
Biomimetic encoding model for restoring touch in bionic hands 
through a nerve interface

Elizaveta V. Okorokova#1, Qinpu He#1, and Sliman J. Bensmaia1,2

1–Committee on Computational Neuroscience, University of Chicago

2–Department of Organismal Biology and Anatomy, University of Chicago

# These authors contributed equally to this work.

Abstract

Background: Hand function can be restored in upper-limb amputees by equipping them with 

anthropomorphic prostheses controlled with signals from residual muscles. The dexterity of these 

bionic hands is severely limited in large part by the absence of tactile feedback about interactions 

with objects. We propose that, to the extent that artificial touch mimics its natural counterpart, 

these sensory signals will be more easily integrated into the motor plan for object manipulation.

Methods: We describe an approach to convey tactile feedback through electrical stimulation of 

the residual somatosensory nerves that mimics the aggregate activity of tactile fibers that would be 

produced in the nerve of a native hand during object interactions. Specifically, we build a 

parsimonious model that maps the stimulus – described as time-varying indentation depth, 

indentation rate, and acceleration – into continuous estimates of the time-varying population firing 

rate and of the size of the recruited afferent population.

Results: The simple model can reconstruct aggregate afferent responses to a wide range of 

stimuli, including those experienced during activities of daily living.

Conclusion: We discuss how the proposed model can be implemented with a peripheral nerve 

interface and anticipate it will lead to improved dexterity for prosthetic hands.

INTRODUCTION

Manual interactions with objects involve not only precise control of the fingers and wrist but 

also a continuous barrage of somatosensory signals from the hand (Johansson & Flanagan, 

2009). These signals convey information about hand movements and postures, about 

physical interactions with the object – contact location, contact timing, contact pressure, slip 

–, and about the object itself – its size, shape, and texture. Some of these signals, particularly 

those related to hand proprioception, are carried by nerve fibers that innervate the muscles 

and tendons. Others, those related to object contact in particular, are carried by thousands of 

tactile nerve fibers that innervate the palmar surface of the hand. The different classes of 

nerve fibers differ in their response properties: slowly adapting type 1 fibers (SA1) respond 

best to skin indentations, slowly adapting type 2 fibers (SA2) to skin stretch, rapidly 

adapting (RA) fibers and Pacinian corpuscle (PC) fibers to low and high frequency 

vibrations, respectively (Saal & Bensmaia, 2015). SA2 fibers are not included in TouchSim 

because these fibers absent in the glabrous skin of monkeys (from whose afferent responses 
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TouchSim was developed). Without these tactile signals, dexterity is severely compromised 

(Augurelle, 2002; Witney, Wing, Thonnard, & Smith, 2004).

Much of what is known about neural coding in the peripheral nerve stems from recordings 

from individual nerve fibers in anesthetized monkeys or awake humans (Talbot & 

Mountcastle, 1968; Vallbo & Hagbarth, 1968). Attempts to reconstruct the responses of 

afferent populations based on single afferent recordings typically involve estimating time 

averaged firing rates across afferent populations. The prevailing conclusion from this body 

of work is that individual tactile fibers carry ambiguous information about a contacted object 

and that tactile information is distributed over populations of fibers (Johnson, 2001; Muniak, 

Ray, Hsiao, Dammann, & Bensmaia, 2007; Saal & Bensmaia, 2014).

We have recently developed a computational model – dubbed TouchSim – that simulates the 

responses of all tactile fibers to any spatiotemporal deformation of the skin of the hand 

(Saal, Delhaye, Rayhaun, & Bensmaia, 2017). With this model, we can characterize with 

unprecedented spatial and temporal precision how tactile information is distributed across 

afferent populations. In addition to its potential to address basic questions about sensory 

coding in the somatosensory nerves, this newfound capability can inform precisely how to 

restore the sense of touch in bionic hands through electrical activation of tactile nerve fibers 

(Delhaye, Saal, & Bensmaia, 2016; S. S. Kim et al., 2009; Saal & Bensmaia, 2015).

Indeed, given the importance of touch to dexterity, to construct an agile bionic hand requires 

not only the ability to move the hand precisely but also the means to receive tactile signals 

about the consequences of these movements, particularly as they pertain to object 

interactions (Bensmaia & Miller, 2014; Saal & Bensmaia, 2015). In principle, TouchSim 

provides us with a precise blueprint of tactile restoration as it describes how each tactile 

nerve fiber will respond to object contact. However, manual interactions with objects evoke 

responses that differ across fibers depending on their type, their location with respect to the 

stimulus, and even idiosyncratic differences across nerve fibers of a given type (Roland S 

Johansson & Flanagan, 2009; Johnson, 2001; Vallbo & Hagbarth, 1968; Dong et al., 2013). 

Accordingly, to restore natural touch would require stimulating each fiber independently 

with its own idiosyncratic stimulation pattern, a feat that current technologies are nowhere 

near ready to accomplish. Indeed, state-of-the-art electrical interfaces with the nerve 

comprise tens or hundreds of channels, not the twelve or so thousand that would be required 

for fully biomimetic restoration of touch on the palmar surface of the hand. Furthermore, at 

typical stimulation levels, each channel activates tens or hundreds of fibers and evokes 

highly unnatural synchronous responses in these fibers. Until much denser and more 

selective neural interfaces become available, then, attempts to mimic nerve responses will 

have to settle for mimicking aggregate neural responses (Delhaye et al., 2016; Saal & 

Bensmaia, 2015).

TouchSim can be used to simulate the aggregate behavior of hundreds or thousands of fibers 

by pooling simulated responses across small afferent populations. From the perspective of 

engineering a bionic hand, however, simulating tens of thousands of fibers to then collapse 

them into a small number of unidimensional signals is highly inefficient.
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With this in mind, we have developed a new, intuitive, computationally inexpensive 

encoding algorithm, one that comprises only a handful of parameters but that reconstructs 

with high accuracy the aggregate response of the nerve to time-varying pressure applied to 

the fingertip. We examine the properties of this population signal and demonstrate that it far 

outperforms more traditional sensory encoding algorithms in reconstructing the nerve 

activity evoked during activities of daily living (Clark et al., 2014; Gurpreet Singh Dhillon & 

Horch, 2005; Graczyk et al., 2016; Stanisa Raspopovic, 2014; Schiefer, Tan, Sidek, & Tyler, 

2016; Daniel W. Tan et al., 2014). We propose that this simple model is precisely what is 

needed to convert the output of force or pressure sensors on bionic hands into biologically 

realistic patterns of electrical stimulation of the nerve. Bionic hands endowed with this 

algorithm will provide more realistic tactile feedback to the user thereby supporting 

dexterous interactions with objects. More naturalistic feedback may also improve the 

embodiment of bionic hands and the confidence of users in using them (Marasco, Kim, 

Colgate, Peshkin, & Kuiken, 2011; Schiefer et al., 2016).

RESULTS

The proposed strategy to restore touch consists of converting the output of sensors on the 

prosthetic hand into patterns of electrical stimulation to evoke naturalistic patterns of 

aggregate activity in the residual nerve (Figure 1). To this end, we simulate, using TouchSim 

(Saal et al., 2017), the spiking responses of a population of nerve fibers when a tactile 

stimulus is applied to a localized patch of skin. We then pool all the simulated responses to 

obtain the time-varying population firing rate (FRt). We also evaluate the time-varying 

surface of afferent activation by inscribing all active afferent locations in a polygon and 

computing its area (At). This latter quantity represents the size of the activated population, 

which is related to but not identical with the population firing rate. Indeed, increasing 

stimulus intensity results not only in an increase in the firing rate of activated tactile fibers 

but also in the recruitment of additional fibers with receptive fields away from the point of 

contact (Johnson, 1974; Muniak, Ray, Hsiao, Dammann, & Bensmaia, 2007). As discussed 

below, these two aspects of the response – firing rate and activated area – are required to 

map neural response onto parameters of electrical stimulation. Next, we develop a simple 

mapping between the stimulus – decomposed into its time varying indentation, indentation 

rate, and acceleration – and the aggregate response representations (firing rate, area of 

activation) to obviate the need for the computationally demanding and excessively detailed 

simulation of the entire nerve. Finally, we compare the resulting biomimetic encoding model 

to a more conventional encoding model that signals instantaneous pressure.

Biomimetic encoding model

First, we simulated the responses to mechanical noise whose frequency composition 

matched that of natural interactions with objects and of indentations of varying durations 

and amplitudes as the latter are overrepresented during manual interactions with objects 

(during maintained grasp, for example). Stimulus amplitudes spanned the range experienced 

during activities of daily living (0 to 3 mm). The training set was thus selected to yield a 

model that is well suited for common manual tasks (see below). Having simulated the 

aggregate response, we then regressed the time-varying firing rate (FRt) and time-varying 
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area of activation (At) onto the indentation depth, rate, and accelerations of the stimulus. For 

area, this linear regression was the input to a sigmoidal function to capture the leveling-off 

of activated area at high amplitudes (Figure 1 and Supplementary Figure 1C). Both models 

included several time points for all three variables to capture stimulus dynamics (5 time 

points, spanning a total of 10 ms for each variable in firing rate model, 2 lags spanning a 

total of 20 ms for each variable in area model, see Methods). The resulting models thus 

mapped the time-varying response onto the time-varying stimulus with up to 15 stimulus-

related parameters and an intercept (with three additional parameters for the area 

computation to capture saturation).

Model performance

Noise, sinusoids, and steps—First, we examined the ability of the model to account for 

responses to parametric stimuli including sinusoids over a range of frequencies, pink noise 

with different band-passes, and sustained indentations varying in duration and amplitude 

(Figure 2A). We found that model performance was high for these stimuli, accounting for 

the bulk of the variance in the simulated aggregate firing rate (R2 = 0.85, 0.87, 0.9 for noise, 

sinusoids and steps, respectively; Figure 2B-red) and area of activation (R2 = 0.83, 0.61, and 

0.71; Figure 2B - blue). Note that the model precisely captured the hallmark response of the 

nerve to indentations, which is dominated by onset and offset transients and is very weak 

during static indentation. This property of the nerve response is overlooked in standard 

encoding models that track time-varying pressure (Clark et al., 2014; Gurpreet Singh 

Dhillon & Horch, 2005; Graczyk et al., 2016; Stanisa Raspopovic, 2014; Schiefer et al., 

2016; Daniel W. Tan et al., 2014). Testing the model across a wider range of frequencies, we 

found that performance deteriorated for high-frequency stimuli, especially for sinusoidal 

stimuli (> 60 Hz) (Figure 2C and Supplementary Figure 2), a phenomenon that can be 

attributed to two causes. First, the nerve is differentially sensitive at different frequencies 

and the model does not comprise a term that explicitly incorporates this frequency 

dependence (Supplementary Figure 1C). Second, although individual afferents – particularly 

RA and PC fibers – produce phase-locked responses to high-frequency vibrations 

(Mackevicius, Best, Saal, & Bensmaia, 2012; Talbot & Mountcastle, 1968), which in 

principle the model could follow, this signal vanishes when responses are pooled because 

different fibers spike at different phases within each cycle (Manfredi et al., 2012).

Natural stimuli—Next, we tested the model’s ability to account for responses evoked 

during manual interactions with objects. Specifically, we measured the time-varying 

pressure at the fingertips and palm as a subject performed a series of activities of daily living 

(ADL), including grasping a cup, writing with a pen, typing, using a computer mouse, and 

opening a door. The pressure traces evoked during ADLs are dominated by low frequencies 

and informed the selection of training stimuli to fit the model. Time-varying skin 

deformations at each skin location were estimated from the pressure output of the sensor and 

were used as input to the model. We then compared model predictions to aggregate 

responses simulated using TouchSim and found that the linear model accounted for a large 

proportion of the variance in the ADL-evoked responses (Figure 3A-B, R2=0.84).
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Next, we compared the performance of the biomimetic encoding model to that of the 

standard encoding model, which simply tracks pressure. We found that the biomimetic 

model massively outperformed the standard model on the ADL-evoked responses (ΔR2 = 

0.6, paired t-test: t(15) = 17.86, p = 1.6e-11). As a further test of the model, we simulated 

the responses to 200 stimuli designed to mimic ADLs (see Methods) and found that the 

biomimetic model far outperformed the standard algorithm for these stimuli as well (ΔR2 = 

0.57, paired t-test: t(199) = 159, p = 9.8e-212, Figure 3C). The biomimetic encoding model 

outperforms the standard one primarily because it takes into account the fact that the nerve is 

much more responsive to contact transients – by including velocity and acceleration terms – 

and responds only weakly to sustained pressure (Figure 2A and Figure 3A).

DISCUSSION

Stimulation strategy

The proposed biomimetic model provides a faithful estimate of the response that one would 

wish to elicit in populations of tactile fibers. The overall firing rate (FRt) evoked in the 

nerve, given the spatially restricted stimulus, is likely confined to a single fascicle. The firing 

rate is determined by the activation charge rate, essentially the amount of suprathreshold 

current delivered to the fascicle (Graczyk et al., 2016). However, standard electrical pulse 

trains comprise two parameters – pulse charge and frequency – and population firing rate 

can be controlled by modulating either parameter. In contrast, area of activation is a proxy 

for the cross-section of the fascicle that is activated at any given time, a quantity that can be 

controlled by modulating pulse charge. The ratio of firing rate to area constitutes an estimate 

of the mean firing rate of activated neurons, a quantity that can be controlled by modulating 

pulse frequency. We find that the ratio (of population firing rate to number of activated 

fibers) estimated using our model accurately reproduces the ratio derived from simulated 

responses with TouchSim (Supplementary Figure 3). The simple model proposed here can 

then be used to specify the values of these two parameters of electrical stimulation as a 

function of time to produce naturalistic patterns of nerve activation based on the time-

varying output of pressure sensors on a prosthetic hand.

The accuracy of our modeling approach places greater emphasis on understanding precisely 

how stimulation regime – pulse charge, pulse frequency, and pulse waveform – maps onto 

evoked afferent activation. To predict the neuronal response evoked by a pattern of electrical 

stimulation requires a realistic biophysical model of somatosensory nerves. Recently, single-

cell- and population-level models have been developed to describe the response of the nerve 

to different patterns of injected current (O’Brien, 2016). These models, however, are specific 

to the neural interface used for stimulation. Indeed, intrafascicular and extrafascicular 

interfaces imply different tissue conductivities and electric field distributions and, thus, 

different patterns of afferent recruitment with the changes in injected current (Grinberg, 

Schiefer, Tyler, & Gustafson, 2008; Veltink, van AlstÉ, & Boom, 1988). Intraneural 

interfaces consist of electrodes that penetrate the epineurium and make direct contact with 

nerve fibers (LIFE - Boretius et al., 2010; TIME - Gurpreet S. Dhillon, Lawrence, 

Hutchinson, & Horch, 2004; USEA - Ledbetter et al., 2013). For these interfaces, modeling 

electrically evoked spiking activity typically involves the implementation of a model of 
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spike generation at the Nodes of Ranvier, a model of myelinated internodes, and a 

description of the extracellular space (O’Brien, 2016). For extrafascicular interfaces (FINE - 

Leventhal & Durand, 2004; Tyler & Durand, 2002), however, the stimulating electrodes do 

not directly contact their neuronal targets and neuronal activation also depends on spatial 

factors, such as electrode configuration (Miller, Abbas, Nourski, Hu, & Robinson, 2003), 

pulse polarity (Rattay, 1989), electrode-fiber distance (Mino, Rubinstein, Miller, & Abbas, 

2004), and nerve fiber geometry (Woo, Miller, & Abbas, 2010). In many cases, spatial 

factors are idiosyncratic and must be assessed on a subject by subject basis, for example the 

distribution of nerve fascicles at the current injection site and the geometry of the channel 

relative to the nerve fibers (N. A. Brill & Tyler, 2017; N. Brill & Tyler, 2011; Gustafson et 

al., 2009). Furthermore, stimulation regimes must be evaluated for their potential to cause 

damage to the neural tissue with chronic deployment (Briaire & Frijns, 2006). While a 

detailed discussion of how to design a precise and accurate mapping between electrical 

stimulation and neuronal activation falls outside the scope of the present paper, the proposed 

encoding model establishes a need for such a mapping, which would make possible the 

elicitation of neuronal patterns of activation whose naturalism is limited only by the 

capabilities of the neural interface.

Submodality-specific models

Some evidence suggests that tactile nerve fibers are clustered according to their modalities 

(Hallin, Ekedahl, & Ove, 1991; Niu et al., 2013). That is, handfuls of fibers of a single class 

(SA1, RA, PC) are grouped together, and these bundles are interleaved seemingly randomly 

throughout the fascicle. However, the spatial scale over which this clustering occurs is too 

small and its distribution over the fascicle too idiosyncratic to be reliably exploited by a 

neural interface. Nevertheless, once spatial selectivity of stimulation is improved, the present 

model can be used to stimulate each tactile submodality appropriately (Supplementary 

Figure 4). For low-frequency stimuli, the submodality-specific models are accurate for SA1 

and RA responses (Supplementary Figure 4C). As might be expected, however, the 

reconstruction of PC responses is poor because this class of fibers responds poorly at low 

frequencies (Supplementary Figure 4A-B).

Implementation notes

The sampling rate of sensors on the bionic hand is a key design specification for the 

proposed biomimetic model. Indeed, afferent responses cannot be accurately estimated if the 

temporal resolution of the input is too coarse (less than 10ms, Figure 4D). If a sufficient 

resolution cannot be achieved, model performance can be rescued to an extent by resampling 

the sensor values through interpolation.

Another important consideration relates to the size and location of the projection field as the 

model parameters depend on the size of the estimated afferent population and the location of 

their receptive fields. Indeed, the number of tactile fibers and the relative proportions of 

afferents of each type depend on both of these factors. We designed the model for a contact 

area with a diameter of 6 mm on the fingertip, thus corresponding to a projection field of 

equivalent size. However, this specific model breaks down when the contact area is much 

smaller or much bigger (see Figure 4E), because of the concomitant changes in the sizes and 
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composition of the activated nerve fibers. In light of this, successful deployment of the 

model requires that the projection field of each electrode be mapped precisely, for example 

by having the subject report the location and spatial extent of electrically evoked sensations 

(see Clark et al., 2014; Tan et al., 2014, e.g.). The idea is to design the model for each 

electrode such that the contact area matches the spatial extent of the projection field. As a 

result, stimulation will produce a sensation whose spatial extent is commensurate with that 

of a stimulus of equivalent contact area. Otherwise, a mismatch between the size of the 

projection field and the resulting sensations might occur. Regarding location, models 

designed for one digit can be applied to other digits. However, the distal fingertips and the 

rest of the hand yield different models given the pronounced differences in innervation 

densities of the three classes of tactile nerve fibers across these skin locations (see Figure 

4A-C). Be that as it may, the model for each electrode can readily be designed for the 

location and spatial extent of its projection field to optimize naturalness.

Limitations of the approach

As discussed above, the ideal somatosensory prosthesis would stimulate each nerve fiber 

independently with a pulse train designed to mimic that fiber’s idiosyncratic response. 

However, given the limitations of current neural interfaces, we developed a linear model to 

describe the relationship between the time-varying stimulus and the pooled responses of 

nerve fibers that are liable to be activated by a given stimulating electrode. While the 

relationship between pooled firing rates and indentation depth is approximately linear at low 

frequencies, which dominate during activities of daily living, this linearity breaks down at 

high frequencies (Supplementary Figure 1C). Another source of lack of fit, described above, 

is the frequency-dependence of the afferent response, particularly at high frequencies, which 

is not explicitly taken into consideration in the model. These non-linearities result in a 

reduction in the prediction accuracy of the model, which is based on a linear mapping, 

particularly at the higher frequencies. Even at the low frequencies, the proposed model does 

not capture all of the variance in the neuronal response, as might be expected given the 

complex non-linearities between the stimulus and the responses of individual afferents. 

However, in the frequency range relevant for daily interactions with objects, model 

predictions of aggregate afferent activity are substantially more faithful to the natural neural 

response than are predictions from the standard model.

The critical bottleneck for the proposed approach, however, is not the failure of the linear 

modeling approach to capture the fine spatio-temporal structure of the neural response but 

rather the limited selectivity of current stimulation technologies. Indeed, synchronous 

stimulation of many afferents limits the spatial resolution of the sensory feedback, obscuring 

spatial patterning in the stimulus that falls within the aggregate receptive field of the 

stimulated afferents. Furthermore, while the aggregate response of the stimulated afferents 

will be approximately biomimetic, the response of individual afferents will not, a feature that 

is likely to compromise the naturalness of the resulting percept. However, the model 

provides a close approximation of the response at the level that can be manipulated with 

existing technologies, so paves the way for the most biomimetic response that can be 

achieved given technological limitations. To the extent that the spatio-temporal dynamics of 

the aggregate nerve response matter, and given that afferent signals converge as they ascend 
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the somatosensory neuraxis, the proposed sensory encoding algorithm is likely to improve 

the intuitiveness and utility of the resulting sensory feedback.

METHODS

Computing population firing rate and activated area from TouchSim simulations

TouchSim simulates afferent responses in two steps. First, the stresses resulting from a 

stimulus applied at the surface of the skin are estimated as two distinct components, one 

quasi-static, the other dynamic. The quasi-static component confers to tactile fibers response 

properties resulting from contact mechanics, such as edge enhancement and surround 

suppression. The dynamic component propagates through the skin surface as a wave and 

confers to afferents the ability to respond to vibration at a distance from contact. Second, 

TouchSim computes the spiking responses of nerve fibers – which tile the hand at their 

known densities (Johansson & Westling, 1984) – based on these two stress components 

using an integrate-and-fire mechanism. Responses simulated by TouchSim have been shown 

to match their measured counterparts closely – with single-digit millisecond precision – 

across a wide range of experimental conditions (Saal et al., 2017).

Simulated responses of all afferents with receptive fields on the palmar surface of the hand 

were pooled to obtain the time-varying population firing rate of the nerve (FRt) in time 

increments of 2 ms (Figure 1 and Supplementary Figure 2B).

To estimate area of activation, we pooled the coordinates of all the SA1 and RA fibers that 

were activated within each 10-ms bin and inscribed them in a polygon of minimum area, At 

(Figure 1 and Supplementary Figure 1B). We excluded PC fibers in this computation 

because their receptive fields are so large as to span most of the hand, and a given PC fiber is 

activated by touch almost anywhere on the hand.

Training stimulus

The firing rate of populations of afferents has been shown to be approximately linear 

(Muniak et al., 2007) (Supplementary Figure 1C), but the slope of this function is dependent 

on stimulus frequency. To keep the model simple, we did not incorporate any frequency-

dependent terms. As a result, the parameters of the model were dependent on the (training) 

stimulus used to obtain them. Indeed, the frequency composition of the training stimulus 

will determine the degree to which different frequency components are weighted in the 

determination of these parameters. Second, sustained indentations of the skin are common 

during natural interactions with objects – during maintained grasp for instance – but absent 

in a stimulus consisting entirely of noise. With this in mind, we designed a training stimulus 

that comprises both aspects observed in natural scenes. The stimulus comprised a 

mechanical noise component with power spectrum that decreases with frequency 

proportional to 1/f (pink noise)-. The noise was low-pass filtered to truncate high frequency 

components (see Results section on performance dependence on cut-off frequency) and the 

resulting stimulus was scaled to a maximum indentation amplitude of 3 mm (Supplementary 

Figure 1A). The training stimulus also contained skin indentations of varying duration – 

ranging from 1 to 5 seconds – and varying amplitude – ranging from 0 to 3 mm. We verified 
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that the indentation rates of the resulting stimulus fell within a physiologically plausible 

range and did not exceed 80–90 cm/sec, the maximum indentation rate observed during 

object interactions (Säfström & Edin, 2008). A stimulus as short as 100 seconds was 

sufficient to train both the firing rate and the area models.

Biomimetic encoding model

We estimate time-varying firing rate FRt  and dynamic area of activation At  using the 

following models (see Figure 1):

FRt = hFR WFRSt

At = hA b, W ASt

St = [1st, st−1, …, st−k | ṡt | , | ṡt−1 | , …, | ṡt−k | , | s̈t | , | s̈t‐1 | , …, | s̈t‐k | ] is a vector of stimulus features 

including indentation depth (s), rate (s̈), and acceleration (s̈), with k lags denoting the 

number of time lags.

ℎFR(. ) is a nonlinearity of the form hFR x = x, x > 0
0, x ≤ 0 to guarantee that firing rate is always 

nonnegative; ℎA(. ) is a nonlinearity defined by a sigmoid function to capture the observed 

saturation of activated area at high amplitudes:

hA x, b =
bo

1 + e
−b1 x − b2

We estimate parameters of the firing rate model (WFR) using least squares regression and 

parameters of the area model (WA, b) using nonlinear optimization with the Levenberg–

Marquardt algorithm. We optimized the number of lags k1−3 to achieve stable cross-

validation performance across all test stimuli with both models (k = 5 for firing rate and k = 

2 for activation area).

Conventional Encoding Model

In the majority of sensory feedback algorithms implemented to date in experiments with 

human amputees (see Clark et al., 2014; Dhillon & Horch, 2005; Graczyk et al., 2016; 

Stanisa Raspopovic, 2014; Schiefer, Tan, Sidek, & Tyler, 2016; Daniel W. Tan et al., 2014), 

the firing rate of the nerve FRt linearly tracks the time-varying stimulus st, such that

FRt α st

We used this model as a baseline, linearly scaling it to best fit the simulated response.
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Model validation

To test the model, we first assessed the degree to which it could reproduce the time-varying 

firing rate and activated area of afferent population simulated with TouchSim using a set of 

parametric stimuli. Specifically, we computed the output of the model to sinusoids varying 

in frequency and amplitude, noise stimuli with the same spectral profile used to obtain the 

parameters but with a different random seed, and step indentations varying in duration and 

amplitude. We then compared this output with the aggregate firing rate computed using 

TouchSim. The coefficient of determination (R2) was used to gauge model fit.

Next, we assessed the model performance on stimuli that reproduce those experienced 

during every day interactions with objects. To this end, we instrumented an adult male 

participant with a sensorized glove (FingerTPS, PPS, Inc., Los Angeles, CA) with six 

pressure sensors – one on each fingertip and one on the palm – and had him perform five 

standard manual tasks: grasping a cup, writing with a pen, typing, clicking a computer 

mouse and opening a door (for detailed description of the data collection, see Kim, Mihalas, 

Russell, Dong, & Bensmaia, 2011). The output of each sensor was converted to indentation 

depth by scaling it to a maximum of 3 mm. We resampled the pressure output from 64Hz to 

512 Hz using spline interpolation and filtered the resulting trace with a low-pass cut-off of 

5Hz to eliminate high-frequency noise. The resulting trace was used as input to TouchSim 

and to the biomimetic encoding model. Models were tailored to the location of the 

projection field, with different sets of coefficients for different sensor locations.

To further test the biomimetic model, we generated a set of synthetic stimuli designed to 

mimic ADLs in terms of their spectral profile. Specifically, we pooled all ADL samples 

(n=23) with indentation depths greater than 1 mm and estimated their power spectrum using 

Multi-taper Power Spectral Density estimate (Chronux, Matlab). We then generated 200 

white noise samples, each 10 seconds long, converted them to the frequency domain, 

adjusted their power spectrum to match that of ADLs, then converted the resulting spectra 

back to time domain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure caption 1. Biomimetic tactile feedback in a bionic hand.
Top flow| Contact with an object produces temporal patterns of pressure on a sensor at the 

fingertip of the prosthetic hand. In principle, the sensor output could be used as input to 

TouchSim, which would simulate the responses of each afferent innervating the glabrous 

skin. Spikes could then be pooled across all afferents and binned to yield the firing rate of 

the whole nerve (FRt), as well as the recruitment of nerve fibers (At). These two metrics 

indicate how to modulate frequency and pulse charge to produce a biomimetic pattern of 

nerve activation. Bottom flow| The computationally demanding simulation of TouchSim can 
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be replaced with a simpler model that comprises only a handful of parameters to predict 

aggregate nerve activity. To this end, we find a mapping between stimulus (pressure) and 

population activity (firing rate and recruitment) using a combination of linear and nonlinear 

filters.
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Figure caption 2. Model validation with parametric stimuli.
A| Inset: The index finger pad was stimulated with a set of tactile stimuli – noise, sinusoids 

and sustained indentations (steps). Main: Examples of model fits. Top: Time-varying 

stimulus trace. Middle: Population firing rate (FRt) computed using the full afferent model 

(TouchSim, black) and using the simplified biomimetic model (red). Bottom: Time varying 

area of activation computed using TouchSim (black) and using the biomimetic model (blue). 

R2 denotes the match between TouchSim and the simple model predictions for that trace. B| 

Mean goodness-of-fit for the firing rate and area models trained to reconstruct low-

frequency stimuli (up to 10Hz). The test sample consisted of noise filtered below 10Hz 

(different seed), steps (of random amplitudes and durations), and sinusoids (from 1 to 10 

Hz). The simple model captures most of the variance in both the aggregate firing rate and 

activated area over this range of frequencies. C|Mean goodness-of-fit of firing rate (red) and 
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area (blue) predictions as a function of the low-pass cut-off frequency of the stimuli for 

noise, sinusoids, and steps. Forty models were trained with varying cut-off frequencies 

(5Hz-200Hz) and tested on sinusoids and noise (comprising components with frequencies at 

or below the training cut-off) and steps of random amplitudes and duration. At high 

frequencies, the aggregate response becomes tonic rather than oscillatory so performance 

plummets for sinusoids and noise (see detailed fits in Supplementary Figure 2).
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Figure caption 3. Model validation with simulated natural stimuli.
A| Sample traces from pressure sensors on the fingertips and the palm along with the firing 

rate (FRt) estimated using TouchSim or the biomimetic model for four activities of daily 

living: opening a door, typing on a keyboard, using a mouse, and picking up a cup. Top: 

Each trace denotes the stimulus, color coded by location (see inset). Bottom traces: 

population firing rate (black) vs. predicted firing rate computed for each task and each 

projection field (same color as the corresponding stimulus). R2 denotes match between 

TouchSim and simple model predictions for that trace. B| Model performance, averaged 

across all sessions and hand locations with significant sensor output. The green and orange 

bars denote the performance of the conventional and biomimetic encoding models, 

respectively. Error bars show standard errors in each sample. C| Performance of the two 

models for simulated tactile stimuli mimicking natural stimuli (n=200).
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Figure caption 4. Model implementation details.
Firing rate model performance depends on the location of the projection field, the sampling 

rate of the sensor, and the size of the contact area (corresponding to the size of the projection 

field). A| Schematic of the hand used in the model with abbreviations of hand areas and 

locations of the centers of projection fields used for each area (black dots). B| Firing rate 

traces (FRt) computed for three locations of the hand using the same time-varying noise 

stimulus. Responses from the distal digits (D1d and D2d) are similar to each other, but differ 

from responses from the palm (PW1). C| R2 between FRt traces derived for different 

locations of the hand. D| Mean performance as a function of sampling frequency. Model 

performance improves as temporal resolution of the sensor input improves. E| Mean 

performance as a function of contact area size (radius of the pin). The model was trained 

with a contact area of 2, 4, and 6 mm, respectively, then was tested with different smaller/

larger contact areas ranging from 0.1 to 7 mm. For all analyses, the model was trained using 

sustained indentations and pink noise filtered below 5Hz. Test set consisted of steps of 

varying length and amplitude, noise of random seed and sinusoids of varying frequencies 

(<5Hz). Model must be tailored to the size of the projection field.
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