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ABSTRACT

Meta-omics approaches have been increasingly used
to study the structure and function of the micro-
bial communities. A variety of large-scale collabo-
rative projects are being conducted to encompass
samples from diverse environments and habitats.
This change has resulted in enormous demands for
long-term data maintenance and capacity for data
analysis. The Global Catalogue of Metagenomics
(gcMeta) is a part of the ‘Chinese Academy of Sci-
ences Initiative of Microbiome (CAS-CMI)’, which fo-
cuses on studying the human and environmental
microbiome, establishing depositories of samples,
strains and data, as well as promoting international
collaboration. To accommodate and rationally orga-
nize massive datasets derived from several thou-
sands of human and environmental microbiome sam-
ples, gcMeta features a database management sys-
tem for archiving and publishing data in a standard-
ized way. Another main feature is the integration of
more than ninety web-based data analysis tools and
workflows through a Docker platform which enables
data analysis by using various operating systems.
This platform has been rapidly expanding, and now

hosts data from the CAS-CMI and a number of other
ongoing research projects. In conclusion, this plat-
form presents a powerful and user-friendly service to
support worldwide collaborative efforts in the field of
meta-omics research. This platform is freely acces-
sible at https://gcmeta.wdcm.org/.

INTRODUCTION

‘Meta-omics’ (e.g. metataxonomics, metagenomics and
metatranscriptomics) approaches have been increasingly
used to study the structure, function and intercellular inter-
actions of the microbial communities and the fundamen-
tal mechanisms of microbial life and evolution. Dramatic
progress in the next generation sequencing technology has
made large-scale sampling and sequencing possible, even
for individual laboratory. Meta-omics has also promoted
collaborative efforts in a grand vision across the interna-
tional research community, as exemplified by the Earth
Microbiome Project (EMP) (1) and Human Microbiome
Project (HMP) (2). These collaborative projects have pro-
duced large volume of data and hence generated meaning-
ful interpretations from a full spectrum of sources which
are impossible with a single independent study. Along with
these changes, microbiome research is becoming a data
driven science (3) and rapid advances in this area have
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brought about significant challenges. Firstly, comparing
data from independent research groups becomes difficult if
standard operating procedures (SOPs) and reporting stan-
dards are not followed. Adhering to universal standards
in every step of the study, including sampling, sequencing,
data submission, data analysis, and data publication, is nec-
essary to understand the results of a single study within a
broader context (4). Recently, significant efforts have been
made for the development of universal protocols and stan-
dards (5). Although, well-organized and reputable collab-
orative projects often have built-in standards (http://www.
microbiome-standards.org/) and SOPs (6), sometimes it be-
comes difficult for different projects to implement identical
standards. For example, human and environmental micro-
biota data from different projects are not readily compa-
rable due to inconsistencies in standards, protocols as well
as workflows (7). Further developments, and more impor-
tantly, adoption of these SOPs and standards by all projects
and labs worldwide is crucial for the scientific community.
The second challenge is long-term preservation and open
access of the data. Integration of all relevant publicly avail-
able data is a prerequisite for future cross-studies. A stable
and robust data infrastructure is needed that would provide
a reliable data archive and rational data organization, thus
ensuring data reproducibility and allowing data reinterpre-
tation. The third challenge is to analyze Gigabyte (GB) to
Terabyte (TB) scale data on a single computer. Despite the
availability of a variety of stand-alone tools, it is almost im-
possible for any given individual lab to have sufficient infras-
tructure for data storage and to maintain multi-computer
network clusters resources (8). Currently, there are several
public resources, including the European Bioinformatics In-
stitute (EBI) metagenomics (9), the Metagenomics RAST
server (MG-RAST) (10) and the JGI IMG Integrated Mi-
crobial Genomes & Microbiomes (IMG/M) (11). However,
considering the rapid increase in data volume and grow-
ing demands for data analysis capacity, more public services
with the ability to provide data archiving and cloud-based
data analysis are required (12).

Because of the wide geographical coverage, rich ecosys-
tem, as well as diverse ethnicity and lifestyles of the peo-
ple, China harbors enormous diversity of microbial com-
munities. In comparison to developed countries, however,
the microbial communities in China are less comprehen-
sively and systematically studied. China also lacks nation-
wide collaborative projects. The Chinese Academy of Sci-
ences Initiative of Microbiome (CAS-CMI) is one of the
leading projects organized at the national level to find solu-
tions to the current challenges in human and environmen-
tal health, agriculture and industrial developments. At the
same time, it will establish the biobanks (samples, strains
and data) of Chinese Microbiome Initiative, and support
long term preservation and reuse of data worldwide in a free
and open way.

The Global Catalogue of Metagenomics (gcMeta) plat-
formis a part of the CAS-CMI. As a partner database of the
World Data Center for Microorganisms (WDCM) (13) as
well, gcMeta has two features: firstly, designing and imple-
menting as a standardized and state-of-art database man-
agement system to support long-term preservation and in-
tegration data from the CAS-CMI project as well as from

microbiome research projects worldwide. Secondly, the plat-
form provides web-based tools and pre-defined workflows,
along with computing resources for massive data analysis
requirements globally.

PLATFORM DESIGN AND IMPLEMENTATION
How to use the platform

The platform supplies management, analysis and pub-
lication services for microbiome related data, including
genomes, marker genes, metagenomes, metatranscriptomes
and their associated metadata (Figure 1). The users can up-
load the raw data and their metadata into the system via
a web submission interface or a data upload web appli-
cation. After data quality check, the data can be browsed
in the system under the user’s account. Currently, we pro-
vide web-based analysis workflows for marker genes and
whole-genome shotgun sequencing (WGS) data. The users
can use these workflows or individual tools for data analysis
and visualization. The Global Unique Persistent Identifier
(GUID) system is used for the open data. To publish the
data, users should change the status of their data from “pri-
vate’ to ‘public’, then, the system assigns a persistent iden-
tifier (PID) (http://www.pidconsortium.eu/) to the each of
the records. The PID is used to cite the data elsewhere and
provide a report to the users.

For data protection, login is required before data submis-
sion and exploring the full functions. We provide a tempo-
rary guest account effective for 24 h along with any sub-
missions, uploaded files and analysis results. All the pub-
lic available primary raw data or metadata could be down-
loaded. Access to gcMeta is free at https://gcmeta.wdem.
org/.

Database design

The database hosts information on samples and their as-
sociate metadata, and primary ‘raw’ data. A relational
database is used to host all relevant data. Schema of the
database is shown in Figure 2. The major data record types
are ‘Study’, ‘Sample’, ‘Experiment’ and ‘Sequence’. ‘Study’
could include several ‘sub-studies’ and is related to ‘Sam-
ple’ by the ‘Study ID’. The samples and their associated
metadata are recorded. ‘Sample’ is referenced to ‘Experi-
ment’. ‘Experiment’ is further referenced to sequence infor-
mation. The sequence information contains the sequencing
methods and strategies, as well as the processing of the se-
quencing results, including data quality control and assem-
bly. The gcMeta platform is implemented by an open source
database system PostgreSQL.

Ontologies and data standards are crucial to ensure
reusability and interoperability of data. To ensure data com-
parability and consistency between CAS-CMI and pub-
lic data resources, gcMeta adopts the Minimum Informa-
tion about Metagenomic Sequence (MIMS) (14) and Min-
imum Information about a MARKer gene Sequence (MI-
MARKS) (15). It also uses the Minimum Information of
any(x) Sequence (MIxS), which describes 15 different en-
vironmental packages to specify the environmental context
of a microbial sample. The Environment Ontology (ENVO)
(16) for the three environmental metadata fields including
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Figure 1. General pipeline of the gcMeta platform. The functional services of gcMeta can be described in three parts: data management, data analysis and
data publication. Users submit the meta-data and primary raw data into the system under their own accounts. Users are allowed to analyze the data by
preinstalled tools and workflows. Data and results could be downloaded for further analysis. A unique identifier PID would be assigned to each record

before the data is public. If the data is further cited in other resources with the

PID, the citation could be traced automatically.
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Figure 2. Database schema of gcMeta. Main data structure and relationships between the different tables are illustrated.

environmental biome, feature and material is used to de-
scribe the sampling in the system, using a total of 95 con-
trolled terms.

Data sources

As of August 2018, gcMeta has archived a total of 3053
studies and 124 052 samples, hosting more than 120 TB

of sequencing data. We have two major data sources. The
first is publicly available data (e.g. MG-RAST, EBI metage-
nomics and HMP). Publicly available data are integrated
based on isolation sources, environmental features and ex-
periment types, and thus allowing data comparison across
different data resources. Efforts were made to overcome
varying data quality level, format and (lack of) metadata de-
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scription. Expression was unified according to environmen-
tal ontologies. Secondly, gcMeta serves as a data catalogue
for the CAS-CMI project and some other ongoing projects
in China. This platform has been rapidly expanding, and
now hosts CAS-CMI project sample data from waste wa-
ter, human gut, characteristic Chinese fermented food and
so on. The number of samples from these projects is more
than 2000 up to now.

Data management services

The system allows two routes of data submission. Users can
establish a record of their studies and associated samples
and experiments online one by one through a web form as
indicated in Figure 3. For raw sequence data, users can up-
load data to the system using a web application. To submit
high volume of data in a single session, users can choose
a simple tab-delimited file format such as Microsoft Excel.
Implementation of data standards occurs during database
design as well as prior to the generation of the data in the
sampling stage. We also use data validation tools during the
on-batch data submission. The system is able to accept data
submission from all over the world and offers standardized
quality control for the submitted data.

The platform under the CAS-CMI project coordinates
with other research institutes, universities, and hospital
across China for data repository. Since the ongoing projects
are one of the forms of data sources, some data are currently
not available to the general public at this stage; data can
be accessed via project members only, but it will eventually
be publicly available. Data submitters can upload and share
their pre-publication data with their research collaborators.
Only controlled-access is available for pre-publication data.
When required by journals, the data status could be seam-
lessly switched from ‘private’ to ‘public’ in the system. In
this way, we encourage data sharing while protecting data
privacy and security. We limit the number of mandatory
fields to keep a balance between the burden on contribut-
ing scientists and reusability of the data for future analysis.
The data could be searched and browsed online after it is
submitted.

After the data is set public, PID will be assigned to
each ‘Study’ ‘Sample’ ‘Experiment’ and ‘Sequence’ record.
The PID is a Global Unique Persistent Identifier system
that provides long-term identifying service similar to
Digital Object Identifier (DOI) (http://www.doi.org/).
An example of PID in gcMeta for ‘Study’ is
21.86101/gecm.study.88¢c292¢8f67¢11e7b172b49691092464,
where 21”7 is the handle prefix for PID. ‘gem.study’ is
identifier for ‘Study’ records in the gcMeta database
and ‘88c292e8f67c11e7b172b49691092464° is a randomly
assigned series code for the record. The PID can be used to
search the Handle (http://hdl.handle.net) site.

Data analysis and visualization workflows

Metagenomics data are often referred as ‘marker gene am-
plification metagenomics’ and ‘full shotgun metagenomics’.
Depending on the data types, general workflows for data
analysis include two different categories. A wide array of
tools are currently available to carry out each step of the

workflows (17). In gcMeta, we supply analysis tools and
workflows which are installed based on Docker technolo-
gies, and thus allow users with limited computational re-
sources to perform analysis of metagenomic samples.

Dockerized analysis tools

More than 90 tools could be used for microbial genomic
and metagenomic analysis in web-based interactive mode.
These tools are grouped into 6 different categories accord-
ing to their functions: raw reads preprocessing, sequence
assembly, genome structural analysis, database annotation,
community profiling and sequence alignment (shown in Ta-
ble 1). (1) Raw reads preprocessing contains formatting,
trimming, filtering, error-correcting and other tools, which
are used to reformat or filter the raw data for downstream
analysis. (2) Sequence assembly includes assembly, exten-
sion and validation tools for both DNA and RNA se-
quences. Short or long reads become contigs, scaffolds,
draft genomes or even complete genomes after this process.
(3) Genome structural analysis contains tools for gene pre-
diction, tandem or interspersed repeat detection, CRISPR
array detection, etc. The outputs of some tools can be used
for further annotation with various databases. (4) Database
annotation groups some of the automatic gene annotation
tools such as Prokka, DFAST and InterProScan. Format-
ted databases for annotation are stored in gcMeta for se-
quence alignment. (5) Community profiling includes tools
for classification and quantification, de novo binning, com-
munity function prediction and downstream analysis both
from short reads and contigs of metagenomic data. (6) Se-
quence alignment contains mapping and alignment, phylo-
genetic and evolution analysis tools.

Integrated analysis workflows

Since outputs of upstream tools can be severed as the in-
puts of downstream tools, tools can be easily concatenated
to achieve a predefined workflow in this platform. Till date,
there has been no generally accepted ‘analysis standard’ for
a metagenomic analysis workflow. Most workflows involve
aspects such as quality control, assembly, binning, tax-
onomic assignment and functional annotation. However,
each workflow is tailored for specific computing resources,
aims of analysis and characteristics of the data. In gcMeta,
we provide five main workflows for genomes, marker genes,
metagenomes analysis. All merged in the workflow overview
in Figure 4, and they are:

1) Metagenome assembly and annotation (microbiome

sample - NGS reads—quality control-—assembly
and validation—binning—genome structural
analysis—database annotation): In this workflow,

we assemble the short reads into contigs. These con-
tigs can be further sorted or binned by similarity to
assemble partial to full genomes of microorganisms.
The assembled sequences are used for subsequent
structural and functional analysis. Firstly, NGS reads,
as input, are trimmed into clean reads after performing
quality control (host genome contamination removal
with Bowtie using parameter ‘very-sensitive’, quality
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Table 1. Tools embedded in the gcMeta platform. The tools belong to the group raw reads preprocessing, sequence assembly, genome structural anal-
ysis, database annotation, community profiling and sequence alignment are set as red, blue, purple, orange green and yellow respectively. BBtools
software suite (http://jgi.doe.gov/data-and-tools/bbtools/), FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/), fastp (https://github.com/
OpenGene/fastp/), Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), minced (https://github.com/ctSkennerton/minced/tree/
master) and RepeatMasker (http:/ftp.genome.washington.edu/cgi-bin/RepeatMasker) are all referenced to their websites

TYPE TOOL TYPE TOOL TYPE TOOL

formatting SRAtoolkit (18) assembly SOAPdenovo2 (46) gene GeneMark (78)
simulation ART (19) assembly SPAdes (47,48) gene FragGeneScan (79)
simulation pIRS (20) assembly MetaVelvet (49) repeat XSTREAM (80)
package BBtools assembly ALLPATH-LG (50) repeat RepeatMasker
checking fastQC assembly Meta-IDBA (51) variation PRISM (81)
trimming cutadapt (21) assembly MEGAHIT (52) variation LUMPY (82)
trimming Trimmomatic (22) assembly RayMeta (53) annotation Prokka (83)
trimming fastp assembly CANU (54) annotation ~ DFAST (84)
trimming dustmasker (23) extension CAP3 (55) annotation InterProScan (85)
trimming DRISEE (24) extension SSPACE (56) annotation =~ PfamScan (86)
correction Musket (25) scaffolding  OPERA (57) packages QIIME (87)
correction SOAPec (26) validation QUAST (58,59) marker LEfSe (88)
correction LoRDEC (27) validation REAPR (60) function PICRUSL (89)
correction proovread (28) validation CheckM (61) profiling MetaCV (90)
polishing Quiver (29) validation BUSCO (62) profiling k-SLAM (91)
merging FLASH (30) assembly cufflinks/cuffdiff (63,64) profiling Kaiju (92)
trimming Trim Galore assembly StringTie (65) profiling Centrifuge (93)
distance orthoANI (31) expression  Sailfish (66) profiling DUDes (94)
clustering CD-hit (32) expression  Kallisto (67) profiling mOTU (95)
alignment MUMmer (33) expression  DESeq2 (68) profiling StrainEst (96)
mapping BWA (34,35) expression  Ballgown (69) distance Mash (97)
mapping Bowtie2 (36) assembly Trinity (70) profiling sourmash (98)
formatting samtools (37) assembly Oases (71) profiling MetaPhlAn2 (99)
alignment BLAST (38,39) assembly SOAPdenovoTrans (72) function HUMANN2 (100)
alignment BLAT (40) CRISPR PILER-CR (73) bining CONCOCT (101)
alignment diamond (41) CRISPR minced bining MaxBin2 (102)
alignment STAR (42) RNA tRNAscan SE (74) bining MetaBAT2 (103)
alignment Tophat2 (43) RNA RNAmmer (75) bining AbundanceBin (104)
alignment hisat2 (44) gene Prodigal (76) virus VirFinder (105)

mapping BLASR (45) gene Glimmer (77) virus-host VirHostMatcher (106)
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2)

viewing with FastQC and trimming with cutadapt and
Trimmomatic). During the host contamination removal
process, users can upload the host reference genome
or use the index file we provide. Next, clean reads
are assembled into contig and scaffold (MEGAHIT).
After assembly, contigs and scaffolds are clustered into
different bins (MaxBin) and used to perform genome
structural analysis (CRISPR detection with PILER-
CR, gene prediction with Prodigal, RNA identification
with tRNAscan). Then, genes are used to perform
annotation (annotation with all referred annotation
and alignment tools).

Metagenomic  16S  rRNA  sequencing  am-
plicon taxonomic assignment (microbiome
sample—NGS reads—quality control—taxonomic
assignment—downstream analysis): As shown in

Figure 4, NGS reads, as input, are trimmed and de-
multiplexed (cutadapt, dada2, demux plugins) with
QIIME2 (https://qiime2.org/), and used to perform
taxonomic assignment, diversity analysis (diversity
analysis, feature-classifier, feature-table, taxa, com-
position plugins) and phylogenic analysis (phylogeny
plugins) with QIIME2 and other downstream analysis
(function prediction with PICRUSt and biomarker
discovery with LEfSe).

3)

4

5)

Reference based metagenome taxonomic assign-
ment (microbiome sample—NGS reads—quality
control—taxonomic assignment—downstream anal-
ysis): Read-based taxonomic assignment uses the
unassembled DNA or mRNA sequence reads directly
and compares them against reference databases to
assign taxonomy name to the sequence. NGS reads,
as input, are trimmed into clean reads as depicted
in workflow 1. Clean reads are then used to perform
taxonomic (MetaPhlAn2) and functional assignment
(HUMANN2?).

Genome assembly and annotation  (isolated
sample—NGS/TGS reads—quality control-—assembly
and validation—Genome structural analysis - database
annotation): For NGS reads, the workflow is the same
as workflow 1, except that there is no contamination
removal step in quality control process and contig
binning step in assembly process in workflow 4. For
TGS reads, as input, are trimmed into clean reads and
assembled into contigs and scaffolds with CANU. The
draft genomes are then polished with Quiver. Structure
analysis and annotation process are the same as in
workflow 1.
RNA-seq analysis
reads—quality

NGS
and

(isolated  sample -
control—alignment—assembly
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result. The example shows PCoA plot generated by ggplot package.
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Figure 6. System structure of gcMeta. The platform integrates storage cluster and computing cluster resources with database management system and
Docker based tools and workflows to supply comprehensive data archive, publication and analysis service to users.

differential expression analysis): This workflow allows
users to identify differentially expressed genes and
transcripts by comparing each sample with RNA-seq
data. Firstly, NGS reads, as input, are trimmed into
clean reads after quality control (quality viewing with
FastQC and trimming with TrimGalore). Next, cleaned
reads are aligned to the reference genomes with Hisat2.
Then, the alignment result is used as an input to assem-
ble transcripts. After assembly, differential expression
analysis based on the assembled transcripts will be
executed with DESeq?2.

Implementation and utility of the tools and workflows

The currently available tools and workflows are developed
for different server systems, and often difficult to install,
configure and deploy by the microbiologists. Since software
typically depends on libraries and other components of the
installed environment, a workflow implemented in one envi-
ronment may not work in another environment without ex-
tra configuration. To solve this problem, we use the Docker-
based technologies. Docker is a Linux-based container tech-
nology that allows tools to run across a wide range of oper-
ating systems, and helps users to deploy and reproduce tools
and workflows without undue efforts (107).

The tools and workflows provide a web-based interface
for the users as indicated in Figure 5. The job can be submit-
ted into the tasks queue after the users submit their files into
the system and select a specific tool or workflow and set the
essential parameters. If sufficient computing resources are
not available, the job is put on waiting schedule. Job status
is refreshed in the task page for user view. When the job is

completed, results could be downloaded and visualized on-
line.

Details of all the tools and workflows, including input for-
mat requirements, arguments setting and examples, are de-
scribed in the Supplementary file and online manual https:
/lgemeta.wdem.org/im/manual/index.jsp.

System design and implementation

The system as indicated in Figure 6 is based on central-
ized computing and storage resources. The database man-
agement system is divided into metadata management, se-
quencing raw data management and user information man-
agement. The current version of the gcMeta database is con-
structed on the basis of PostgreSQL for metadata and user
information, and MongoDB for sequencing raw data index
information. The system is operated on Linux servers. The
web interface was developed using Python. Tools and work-
flows were installed with Docker technologies.

DISCUSSION

With the vast diversity of microbial communities and ex-
ponentially increasing amount of meta-omics data, we are
facing great challenges in organized data management and
deep data mining. As a part of the efforts of CAS-CMI,
gcMeta provides long-term data preservation and man-
agement following the internationally used standards and
hence serves as a public data repository. We provide data
protection for pre-publication data and GUID for public
data, which ensures the reuse of data as required by the sci-
entific community. The platform houses and incorporates
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data from public and ongoing microbiome projects, and
supports comparative analysis of the data collected from
distinct projects.

Another key feature of the platform is we offer a set of
data analysis and visualization tools and predefined work-
flows by web interface which facilitates data analysis by mi-
crobiologists in an easy way. As the system is based on the
Docker technology, it can be run by a variety of operational
systems. The analysis application is integrated with the in-
house computing resources which provide scientists a ro-
bust site for powerful data analysis.

We will keep updating the database and workflows to sup-
port the rapidly increasing datasets and complicated stud-
ies. gcMeta accepts data submission for single genome, mi-
crobiome and transcriptome data. Meanwhile, we will es-
tablish connection with other data portals to ensure data
properly deposited and preserved within the International
Nucleotide Sequence Database Consortium (INSDC). On
the other hand, the meta-omics data analysis is becoming
more and more diverse. Predefined workflows could not
fit for all the analysis aims. Therefore, the future version
of gcMeta will provide customized workflows for profes-
sional bioinformatics who are interested in the data and
computing resources while hope to develop their own anal-
ysis workflows.

Additionally, current meta-omics data and associated
analysis results are widely dispersed in different kinds of re-
sources from public data archives to specialized databases.
Integration of various types of meta-omics data is essen-
tial for a comprehensive understanding of the structure,
functions and expressions of a specific community, species,
strain or gene. Updating our database schema to accommo-
date diverse data and providing rational links among those
data through semantic web technologies are future planned
directions as well.

Moreover, with increasing data from microbiome
projects in China and worldwide, high quality reference
data are needed for accurate data annotation. However,
the current type strain genomic data resources in the
public database are still unable to fullfill the requirements.
The Global Catalogue of Microorganisms (GCM) 2.0
type strains (108) sequencing project and The Genomic
Encyclopedia of Bacteria and Archaeca (GEBA) project
(109) are the ongoing efforts to fill in this gap. We plan to
integrate the GCM 2.0 sequencing outputs into our system
to provide more accurate annotation of metagenomics
data. In conclusion, gcMeta will continuously improve to
accommodate the evolving meta-omics researches.
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Supplementary Data are available at NAR Online.
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