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ABSTRACT

ICEberg 2.0 (http://db-mml.sjtu.edu.cn/ICEberg/) is
an updated database that provides comprehensive
information about bacterial integrative and conjuga-
tive elements (ICEs). Compared with the previous
version, three major improvements were made. First,
with the aid of text mining and manual curation, it
now recorded the details of 1032 ICEs, including 270
with experimental supports and 762 from bioinfor-
matics prediction. Second, as increasing evidence
has shown that ICEs frequently mobilize the so-
called ‘hitchhikers’, such as integrative and mobi-
lizable elements (IMEs) and cis-mobilizable elements
(CIMEs), 83 known transfer interactions between 49
IMEs and 7 CIMEs with 19 ICEs taken from the litera-
ture were included and illustrated with visually intu-
itive directed graphs. An expanded collection of 260
chromosome-borne IMEs and 235 CIMEs was also
added. At last, ICEberg 2.0 provides an online tool
ICEfinder to predict ICEs or IMEs in bacterial genome
sequences. It combines a similarity search for the in-
tegrase, relaxase and/or type IV secretion system
and the co-localization of these corresponding ho-
mologous genes. With the recent updates, ICEberg
2.0 might provide better support for understanding
the biological traits of ICEs, especially as their inter-
action with cognate mobilizable elements may fur-
ther promote horizontal gene flow.

INTRODUCTION

Integrative and conjugative elements (ICEs) are impor-
tant members of the bacterial mobile genetic elements
and are integrative to the bacterial chromosome, encoding
fully functioning conjugation machinery and, thus, are self-
transmissible between bacterial cells (1). The cargo genes of
ICEs, such as those encoding virulence factors and acquired
antibiotic resistances, can confer the hosts with selective ad-
vantages, making ICEs a vital driving force for bacterial
adaptation and evolution (2,3). ICEs typically contain the
recombination and conjugation modules, and their features
have been recently elucidated. The integrases (Int) respon-
sible for ICE recombination are usually confined to the ty-
rosine, serine or DDE family. ICEs have two conjugal man-
ners. In all Gram-negative and most of the Gram-positive
bacteria, ICEs are delivered as linear single-stranded DNA
(ssDNA) involving a relaxase, a conjugative type IV secre-
tion system (T4SS) (2). However, in Actinobacteria, some
ICEs are transferred as double-stranded DNA (dsDNA)
involving a RepSA- or RepAM-type replication initiator
protein (Rep) and an FtsK/SpoIIIE domain-containing
protein (Tra) for translocation (4). Thus, ICEs have been
categorized as T4SS-type ICEs and actinomycete ICEs
(AICEs).

ICEs have been identified in increasing numbers from
the exponentially expanding pool of bacterial genome se-
quences (5–11). For example, 200 T4SS-type ICEs were
identified from 2484 complete bacterial chromosomes
based on comparative genomics, in which the conjuga-
tion modules were scanned by CONJScan (11). In addi-
tion, 144 FtsK/SpoIIIE-type ICEs (AICE) were predicted
in 275 Actinobacteria genomes (6). Recently, the online
tool VRprofile detected ICEs based on the identification of
recombination modules (Int) and their adjacent conjuga-
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tion modules (12), but it could not distinguish the T4SS-
type ICEs and AICEs. In 2012, we reported the web-based
open-access database ICEberg 1.0 (13), which archived
both experimentally validated and computationally pre-
dicted ICEs. Since then, a vast number of new ICEs and new
ICE types, such as Tripartite ICEs (14), have been identified
experimentally. Thus, the demand for a database update and
a tool to help predict new ICEs became urgent.

In addition to self-transfer, ICEs have also been reported
to be capable of mobilizing other genetic elements in trans or
in cis, such as the chromosome-borne integrative and mobi-
lizable elements (IMEs), cis-mobilizable elements (CIMEs)
and plasmids. IMEs are genomic islands that encode their
own excision and integration but lack an intact conjugative
apparatus for autonomously conjugative transfer, whereas
CIMEs have lost genes for both integration and transfer but
retain intact attL and attR recombination sites (15). These
elements are devoid of conjugal apparatus and can func-
tion as hitchhikers frequently picked up by ICEs and other
conjugative elements (15,16). For example, in Streptococcus
thermophilus, CIMEL3catR3could be mobilized by ICESt3
in cis via the integration of ICESt3 and subsequently excise
and transfer as a whole composite element (17). Moreover,
the ICEs, IMEs and CIMEs have shown profound diver-
sity in Streptococcus (5,8,10). Indeed, IMEs and CIMEs,
as the important vehicles for the dissemination of virulence
factor genes and acquired antibiotic resistance genes, are
thought to be more widespread than ICEs (7,9,16). To date,
a well-organized IME- and CIME-specific database has not
been reported. The complex interactions between ICEs and
IMEs or CIMEs await exploration (3,15,16).

Here, we report the release of ICEberg version 2.0, which
reflects a large expansion of the dataset of curated ICEs
and their crosstalk with the IMEs. A newly developed on-
line prediction tool for ICEs and IMEs was also integrated.
We expect that ICEberg will provide a better support for
researchers interested in bacterial horizontal gene transfer.

MATERIALS AND METHODS

ICE data update by text mining and manual curations

After manual curation of the search results, 284 PubMed-
archived papers published since 2012 were collected and
added into ICEberg 2.0, resulting in a total of 694 papers in
the database. In ICEberg 2.0, 604 ICEs (of which 84 derived
from experimental data) have been newly added, for a total
collection of 1032 ICEs (of which 270 were experimentally
validated) (Supplementary Table S1). Notably, the number
of the collected AICEs has been expanded from 27 to 181.
The existing data accuracy and reliability, including some
mistakes in ICEberg 1.0 highlighted by peers (8), have also
been manually revisited and cured as best as possible. Simi-
lar to the previous version, ICEberg 2.0 organized the ICE
data using the PostgreSQL relational database, the PHP
data pipeline and HTML web interfaces. However, the ICE
graphical display was achieved with Perl scripts to highlight
the re-annotated genes (cluster) encoding both the recom-
bination module and the conjugation module. The modules
were shown with different colors to facilitate users to com-
pare the ICE genetic structures. In addition, the putative
oriT (origin of transfer) regions in the ICEs with the entire

nucleotide sequences were detected by oriTfinder (18) and
listed in ICEberg 2.0. The length and the GC content of the
ICEs with the entire nucleotide sequences were also calcu-
lated (Supplementary Figures S1 and S2).

ICE hitchhikers, IMEs and CIMEs

ICEs or conjugative plasmids can mobilize IMEs in trans.
Furthermore, IMEs and/or CIMEs can integrate with ICEs
to form ‘tandem accretion’ composite elements, which then
can be mobilized with ICE in cis. Using a visually intu-
itive directed graph, ICEberg 2.0 illustrated the 83 inter-
actions of 19 ICEs and 18 conjugative plasmids with their
hitchhiker, 49 IMEs and 7 CIMEs. For example, the Sup-
plementary Figure S3 shows the main known interactions
among conjugative elements and mobilizable elements in
the five genera. In these directed networks, each node repre-
sents one type of mobilizable genetic element (ICEs, IMEs,
CIMEs or plasmids); each edge, with direction from A to
B node, indicates that element A could mobilize element B
in trans or in cis. Below the graph, a table lists the detailed
information about their transfer interactions, including the
specific donors and recipients and the corresponding exper-
imental literature (see the example in Figure 1). The detailed
interaction information for each IME and CIME is accessi-
ble via the ‘Browse’ page of ICEberg 2.0. In addition, ICE-
berg 2.0 now contains the information of 260 IMEs from
160 bacterial strains and 235 CIMEs from 165 bacterial
strains, including 32 IMEs from 31 bacterial strains and 5
CIMEs from 5 bacterial strains with their experimental sup-
ports.

Integration of the ICE and IME detection tool

We have developed a tool, called ICEfinder, available online
and as a standalone version for the rapid detection of ICEs
and IMEs in bacterial genome sequences. ICEfinder em-
ploys a method we called ‘Pattern-based hit co-localization’
(see the Supplementary Methods) that detects the signature
sequences of the recombination modules and conjugation
modules based on their profile HMMs (19) (Supplemen-
tary Table S2, S3 and Figure S4). It also searches for the
oriT region using the approach proposed by oriTfinder (18).
It then co-localizes, filters and groups the corresponding
genes. At last, those elements carrying an integrase gene, a
relaxase gene and T4SS gene clusters (12,20) are considered
as T4SS-type ICEs, while those without T4SS but with inte-
grase, replication and the AICE translocation-related pro-
teins are thought to be putative AICEs. Those without T4SS
but with integrase and relaxase are tagged as putative IMEs.
ICEfinder also tries to detect some particular IMEs with
integrase and an oriT but no relaxase. ICEfinder employs
ARAGORN (21) with the default parameters to identify
the 3′ termini of the tRNA/tmRNA genes as the putative
ICE insertion sites. It also uses Vmatch (http://vmatch.de/)
with the default options to detect the directed repeats as the
tRNA-distal boundaries. The acquired antibiotic resistance
genes and virulence factors are also identified by NCBI
BLASTp (22) with the cut-off of Ha-value of 0.64 (12).

The ICEfinder online tool allows users to submit a Gen-
Bank file containing a nucleotide sequence and its annota-
tion as a query. A FASTA format file of a raw nucleotide

http://vmatch.de/


D662 Nucleic Acids Research, 2019, Vol. 47, Database issue

Figure 1. The updated web interface of ICEberg 2.0 using the SXT(MO10) in Vibrio cholerae O139 MO10 as an example. (A) The browse modules of
ICEberg on the home page, consisting of three sections (ICEs, IMEs and CIMEs). (B) An overview of the feature of SXT(MO10) with the newly added
putative oriT region (oriT coordinates, the corresponding link of most related oriT in oriTDB and the detailed sequences) and relaxase gene (coordinates,
locus tag and MOB family). (C) Detailed information on the mobile interactions between ICEs and IMEs or CIMEs in both graph and table format. (D)
A graphical display of ICE genetic modules was constructed using a local Perl script. AR: acquired antibiotic resistance genes; T4SS, type IV secretion
system.
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sequence is also accepted, which is annotated using our
gene annotation tool CDSeasy (12) and is then used as the
input for the following ICE detection. ICEfinder uses the
CGView circular genome visualization tool (23) to display
the distribution of the predicted T4SS-type ICEs, IMEs
and AICEs in the query bacterial genome. In addition, the
ICEfinder has a comparison module (Supplementary Fig-
ure S5) that allows performing the alignment between the
identified ICE loci against the ICEberg-archived ICEs us-
ing MultiGeneBlast (24).

RESULTS AND DISCUSSION

Recent developments present in this study have further im-
proved the data quality of ICEberg, such as the ICE cura-
tion based on experimental evidence. Compared with ICE-
berg 1.0, the updated 2.0 version offers three major im-
provements: (i) new T4SS-type ICE and AICE data via
manual curation; (ii) transfer interactions with IMEs and
CIMEs and a supplement of IME and CIME data; and (iii)
a prediction tool for ICEs and IMEs. ICEberg 2.0 currently
recorded the details of 1032 ICEs, including 270 ICEs with
experimental supports (Supplementary Table S1). It also
collected 260 IMEs and 235 CIMEs.

ICEberg browse module

ICEberg provides a flexible and biologist-friendly web in-
terface. The browse module contains detailed information
on all archived ICEs that are tagged with thumbnail icons
corresponding to the availability of experimental support,
full nucleotide sequences, and information on the transfer
interactions with IMEs. Notably, the 83 transfer interac-
tions between 49 IMEs and 7 CIMEs with 19 ICEs and 18
conjugative plasmids were also illustrated using intuitive di-
rected graphs to visualize the complex and diverse interac-
tions of IMEs with ICEs (Supplementary Figure S3), in-
cluding trans- or cis-mobilization after a tandem accretion.
As an example, the ICE SXT in Vibrio is shown in Fig-
ure 1. The SXT has been reported to mobilize three IMEs:
MGIVvuTai1, MGIVchUSA1 and MGIVflInd1 (25) (Fig-
ure 1). These IMEs only contain oriT sites similar to the
oriT of SXT (63% identities for the 282 bp matching re-
gions) (25) for the conjugation and lack relaxase and cou-
pling protein genes. In addition, CTnDOT, the most widely
studied ICE in Bacteroides, can in trans mobilize co-existing
ermF region (26), NBU1 (27), NBU2 (27) or Tn4399 (27)
from Bacteroides donors to Bacteroides recipients. The four
IMEs all encode MOBp relaxases and cognate oriT re-
gions. The first three IMEs also encode tyrosine recombi-
nases. Similarly, another Bacteroides ICE, CTnERL, which
is highly identical to CTnDOT but lacks the ermF portion,
can also mobilize NBU1 (27,28), NBU2 (27,28) and the
ermF region (26) in trans. However, the available experimen-
tal data of the mobilizing interactions between ICEs and
IMEs (Supplementary Table S4) are still inadequate for the
extensive prediction of the putative mobilized elements of
ICEs or the mobilizing elements of IMEs inversely.

ICE reference dataset

The downloadable dataset of ICEberg has been popularly
used, such as the analysis of the interaction between bacte-
rial mobile genetic elements and the CRISPR (clustered reg-
ularly interspaced short palindromic repeats) immune sys-
tem (29). The new download module of ICEberg 2.0 now
provides diverse types of reference data of ICEs for off-
line analysis. ICEs datasets are more clearly categorized ac-
cording to the availability of experimental evidence and/or
full sequences. Here, we show an example of using the
downloadable ICE data to analyze the targets of CRISPR
spacers. Like phages or conjugative plasmids, the trans-
ferred ICEs in recipients might be recognized and cleaved
by CRISPR systems. In turn, some ICEs might evolve
mechanisms to prevent the inhibition. Here, we search for
the targets of CRISPR spacers in the ICEberg-collected
ICE sequences. Using CRISPRTarget (30) with the cut-
off score of 20 by default and the 125 497 CRISPRdb-
collected non-redundant spacers (31), a total number of
831 targets of CRISPR spacers are found in 340 ICEs,
in which 272 spacers are distributed on 104 experimen-
tally validated ICEs (Supplementary Table S5). Notably,
34 ICEs with detectable CRISPR targets also code for the
putative anti-CRISPR (Acr) proteins (BLASTp E-value <
0.001; Supplementary Table S5) that evade that CRISPR
immunity (32), such as the PAGI-5 of Pseudomonas aerug-
inosa PSE9 (33), ICEMlSymNZP2037 of Mesorhizobium loti
NZP2037 and ICEMlSymR7A of M. loti R7A. These find-
ings indicate that these ICEs might process the complex in-
teractions with the CRISPR immunity system.

ICE and IME prediction tool

To facilitate the rapid identification of ICEs and their
potentially associated IMEs in bacterial chromosome se-
quences, we developed a user-friendly tool called ICEfinder
that is publicly available both online and as a standalone
version. It detects both T4SS-type ICEs and AICE. The
performance of ICEfinder has been evaluated by three fre-
quently used metrics, recall, precision and F1 (F-measure)
(Supplementary Methods and Table S6). As an example of
the application of ICEfinder, we scanned the 9434 bacterial
genomes downloaded from the NCBI RefSeq database in
April 2018. ICEfinder detected 1109 T4SS-type ICEs in 928
bacterial chromosomes and 375 AICEs in 198 Actinobac-
teria genomes (Supplementary Table S7). In addition, 1777
IMEs were identified in 1470 bacterial genomes (Supple-
mentary Table S7). For example, 216 putative ICE regions
with the size from 37 to 143 kb were discovered from the 279
completely sequence chromosomes of Klebsiella pneumo-
niae, which is an increasingly important human pathogen.
Notably, 90 ICEKp1-like regions carried the biosynthetic
gene clusters for yersiniabactin, 14 of which harbored an
additional colibactin biosynthetic gene cluster (Supplemen-
tary Figure S6). Only few putative IMEs of K. pneumoniae
have been reported before, such as GIE492 (34), which was
22.3 kb and was predicted to be mobilizable by ICEKp1;
however, in this study, 92 putative IMEs with sizes ranging
from 7 to 40 kb were identified in 86 K. pneumoniae chro-
mosomes using ICEfinder. These findings indicate that the
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prevalent and diverse ICEs and IMEs might play an impor-
tant role in the genome evolution of K. pneumoniae. How-
ever, it should be noted that for various reasons, ICEfinder
may not provide the precise boundaries of ICEs and IMEs.
For example, some ICEs and IMEs are also reported to in-
tegrate into the 3′ or 5′ ends of protein-coding genes besides
the most common tRNA gene sites. Cury et al. used com-
parative genomics to delimit ICEs at the gene level (11), but
the accurate delimitation of ICEs and IMEs still has a long
way to go.

CONCLUSION

Here, we reported a major update of ICEberg and focused
on ICEs and their interactions with the genetic elements of
other types. ICEberg 2.0 collected and integrated the sys-
tematic information of ICEs and their interactions with mo-
bilizable elements from peer-reviewed publications. A tool,
called ICEfinder, available in both web server and stan-
dalone versions for the prediction of ICEs and IMEs, was
also provided, which could facilitate the investigation of
the widely distributed conjugative and mobilizable elements
from the rapidly growing bacterial genomic data. Newly
available information about ICEs and associated IMEs will
be updated and improved regularly to keep up with the
rapidly expanding microbial genome database. Ultimately,
we propose an updated ICE-specific resource to facilitate
efficient exploration of large numbers of these elements and
an improved understanding of their biological traits.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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