 and maintained their own patterns 
throughout the serial passages. Lane 1, original virulent strain; lane 2, 10th passage; lane 3, 20th passage; lane 4, 40th passage; lane 5, 60th passage; 
lane 6, 80th passage.
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Figure 2  Histopathological changes in piglets infected with each virulent RVA strain or after challenge following immunization. (A, E, I) 
Duodenum, jejunum, and ileum of mock-inoculated piglets showed villi of normal length and no crypt hyperplasia. (B–D, F–H, and J–L) Duodenum 
(B–D), jejunum (F–H), and ileum (J–L) sampled at 7 dpi from piglets inoculated with virulent strains 174-1, PRG942, or K71 showed severe villous 
atrophy, moderate crypt hyperplasia, and severe lymphoid cell infiltrations in the lamina propria. (M–X) Duodenum (M–P), jejunum (Q–T), and 
ileum (U–X) sampled at 28 dpv from piglets first immunized with one of the live attenuated monovalent or trivalent vaccines and then challenged 
with the corresponding original virulent strain(s) 174-1, K71 or PRG942 showed villi of normal length, mild crypt hyperplasia, and mild infiltrations of 
lymphoid cells in the lamina propria in a manner similar to that of the mock-inoculated group. Hematoxylin and eosin stain. Bars = 200 μm.
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from the first day after challenge exposure, challenge 
of PRG942V-80 vaccinated piglets with the original 
virulent strain PRG942 resulted in excreted viruses for 
3–5  days from the first day after challenge exposure, 
challenge of K71V-80 vaccinated piglets with the orig-
inal virulent strain K71 resulted in virus shedding for 
3–5  days from the first day after challenge exposure, 
and challenge of trivalent vaccine immunized piglets 
with the three original virulent strains (174-1, PRG942, 
and K71) caused viral excretion for 5–7 days from the 
first day after challenge exposure (Table 2). These data 
imply that the live attenuated monovalent vaccine and 
the live attenuated trivalent vaccine protected the pig-
lets from diarrhea caused by challenge exposure but did 
not completely prevent the replication of their corre-
sponding virulent strain(s).

Rotavirus vaccination decreases histopathologic lesions 
in the small intestine caused by the virulent RVA strains
Lesions in the small intestines of piglets vaccinated and 
then challenged with the corresponding original viru-
lent strains or a mixture of the three virulent strains 
were compared with those in the small intestines of 
mock-vaccinated, virus-inoculated piglets. Compared to 
mock-vaccinated, virulent-strain inoculated piglets, the 
trivalent or the individual-component vaccinated piglets 
showed a marked decrease in epithelial desquamation, 
villous atrophy and fusion, and crypt hyperplasia after 
challenge with corresponding virulent strain(s) (Fig-
ure 2). Data derived from histopathological lesion–scores 
also revealed significant decreases in the vaccinated 
groups compared with that of the non-vaccinated group 
(Additional file 4). These data demonstrate that the triva-
lent and its individual component (monovalent) vaccines 
alleviated histopathological lesions caused by challenge 

Table 2  Summary of clinical signs and incidence of fecal virus shedding in colostrum-deprived neonatal piglets 
immunized with each live attenuated monovalent or trivalent vaccines and then challenged with each corresponding 
original virulent strain(s) (174-1, PRG942, or K71 strains) 

Vaccine strain Piglet no. Vaccination (administrated at 3-day-old) Challenge (inoculated at 14 days 
post-vaccination)

Occurrence 
of diarrhea

RT-PCR onset 
(duration)

Occurrence 
of diarrhea

RT-PCR 
onset 
(duration)

174-1V-80 (G8P[7]) 1 None 1 (5) None 14 (2)

2 None 1 (4) None 14 (3)

3 None 1 (5) None 14 (3)

4 None 1 (5) None 14 (5)

5 None 1 (6) None 14 (3)

PRG942V-80 (G9P[23]) 6 None 1 (6) None 14 (3)

7 None 1 (5) None 14 (3)

8 None 1 (5) None 14 (4)

9 None 1 (7) None 14 (5)

10 None 1 (5) None 14 (5)

K71V-80 (G5P[7]) 11 None 1 (7) None 14 (5)

12 None 1 (5) None 14 (3)

13 None 1 (5) None 14 (3)

14 None 1 (3) None 14 (4)

15 None 1 (5) None 14 (5)

Trivalent vaccine (174-1V-80, 
PRG942V-80, and K71V-80)

16 None 1 (5) None 14 (5)

17 None 1 (6) None 14 (5)

18 None 1 (5) None 14 (7)

19 None 1 (7) None 14 (5)

20 None 1 (7) None 14 (5)

Mock-control 21 None None None None

22 None None None None

23 None None None None

24 None None None None

25 None None None None
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exposure of each of the corresponding original virulent 
strain(s).

VN and ELISA analysis of serum or fecal samples
VN antibody titers were sequentially evaluated using the 
serum samples obtained from the experimental animals. 
All 3 groups of 5 piglets which were vaccinated with 
each monovalent vaccine and then challenged with each 
original strain produced a VN antibody titer increase ofat 
least 24-folds at 7 dpv, which then reached over 27-folds 
at 14 dpv, and sustained high VN antibody levels until 
the end of experiments (Figure 3A). Additionally, piglets 
immunized with a trivalent vaccine and then challenge-
exposed with a mixture of three virulent strains showed 
a similar pattern of VN antibody titers to each original 
virulent strain (Figure  3B). These results indicated that 
oral immunization with each monovalent vaccine or a 
trivalent vaccine induces serum VN antibody levels from 
1-week post-vaccination, and these levels remain high 
after challenge exposure with virulent strain(s).

To detect RVA-specific IgM, IgG, and IgA antibod-
ies in the serum samples, ELISAs were performed using 
serum samples collected weekly from the experimental 
groups. Results showed that RVA-specific IgM antibod-
ies were detectable beginning at 7 dpv, peaked at 14 dpv 
(PRG942V-80) or 21 dpv (174-1V-80 and K71V-80) with 
titers up to 103.1, and then gradually decreased (Figure 4). 
Serum IgG levels were induced from 14 dpv, and they 
continuously increased until the end of the experiments, 
where they reached titers of 101.9 (174-1V-80), 102.6 
(PRG942V-80), and 102.7 (K71V-80). The trivalent vaccine 
induced serum IgG levels of 102.72 against strain 174-1, 
102.4 against strain PRG942, and 102.66 against strain K71 
at 28 dpv. In contrast to IgM or IgG antibodies, serum 
RVA–specific IgA antibody levels increased slightly from 
14 dpv until the end of the experiments, reaching titers 
up to 102.0–2.5 (Figure 4). All three vaccine strains induced 
a seroconversion in serum samples from IgM to IgG at 14 
dpv following challenge exposures.

The RVA-specific IgM, IgG, and IgA antibodies found 
in the fecal samples from the experimental groups were 
analyzed by ELISA. Secretory fecal IgA antibodies spe-
cific for each vaccine strain were detected from 14 dpv or 
21 dpv, regardless of monovalent or trivalent vaccine, and 
these levels gradually increased through 28 dpv. The lev-
els of IgM and IgG antibodies in the fecal samples from 
the experimental groups were very low (Figure 4). These 
data indicate that each of the monovalent vaccines and 
the trivalent vaccine induced secretory IgA antibodies 
at levels capable of protecting the piglets from diarrhea 
induced by the homologous virulent strain(s).

Safety test
The safety of each of the three live attenuated porcine 
RVA vaccine strains was examined according to the 
guidelines of the Animal and Plant Quarantine Agency, 
Republic of Korea. Each vaccine strain was inoculated 
into mice by IP injection, guinea pigs by both IM or IP 
injections, and pigs by IM injection. None of the three 
strains induced any clinical signs of infection, including 
diarrhea or mortality (Additional file  5). These results 
demonstrate that each of the vaccine strains is safe at 
least for use in pigs.

Virulence reversion
To determine whether consecutive oral inoculations of 
each vaccine strain in piglets would restore virulence, a 
virulence reversion test was performed using three-day-
old colostrum-deprived piglets as previously described 
[31]. No abnormal clinical signs, including diarrhea or 
mortality, were observed in any of the experimental pig-
lets during five consecutive passages of each of the live 
attenuated vaccine strains (Table  3). Histopathologic 

Figure 3  Serum neutralizing antibody titers in response to the 
monovalent or trivalent porcine rotavirus vaccination. A Serum 
samples obtained weekly from piglets immunized with monovalent 
174-1V-80, PRG942V-80, or K71V80 vaccines and challenged 
by exposure with the corresponding virulent strain at 2 weeks 
post-vaccination. B Serum samples obtained weekly from piglets 
immunized with a trivalent porcine live attenuated rotavirus vaccine 
and challenged by exposure with its virulent strain 174-1 at 2 weeks 
post-vaccination. Serum neutralizing antibody titers were calculated 
as the geometric mean titers for each group (n = 5 per group).
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Figure 4  Serum and fecal RV-specific IgM, IgG, and IgA antibody titers determined by ELISA. A, B Serum and fecal samples obtained 
weekly from piglets immunized with a live attenuated strain 174-1V-80 and challenged by exposure with its virulent strain 174-1 at 2 weeks 
post-vaccination. C, D Serum and fecal samples obtained weekly from piglets immunized with a live attenuated strain PRG942V-80 and challenged 
by exposure with its virulent strain PRG942 at 2 weeks post-vaccination. E, F Serum and fecal samples obtained weekly from piglets immunized with 
a live attenuated strain K71V-80 and challenged by exposure with its virulent strain K71 at 2 weeks post-vaccination. G, H Serum and fecal samples 
obtained weekly from piglets immunized with a live attenuated trivalent vaccine containing live attenuated strains 174-1V-80, PRG942V-80, and 
K71V-80 and challenged by exposure with its virulent strains 174-1, PRG942, and K71 at 2 weeks post-vaccination. Antibody titers are expressed as 
the geometric mean titers (GMTs) for each group (n = 5 piglets per each group).
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evaluation of experimental animals inoculated with each 
of the vaccine strains or filtered supernatant of a mixture 
of homogenized small intestine and its fecal content from 
each round of passage revealed that none of the animals 
showed any histopathologic changes (Additional files 14, 
15, 16, 17, 18, 19). These data demonstrate that each of 
the vaccine strains was safe for use in neonatal piglets.

Discussion
As the list of G and P genotypes for RVA expands, the 
diversity of RVAs infecting domestic animals also rap-
idly increases [10]. Moreover, prevalent G and P geno-
types of RVAs, including porcine and bovine RVAs, can 
change depending on the time or geographical location 
[10, 12]. Therefore, G- and P-genotypes in RVA vaccines 
should match the currently circulating filed strains. In 
South Korea, discrepancies between the predominant 
field G- and P-genotypes of porcine RVAs and those of 
the vaccine strains have resulted in huge economic losses 
in the swine industry [15]. Our previous study showed 
that G- and P-genotype combinations detected in Korean 
porcine RVA strains included G5P[7], G8P[7], G9P[7], 
G9P[23], and G8P[1] [15]. These data indicate that 
Korean porcine RVA strains of G8P[7], G9P[7], G9P[23], 
and G8P[1] genotypes could not be protected against by 
imported and domestic porcine RVA vaccines [15]. In 
response to strong requests from Korean pig farmers and 
veterinarians, an updated live attenuated porcine RVA 
vaccine was developed in the current study to protect 
against not only the globally most prevalent G5P[7] strain 
but also the unique Korean strains G8P[7] and G9P[23]. 
The trivalent RVA vaccine described here should provide 
improved control of porcine RVA infections and disease 
in South Korea and other countries where RVA infections 
with similar G- and P-genotypes included in this vaccine 
are problematic.

RVA vaccines should be able to prevent diarrhea, the 
major RVA-induced symptom [10, 31]. In the current 
study, piglets immunized with each of the live attenuated 
monovalent vaccines or with the live attenuated trivalent 
vaccine were protected from diarrhea upon challenge 
exposure with the homologous virulent strain(s). 

Moreover, immunization of the piglets with each of the 
monovalent or trivalent vaccines markedly reduced the 
development of histopathological lesions in the small 
intestines after challenge exposure to the homologous 
original virulent strain(s). These data demonstrate that 
each of the live attenuated monovalent vaccines and 
the trivalent vaccine was highly effective at protecting 
the piglets from diarrhea and intestinal lesions typically 
induced by the corresponding virulent strain(s).

As against other enteric viruses, secretory IgA (SIgA) 
acts as the first line of defense in protecting the intes-
tinal epithelium from enteric pathogens [14, 32, 33]. 
Therefore, immunization of piglets with RVA vaccines 
should induce the production and secretion of SIgA 
into the lumen of the small intestine to protect the host 
from incoming virulent RVAs. The results from the cur-
rent study suggest that as each of the live attenuated 
monovalent vaccines and the trivalent vaccine protected 
the piglets from diarrhea and development of lesions in 
small intestine by challenge exposure to the homologous 
virulent strain(s), the SIgA detected in the fecal samples 
specific for each of the vaccine strains was induced and 
secreted into the intestinal lumen at amounts sufficient to 
provide protection [32, 33]. Effectiveness of RVA vaccines 
may be influenced by other factors such as malnutrition, 
intestinal microbiome, co-infection of the gut, immuno-
logical immaturity, maternal RVA-specific antibodies, 
and genetic factors [34–44]. These characteristics may be 
evident in low-income settings compared to that in high-
income settings, i.e., high levels of vaccine efficacy have 
been reported for both human monovalent Rotarix and 
pentavalent Rotateq vaccines in high-income settings of 
Hong Kong, Singapore, and Japan, while lower and more 
variable levels of protection have been reported in low-
income settings in sub-Saharan Africa and Asia [34, 36, 
40]. As these factors have not been determined in live-
stock farms, future studies should address this.

Beyond the general belief that RVAs are able to only 
infect the small intestinal mucosa to induce pathol-
ogy, there is accumulating evidence that RVAs may 
spread to extra-intestinal organs and tissues in infected 
humans and animals via a viremia, resulting in systemic 

Table 3  Clinical signs of experimental piglets administrated with each vaccine strain (174-1V-80, PRG942V-80, and K71V-
80) or filtered supernatant of a mixture of homogenized small intestine and fecal contents sampled from each passage 

Vaccine strain Route 
of administration

No. of animals 
in each passage

Clinical signs
(No. of diarrheic animals/No. of animals used)

1st passage 2nd passage 3rd passage 4th passage 5th passage

174-1V-80 Oral route 2 0/2 0/2 0/2 0/2 0/2

PRG942V-80 Oral route 2 0/2 0/2 0/2 0/2 0/2

K71V-80 Oral route 2 0/2 0/2 0/2 0/2 0/2
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symptoms and nongastroenteric clinical diseases includ-
ing respiratory illness and neurological syndromes [45–
49]. In the present study, piglets orally immunized with 
each of the live attenuated monovalent vaccines or the 
trivalent vaccine generated strong serum VN antibody 
titers and increased IgM and IgG levels to each of the 
corresponding RVA strains. These data suggest that oral 
immunization of piglets with the live attenuated mono-
valent vaccines or the trivalent vaccine may protect the 
piglets from viremia and the extra-intestinal lesions 
caused by virulent RVA infection. Indeed, the virulent 
RVA strains G5P[7] K71, G8P[7] 174-1, and G9P[23] are 
reported to induce both intestinal and extra-intestinal 
lesions in experimentally infected piglets [16, 22, 29]. 
Therefore, an ongoing study is investigating whether 
immunization of piglets with these vaccines will protect 
not only from diarrhea and intestinal lesions, but also 
from viremia and extra-intestinal lesions as well.

It has been observed or speculated that the RVA 
genome segments VP4, VP7, VP3, NSP1, NSP2, and 
NSP4 may be involved in RVA virulence and/or host 
range restriction [16, 17, 23, 29, 50–55]. Comparing 
the 80th passage of each vaccine strain with their origi-
nal virulent strains, there were several substitutions of 
deduced amino acids within these suspected genomic 
segments and others. Based on these data, it is difficult to 
specifically identify which amino acid(s) in the particular 
genomic segment(s) are related to RVA virulence. There-
fore, the molecular and biological impact of each amino 
acid change on RVA virulence should be addressed in 
future studies. This could be achieved by using several 
sophisticated methods such as recently developed reverse 
genetics to swap individual genes of these virulent and 
attenuated strains or to introduce particular amino acid 
substitutions [56, 57].

The interspecies transmission of RVAs, either as 
whole virions or as reassortant virions, appears to occur 
in nature [58–63]. In South Korea, many porcine and 
bovine RVAs have been reported as reassortant viruses, 
possibly due to interspecies transmission [15, 18]. For 
example, bovine reassortant strains carrying the bovine 
VP7-G8 and porcine VP4-P [7] genotype are ranked as 
the most frequently isolated strains from the fecal sam-
ples of diarrheic calves [16–18, 20, 23, 29, 57], whereas 
porcine reassortant G8P [7] strains are ranked as the 
second most frequently detected G and P genotypes of 
the Korean porcine RVA strains isolated from the fecal 
samples of diarrheic piglets [15]. In order to protect from 
the G8-bearing RVA strains on pig farms and to prevent 
its spread back to cow farms, strain 174-1V-80 was cho-
sen as one of the current vaccine strains since it contains 
two bovine genotypes (VP7-G8 and VP3-M2) with the 
remaining nine genotypes being of porcine origin [15, 

29]. In addition, G5P[7] strain K71V-80 may prevent 
spread of its corresponding virulent strain to cow farms, 
as G5P[7] carrying bovine RVAs are ranked the second 
most prevalent in calf diarrhea in South Korea [16–18, 
20, 23, 29, 57]. Porcine G9 RVA strains are ranked as the 
third most prevalent cause of diarrhea in pigs [15]. Addi-
tionally, human G9 RVA strains have been identified as 
the fifth most important RVA genotype globally [62], and 
these were the most important genotype in South Korea 
from 2007 to 2009 [63]. As pigs and humans are the only 
species from which G9 RVA strains have been detected, 
pigs are suspected to be potential host reservoirs for 
human RVAs [15, 17, 62]. The current G9P [23] PRG942 
vaccine strain may be protective in preventing the occur-
rence of G9P [23] strains in pigs on farms and may pre-
vent interspecies transmission between pigs and humans.

While efficacy is a critical concern, safety is equally 
important for vaccines. In particular, live attenuated RVA 
vaccines should not cause any clinical signs such as vac-
cine-induced diarrhea. Therefore, the Animal and Plant 
Quarantine Agency, Republic of Korea, requires data 
regarding the safety of porcine live attenuated RVA vac-
cines in mice, guinea pigs, and pigs. In the current study, 
none of the live attenuated monovalent vaccines nor the 
live attenuate trivalent vaccine induced any clinical signs 
including diarrhea in the immunized neonatal piglets, 
indicating that these vaccine strains were safe for use in 
the neonatal piglets. Moreover, these vaccines did not 
induce any clinical signs in immunized mice, guinea pigs, 
or pigs, and none of the live attenuated vaccine strains 
caused diarrhea in any experimental piglets during five 
consecutive passages, further fulfilling the requirements 
of the Animal and Plant Quarantine Agency, Republic of 
Korea.

In conclusion, each of the live attenuated monovalent 
vaccines and the live attenuated trivalent vaccine pro-
tected against diarrhea and alleviated small intestinal his-
topathological lesions in immunized piglets challenged 
with exposure by homologous virulent strains. The pro-
tection appeared to be provided through the induction of 
SIgA into the small intestine. Moreover, these live attenu-
ated vaccines activated RVA-specific serum VN antibody 
titers and induced increased levels of serum IgM and IgG, 
possibly protecting the vaccinated animals from viremia 
and extra-intestinal lesions. In addition, these live attenu-
ated vaccines were safe for use in piglets and demon-
strated no reversion in virulence during five consecutive 
passages in piglets. Further studies are required to dem-
onstrate whether each of the monovalent vaccines and 
the trivalent vaccine may also provide protective effects 
against RVA strains carrying other G and P genotypes. 
This new trivalent vaccine will likely contribute toward 
controlling porcine RVA infections in South Korea and 
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other countries in which RVA infections involving these 
G-and P-genotype are problematic.
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gene-specific primers used for 5′ and 3′ RACE PCR.

Additional file 3. Full-length ORF nucleotide sequence identities (%) 
of ORFa in 11 genomic segments between three Korean porcine 174-
1, PRG942, and K71 strains and other known strains representative 
of corresponding or neighbor genotypes. The nucleotide sequences of 
open reading frame of the virulent and attenuated porcine 174-1, PRG942, 
and K71 rotavirus strains were compared with known RVA strains. The 
values represent the nucleotide similarity of porcine 174-1, PRG942, and 
K71with the reference strains.

Additional file 4. Summary of the histopathological findings in 
the small intestine of the colostrums-deprived neonatal piglets 
inoculated with each virulent strains (174-1, PRG942, and K71), or 
immunized with each live attenuated monovalent or trivalent vac‑
cines and then challenged with each corresponding original virulent 
strain(s). 

Additional file 5. Summary of safety test results for a live attenu‑
ated porcine rotavirus monovalent vaccine strains 174-1V-80, 
PRG942V-80, and K71V-80 in mice, guinea pigs, and pigs. 

Additional file 6. Virus titers of each strain in different passages. 

Additional file 7. Phylogenetic trees based on full-length ORF nucle‑
otide sequences of the VP7, VP4, and VP6 gene segments of RVA 
strains 174-1, K71, and PRG942. Phylogenetic trees were constructed 
using the maximum likelihood method based on General Time Reversible 
(GTR) with gamma distributed substitution model with 500 bootstrap 
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each of the reference genes are listed in Additional file 3. The following 
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indicated. The serial passage of the porcine vaccine strains is represented 
by closed circles.

Additional file 9. Phylogenetic trees based on full-length ORF nucle‑
otide sequences of the NSP1, NSP2 and NSP3 gene segments of RVA 
strains 174-1, K71, and PRG942. Phylogenetic trees were constructed 
using the maximum likelihood method based on General Time Reversible 
(GTR) with gamma distributed substitution model with 500 bootstrap 
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Additional file 13. Comparison of full-length amino acid sequences 
of 11 genomic segments of K71V-80 (G9P[23]) vaccine strain with 
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nated with a live attenuated monovalent vaccine strain (174-1V-80) 
or filtered supernatant of a mixture of homogenized small intestine 
and feces sampled from each passage. 
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(PRG942V-80) or filtered supernatant of a mixture of homogenized 
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Additional file 17. Histopathological changes in the small intestines 
of piglets inoculated with a porcine live attenuated monovalent 
rotavirus strain (174-1V-80) and its serial passages. (A–E) Duodenum 
sampled from piglets inoculated with each of the serial passaged viruses 
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membrane. (F–J) Jejunum sampled from piglets inoculated with each 
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and short crypts in the mucosal membrane. (K–O) Ileum sampled from 
piglets inoculated with each of the serial passaged viruses demonstrated 
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Additional file 18. Histopathological changes in the small intestine 
of piglets inoculated with a porcine live attenuated monovalent 
rotavirus strain (PRG942V-80) and its serial passages. (A–E) Duode‑
num sampled from piglets inoculated with each of the serial passaged 
viruses demonstrated normal long slender villi and short crypts in the 
mucosal membrane. (F–J) Jejunum sampled from piglets inoculated with 
each of the serial passaged viruses demonstrated normal long slender villi 
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and short crypts in the mucosal membrane. (K–O) Ileum sampled from 
piglets inoculated with each of the serial passaged viruses demonstrated 
normal long slender villi and short crypts in the mucosal membrane. 
Bar = 200 μm.

Additional file 19. Histopathological changes in the small intestine 
of piglets inoculated with a porcine live attenuated monovalent 
rotavirus strain (K71V-80) and its serial passages. (A–E) Duodenum 
sampled from piglets inoculated with each of the serial passaged viruses 
demonstrated normal long slender villi and short crypts in the mucosal 
membrane. (F–J) Jejunum sampled from piglets inoculated with each 
of the serial passaged viruses demonstrated normal long slender villi 
and short crypts in the mucosal membrane. (K–O) Ileum sampled from 
piglets inoculated with each of the serial passaged viruses demonstrated 
normal long slender villi and short crypts in the mucosal membrane. 
Bar = 200 μm.
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