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Abstract

The accuracy of genotype imputation depends upon two factors: the sample size of the reference 

panel and the genetic similarity between the reference panel and the target samples. When 

multiple reference panels are not consented to combine together, it is unclear how to combine the 

imputation results to optimize the power of genetic association studies. We compared the accuracy 

of 9,265 Norwegian genomes imputed from three reference panels – 1000 Genomes Phase 3 

(1000G), Haplotype Reference Consortium (HRC), and a reference panel containing 2,201 

Norwegian participants from the population-based Nord Trøndelag Health Study (HUNT) from 

low-pass genome sequencing. We observed that the population-matched reference panel allowed 
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for imputation of more population-specific variants with lower frequency (minor allele frequency 

(MAF) between 0.05% and 0.5%). The overall imputation accuracy from the population-specific 

panel was substantially higher than 1000G and was comparable with HRC, despite HRC being 15-

fold larger. These results recapitulate the value of the population-specific reference panels for 

genotype imputation. We also evaluated different strategies to utilize multiple sets of imputed 

genotypes to increase the power of association studies. We observed that testing association for all 

variants imputed from any panel results in higher power to detect association than the alternative 

strategy of including only one version of each genetic variant, selected for having the highest 

imputation quality metric. This was particularly true for lower-frequency variants (MAF < 1%), 

even after adjusting for the additional multiple testing burden.
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Introduction

Many novel disease-associated signals for a wide variety of diseases and traits have been 

successfully identified using imputation-based meta-analyses(Cheng & Thompson, 2016; 

Cooper et al., 2008; De Jager et al., 2009; Ge et al., 2016; Horikoshi et al., 2015; Houlston et 

al., 2008; Jin et al., 2016; Loos et al., 2008; Ruth et al., 2015; Zeggini et al., 2008; Zeggini et 

al., 2007). Genotype imputation is the process of inferring missing genotypes in study 

samples using a reference panel of high-density haplotypes(Li, Willer, Sanna, & Abecasis, 

2009). Imputation allows variants that are not directly genotyped to be studied without other 

costs than computation. Previous simulations showed that imputation substantially increases 

the power of association studies to detect causal loci(Marchini & Howie, 2010; Spencer, Su, 

Donnelly, & Marchini, 2009). Imputation-based genome-wide association studies (GWAS) 

have successfully identified novel signals that were undetected in chip-based studies. For 

example, two disease-associated signals were detected in the 1000G-based 

imputation(Auton et al., 2015) for the Wellcome Trust Case Control Consortium phase 1 

Data (WTCCC), which were missed in the original WTCCC GWAS study that was 

performed four years before(Burton et al., 2007; J. Huang, Ellinghaus, Franke, Howie, & Li, 

2012). Imputation also facilitates fine-mapping studies by allowing most polymorphic 

variants, including causative ones, to be tested in known disease associated loci. For 

example, the strongest association signal, observed at the imputed variant rs7903146 of the 

TCF7L2 locus in the WTCCC type 2 diabetes scan, is suggested to be causal association in 

the locus(Mahajan et al., 2014; Marchini, Howie, Myers, McVean, & Donnelly, 2007). 

Furthermore, imputation allows for meta-analysis between samples that have been 

genotyped using different arrays, increasing power.

However, for studies that have access to population-matched genome sequenced individuals, 

there is uncertainty in deciding between a smaller, ancestry-matched reference panel and a 

larger publicly-available cosmopolitan reference panel. An ideal reference panel is expected 

to have closely matched ancestry to study samples because the genetic similarity increases 

the accuracy of imputation(Deelen et al., 2014; G. H. Huang & Tseng, 2014; J. Huang et al., 
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2015; Low-Kam et al., 2016; Mitt et al., 2017; Okada, Momozawa, Ashikawa, Kanai, & 

Matsuda, 2015; Pistis et al., 2015; Roshyara & Scholz, 2015; Walter et al., 2015). On the 

other hand, the imputation accuracy increases when larger reference panels are used, 

especially for lower-frequency variants(Browning & Browning, 2009; B. N. Howie, 

Donnelly, & Marchini, 2009; L. Huang et al., 2009; Y. Li et al., 2009; Roshyara & Scholz, 

2015). Furthermore, different whole-genome reference panels may generate discordant 

imputed genotypes for the same variants in the same study samples. This brings in 

challenges for the follow-up association tests. The optimal strategy to perform association 

tests using genotypes imputed by different reference panels remains unclear. IMPUTE2 

provides one possible approach to merge all reference panels to a single larger panel for 

genotype imputation when multiple reference panels are available (B. N. Howie et al., 2009), 

which may avoid the problem that different versions of genotypes are imputed for the same 

variants. The Genome of the Netherlands Consortium and the UK10K study has further 

shown that the combined reference panel of 1000G and the population-specific reference 

resulted in better imputation results compared to the two individual panels for rare 

variants(Deelen et al., 2014; J. Huang et al., 2015). However, this approach is not feasible 

when individual-level haplotypes within the reference panel are not accessible, as is the case 

with the Haplotype Reference Consortium (HRC)(McCarthy et al., 2016), primarily due to 

ethical issues surrounding sharing of individual-level genetic data(McCarthy et al., 2016). 

Here we genotyped 9,265 Norwegian participants from the HUNT study(Krokstad et al., 

2013) for 350,270 polymorphic autosomal variants using the Illumina Human CoreExome 

array with approximately 240,000 GWAS tagging markers. We created a population-

matched reference panel by whole-genome sequencing (WGS) 2,021 individuals from the 

HUNT study to a mean depth of 5×. We imputed variants from the HUNT WGS reference 

panel as our ethnically matched panel. We also performed imputation with two additional 

imputation reference panels: the HRC(McCarthy et al., 2016) and 1000G Phase 3(Auton et 

al., 2015). First, we systematically evaluated and compared the imputation results from the 

three reference panels, including the number of successfully imputed variants as well as the 

imputation accuracy. Next, we evaluated and compared the power of association tests 

between two approaches to incorporate multiple versions of imputed genotypes. First is the 

“best Rsq” approach, which retains imputed genotypes only from the panel with highest 

imputation quality metrics for each variant. Second is the “best p-value” approach that tests 

association with all imputed genotypes and uses the most significant association p value, 

adjusting for the additional variants tested.

Materials and Methods

Array-based genotyping

9,265 samples from the HUNT Biobank in Norway were genotyped at 350,270 

polymorphism autosomal variants using an Exome + GWAS chip array 

(HumanCoreExome-12 v1.0, Illumina). Genotype calling was performed using GenTrain 

version 2.0 in GenomeStudio V2011.1 (Illumina). Samples with <98% genotype calls (N = 

37), evidence of gender discrepancy (N = 21), duplicates (N = 66) as well as individuals 

with non-Norwegian ancestry identified by plotting the first 10 genotype-driven principal 

components(Springer-Verlag, 1986) (N = 7) were excluded from further analysis (N = 131, 
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1.19%). As Figure S1 shows, the HUNT GWAS samples have similar ancestry to the 

samples in the HUNT WGS reference panel. All HUNT research subjects provided informed 

written consent and IRB approval was obtained for genetic studies.

Relatedness was evaluated based on the estimation of the proportion of identity by descent 

(IBD) by PLINK(Purcell et al., 2007). We excluded 1,644 samples from the HUNT GWAS 

sample due to 1st or 2nd degree relatedness to samples in HUNT WGS, defined as IBD ≥ 

0.25. We excluded samples that were related to samples within the reference panel to avoid 

inflating imputation statistics for regions inherited IBD. We performed variant-level quality 

control by excluding 19,872 variants that met any of the following criteria; variants with a 

cluster separation score < 0.3 reported by GenomeStudio V2011.1 (Illumina), < 95% 

genotype call rate, or deviation from Hardy–Weinberg equilibrium (P < 1 × 10−5).

Genotype imputation

Genotype imputation with the 1000G Phase 3(Auton et al., 2015) and the HRC(McCarthy et 

al., 2016) reference panels was conducted using the Michigan Imputation Server(Das, Forer, 

Schonherr, Sidore, & Locke, 2016) and imputation with the HUNT WGS reference panel 

was conducted using a local server. The study samples were phased using 

SHAPEIT2(v2.r790)(Delaneau, Zagury, & Marchini, 2013) followed by imputation using 

minimac3(v2.0.1)(Fuchsberger, Abecasis, & Hinds, 2015; B. Howie, Fuchsberger, Stephens, 

Marchini, & Abecasis, 2012). Two imputation metrics output by minimac3 were used for 

evaluating the imputation quality: ImpRsq and EmpRsq. ImpRsq is previously known as r̂2 

in different versions of the MaCH/minimac(Fuchsberger et al., 2015; B. Howie et al., 2012; 

Li, Willer, Ding, Scheet, & Abecasis, 2010). ImpRsq is defined for both genotyped and 

ungenotyped variants in the chip array as an estimate of the squared correlation between 

imputed dosages and true, unobserved genotypes, calculated as the observed variance over 

the expected variance. EmpRsq is defined only for genotyped variants in the chip array as 

the squared correlation between leave-one-out imputed dosages and the true, observed 

genotypes (See “Estimated Imputation Accuracy” section at http://genome.sph.umich.edu/

wiki/Minimac_Diagnostics for details).

Reference panels

The HUNT WGS reference panel contains 1,101 earliest onset cases with myocardial 

infarction and 1,100 age and sex matched controls that were selected from the HUNT 

study(Krokstad et al., 2013). Whole genome sequencing to ~5× depth was performed on 

either Illumina HiSeq 2000 or 2500. We followed the GotCloud SNP calling pipeline to 

process the whole genome sequencing data(Jun, Wing, Abecasis, & Kang, 2015). The 

variant sites and genotype likelihood were called using SAMtools(H. Li et al., 2009) and the 

genotypes for SNPs were refined and phased using Beagle v4(Browning & Browning, 

2013). After quality control, 20.2 million single nucleotide variants were retained in 2,201 

samples, of which 4 million were unique to our study; not observed in dbSNP 144(Sherry et 

al., 2001), 1000 Genomes Phase 3(Auton et al., 2015), UK10K(Walter et al., 2015), 

ESP6500(W. NHLBI GO Exome Sequencing Project (ESP) Seattle, 2013), or 

ExAC.r0.3(Lek et al., 2016) (Table 1). The individuals in the HUNT WGS panel have 

similar ancestry to the HUNT study samples (Figure S1) and are from the same geographic 
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region, although we excluded in the genotyped samples any 1st or 2nd degree relatives of the 

sequenced samples to avoid biased estimates of the accuracy of imputation. Additionally, 

there were no close relatives within the sequenced samples. The other two reference panels 

that we used for genotype imputation are the 1000 Genomes Phase 3 (1000G)(Auton et al., 

2015) and the HRC release 1(McCarthy et al., 2016) containing 32,488 individuals, both of 

which are pre-stored in the Michigan Imputation Server(Das et al., 2016) (Table 2). The 

HUNT cohort contributed an early freeze of whole genome sequencing data consisting of 

1,023 samples to the HRC consortium. Thus, the HUNT WGS and the HRC reference 

panels have 1,023 samples in common. Variants with minor allele counts (MAC) less than or 

equal to 5 were excluded from HRC(McCarthy et al., 2016).

Permutation test

To determine the genome-wide significance thresholds for association tests using the two 

approaches to incorporate imputed genotypes, we performed permutation tests. The 

measurements of the high-density lipoprotein (HDL) cholesterol for the study samples were 

permuted 1,000 times. Each permutation was followed by a genome-wide association test 

(GWAS) using the permuted phenotypes. The most significant p-values from each of the 

1,000 GWAS were ranked. And the significant threshold with family-wise error rate 

(FWER) n/1000 equals to the nth smallest p-value. Because the “best p-8 value” approach 

tests more variants, it will be a more stringent significant threshold than the “best Rsq” 

approach.

Power estimation

In order to estimate the power to detect association under the two approaches to incorporate 

imputed genotypes from multiple reference panels, we considered directly genotyped 

variants as causal variants, and used multiple sets of imputed genotypes to evaluate the 

power. First, we obtained the leave-one-variant-out imputed dosages for those directly 

genotyped variants. The official release of minimac3 performs leave-one-out hidden Markov 

model (HMM) calculation internally to calculate leave-one-out Rsq summary statistics, but 

does not output individual dosages (Fuchsberger et al., 2015; B. Howie et al., 2012). We 

modified minimac3 to include the individual leave-out-out dosages in the output VCF for the 

genotyped variants. Second, we simulated phenotypes based on the genotypes obtained by 

the chip array. Finally, we evaluated power of the two approaches by performing association 

tests between the simulated phenotypes and the imputed dosages based on either “best Rsq” 

or “best p-value” approaches.

The details of simulation follow the steps described below:

1. Select the non-centrality parameter corresponding to the association test p-value 

pt. We calculate the non-centrality parameter Nr2 as a chi-square statistics 

corresponding to the upper-tail probability pt, where N is the total number of 

study subjects. This ensures that the median p-value is pt when the true 

phenotypic variance explained by the genotype is r2.

2. For each variant, we randomly draw ε from the normal distribution with mean 0 

and standard deviation 1 − r2. We calculate the effect size β as r2/2 f (1 − f ), 
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where f is the minor allele frequency (MAF) estimated using the chip genotypes 

of the variant. The phenotype value y is then calculated as Gβ + ε, where the 

chip genotypes G is 0, 1, or 2. The phenotypic variance explained by G and ε 
will be r2 and 1−r2, respectively.

3. We perform the linear regression using the leave-one-variant-out dosages for this 

variant, which were imputed using the three different reference panels 

respectively, and the phenotype y.

4. For the “best p-value” approach, the final association p value equals to most 

significant one among the three p values associated with the three different 

versions of imputed dosages. With the “best Rsq” approach, the final p value 

equals to the one corresponding to the reference panel with the highest 

imputation quality (ImpRsq), an estimated value for the correlation between 

imputed genotypes and true, unobserved genotypes.

5. The power to detect association signals equals to the percentage of final p values 

exceeding the genome-wide significance threshold determined for each approach 

by the permutation tests described above.

We performed linkage disequilibrium(LD) based variant pruning for the 289,376 directly 

genotyped variants that were found by all three reference panels using PLINK(Purcell et al., 

2007) and obtained 132,183 variants with LD r2< 0.2 among each other. Then we randomly 

selected 3,000 variants for each of the MAF categories: MAF ≤ 0.001, MAF > 0.001 and ≤ 

0.01, MAF > 0.1 and ≤ 0.05, and MAF > 0.05. We applied ImpRsq > 0.3, 0.5 and 0.8 to 

remove poorly imputed genotypes and variants that were successfully imputed from at least 

two references were used for this simulation study. All 5 steps above were repeated given 

different pt’s ranging from 5×10−8 to 1×10−13. Additionally, the entire process was repeated 

5 times across the selected variants to average power.

Partial correlation estimation

To quantify the net gain of imputation accuracy obtained by including another reference 

panel on top of an existing panel, we estimated the partial correlation between the leave-one-

out imputed dosages from the additional panel and the chip genotypes, conditioned on the 

leave-one-out imputed dosages from the existing panel. The correlation has been estimated 

for every pair of reference panels among the three on each of the 289,376 genotyped variants 

that were found in all three panels. For example, to estimate the net gain of including 1000G 

panel on top of HUNT panel (PartialRsq [1000G,Chip | HUNT]), we first obtained the leave-

one-out dosages based on 1000G and HUNT WGS (details described in the Power 

estimation subsection). Secondly, for each variant, we performed three linear regressions on 

the chip genotypes: the first one has the imputed dosages from 1000G and HUNT WGS as 

covariates (model 1), the second one has the imputed dosages from HUNT WGS only as a 

covariate (model 2), and the third one does not have any other covariate except for the 

intercept (model 3). Lastly, we obtained sum of squared residuals (SSR) for the three linear 

regressions and calculated the partial correlation (partial Rsq) as 
SSRmodel2 − SSRmodel1

SSRmodel3
. In a 
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similar notation, the EmpRsq is equivalent to 
SSRmodel3 − SSRmodel2

SSRmodel3
, and their sum should be 

equivalent to the proportion of explained variance by both sets of imputed dosages. Our 

intuition is that the more extra information the additional reference panel provides, the 

higher the partial correlation will be.

Results

Evaluating successfully imputed variants using different reference panels

In total, ~23.8 million variants were successfully imputed using minimac 3(Fuchsberger et 

al., 2015; B. Howie et al., 2012) from at least one of the three reference panels and exceeded 

the threshold of estimated imputation quality (ImpRsq) ≥ 0.3 (Figure 1). The three reference 

panels yielded roughly equal number of SNPs with MAF more than 1%, but the 1000G 

uncovered more unique variants; approximately 75.3% (1,068,228 out of 1,418,417) that 

were uniquely imputed from 1000G are indels or structural variants, a category of variation 

that is not available in the other two reference panels. We observed that imputation from the 

HRC panel resulted in more extremely rare variants (MAF less than 0.05%) than from 

HUNT WGS and 1000G. Imputation from the HUNT WGS panel uncovered more variants 

with MAF between 0.05% and 1% than the other two reference panels (Table 3). 

Approximately 3.6 million variants were uniquely imputed by the HUNT WGS panel 

(Figure 1) and the majority of them have MAF less than or equal to 0.05%(Figure 2). A 

threshold ≥ 0.3 for ImpRsq was applied as recommended to remove most of poorly imputed 

variants while retaining the vast majority of well imputed SNPs(Y. Li et al., 2009). We 

observed that the average EmpRsq remained above 0.6 for all MAF categories from all three 

reference panels when the ImpRsq ≥ 0.3 threshold was applied (Figure S2).

Comparing imputation accuracy from different reference panels

To compare the imputation accuracy across the three reference panels, we examined all 

289,376 variants that were directly genotyped by the chip array and available in all three 

reference panels. “Leave-one-variant-out” imputation results were used for these directly 

genotyped variants, meaning that one-by-one, each genotyped variant was masked, imputed, 

and then compared to the directly genotyped calls. The EmpRsq was estimated for each 

genotyped variant from each panel, which is the squared Pearson correlation between the 

imputed allele dosages and the genotypes called by direct genotyping. Figure 3a compares 

the average EmpRsq for all genotyped variants categorized by MAF among different 

reference panels. The MAF is estimated using the genotypes called by the chip array. 

Imputation from HRC has higher imputation accuracy for rare variants with MAF < 0.5% 

than the other two reference panels, which is expected because the number of samples 

available in HRC is much larger than the other two panels and the imputation accuracy for 

extremely rare variants depends on the number of copies of alternate alleles(Roshyara & 

Scholz, 2015). What is unexpected is that for variants with MAF ≥ 0.5%, HRC and HUNT 

WGS panels show comparable imputation accuracy, even though the size of the HUNT 

WGS panel is 15 times smaller than HRC. Consistent to previous studies, this result 

demonstrated the value of whole-genome sequencing for ancestry matched samples as a 

reference panel for genotype imputation(Deelen et al., 2014; G. H. Huang & Tseng, 2014; J. 
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Huang et al., 2015; Low-Kam et al., 2016; Okada et al., 2015; Pistis et al., 2015; Roshyara 

& Scholz, 2015; Walter et al., 2015). It is also noticed that imputation from 1000G has lower 

average ImpRsq than the other two reference panels (Figure 3b–d), which is consistent to the 

lower proportion of variants passing the various ImpRsq thresholds in 1000G observed in 

Figure S2.

To further evaluate the impact of the sample size of the HUNT WGS panel on the imputation 

accuracy, we have randomly drawn 500, 1000, and 1500 samples from the original HUNT 

reference panel for imputation. Figure S3 shows the comparison of the average EmpRsq for 

all genotyped variants categorized by MAF among the target samples, across all reference 

panels. As expected, increases in the sample size of the HUNT WGS reference panels 

resulted in higher imputation accuracy, particularly for less frequent variants with MAF < 

0.5%. Interestingly, we observed that the HUNT WGS with 500 samples outperforms 

1000G(Auton et al., 2015) for variants with MAF > 0.5%. These results are consistent with 

other studies with population specific reference panels(Mitt et al., 2017; Pistis et al., 2015). 

The subset of 1000 samples provides better imputation accuracy than 1000G(Auton et al., 

2015) even for variants with MAF as low as 0.1% and comparable imputation accuracy to 

HRC(McCarthy et al., 2016) for variants with MAF > 0.5%.

We examined whether our evaluation of imputation accuracy is biased in favor of HUNT 

WGS due to relatedness. Previous studies have shown that the relatedness between study 

samples and reference samples increases genotype imputation efficiency since related 

individuals tends to share longer haplotype stretches than unrelated ones(G. H. Huang & 

Tseng, 2014). To avoid the bias of imputation accuracy due to the relatedness between our 

study samples and the samples in the HUNT WGS reference panel, we excluded 1,644 study 

samples who are up to 2nd degree relatives of HUNT WGS samples. Relatedness was based 

on the estimation of the proportion of IBD by PLINK(Purcell et al., 2007). We observed that 

excluding these study samples did not affect the imputation accuracy except causing a slight 

decrease of the imputation accuracy for those very rare variants with MAF < 0.05% (Figure 

S4).

Evaluating two possible association test strategies to use multiple sets of imputed 
genotypes

As Figure 1 shows, approximately 60% of all successfully imputed variants were imputed 

from more than one reference panel, which makes it unclear how to perform downstream 

association tests. We compared two possible strategies: the “best p-value” and the “best Rsq” 

approaches. The “best p-value” approach uses each version of imputed genotypes to choose 

the lowest association p-value, thereby increasing the burden of adjusting for multiple 

hypothesis testing. The “best Rsq” approach selects the imputed variant with the highest 

estimated imputation quality ImpRsq, which is expected to be a reasonable approximation of 

the association between imputed and true genotypes, especially for common variants (Figure 

S5). We have compared the power of the two approaches to detect association signals 

accounting for the fact that the “best p-value” approach needs adjusting for the additional 

variants tested. To determine the significant thresholds for association tests with a family-

wise error rate (FWER) 0.05, we estimated the number of independent tests using 1,000 
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permutations. For the “best Rsq” approach, where fewer ‘variants’ are analyzed, the 

significance threshold is 4.69×10−9 (2.10×10−9 with a Bonferroni correction) and for the 

best p-value approach, it is 2.53×10−9 (1.05×10−9 with a Bonferroni correction).

Using the permutation-derived significance thresholds above, we evaluated the power of the 

two approaches for association tests with quantitative traits through a simulation study 

(details described in methods). Our results indicated that the “best p-value” approach has 

more power to detect association signals than the “best Rsq” approach, particularly for rare 

variants with MAF < 1%, no matter how stringent the ImpRsq threshold was used for 

filtering out the poorly imputed genotypes (Figure 4, Figure S6 and Table S1). This is 

probably because the estimated imputation quality ImpRsq does not always agree with 

empirical imputation quality EmpRsq especially for rare variants (Figure S5), resulting in 

loss of variants with highest empirical imputation quality when selecting the “best Rsq” 

strategy. In addition, the distributions of the ImpRsq are quite different from different panels. 

Notably, from 1000G(Auton et al., 2015), the ImpRsq and EmpRsq were substantially lower 

for low-frequency variants (0.5% < MAF < 5%), and ImpRsq tends to underestimate 

EmpRsq(Figure S5). The two approaches have comparable association power for variants 

with MAF ≥ 1%, where estimated and empirical imputation qualities highly agree with each 

other (Figure S5). Our observation suggests that the inaccurate prediction of imputation 

quality have a higher impact than increased burden of multiple testing in association test 

with rare variants.

Evaluating net gain of imputation accuracy by including an additional reference panel

Finally, we quantified the net gain of imputation accuracy by including an additional 

reference panel as a “partial Rsq” conditioned on the imputed genotypes from an existing 

reference panel (See Materials and Methods for details). Intuitively, this represents the 

difference between the “optimal EmpRsq” linearly combined between two sets of imputed 

genotypes and the EmpRsq from the original imputed genotypes. 289,376 genotyped 

variants that were found in all three panels were used to evaluate the additional information 

that were gained from one reference panel given imputed dosages based on another panel. 

As Figure S7 presents, each reference panel is able to provide additional information to 

improve imputation accuracy. However, relatively less information could be be gained by 

including 1000G(Auton et al., 2015) panel on top of HRC across all MAF categories. This is 

expected since 1000G samples are included in the HRC panel, with the caveat that only 

single nucleotide variants with minor allele count ≥ 5 were retained. Note that evaluation of 

indels and structural variants absent in HRC were not included in this experiment. In 

contrast, given the imputed dosages from 1000G, both HUNT WGS and HRC provide 

substantial net gain of imputation accuracy, which is consistent to our observations. 

Furthermore, HUNT WGS and HRC provide additional information conditional on each 

other. More specifically, more extra information was obtained from HRC given HUNT WGS 

than those were obtained from HUNT WGS given HRC for these genotyped variants, which 

is also consistent to our observations in Figure 3.
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Discussion

Many studies have performed whole genome sequencing of a subset of samples followed by 

imputation into samples with GWAS data(Holm et al.; Lane, Vlasac, & Anderson, 2016; 

Nalls et al., 2014; van Leeuwen et al., 2016). However, the trade-offs between the panel size, 

imputable variant types, and population specificity across different reference panels make it 

challenging to decide on the optimal strategy for imputation and downstream association 

analysis. We evaluated methods for genotype imputation when different reference panels are 

available. Our findings have demonstrated the benefits of uncovering novel variants with low 

frequency by using population-specific reference panels as has been reported by previous 

studies(J. Huang et al., 2015). Since the population-specific HUNT panel shared 1,023 

samples with HRC(McCarthy et al., 2016), we expect to see an even bigger advantage in the 

number of novel low frequency variants imputed by the population-specific panel if there 

were no overlap between the two reference panels.

We have also observed that large-scale publicly available reference panels, as exemplified by 

HRC (McCarthy et al., 2016) and 1000G(Auton et al., 2015), contribute a large number of 

variants that are not captured by population-specific reference panels. More specifically, 

HRC(McCarthy et al., 2016), which has much larger sample size and contains more general 

European populations, contributes 3.5 million variants that could not be imputed by the 

other two panels. Since 1000G(Auton et al., 2015) has additional advantages that indels and 

structural variants are comprehensively detected and genotyped, 1.3 million non-SNP 

variants have only been imputed by 1000G(Auton et al., 2015). Furthermore, each reference 

panel may provide additional information to improve imputation accuracy. Therefore, to 

increase the variant coverage and imputation accuracy as much as possible, we recommend 

using all three reference panels for imputation if available. If a single panel has to be chosen, 

each option will have different advantages and disadvantages. We have shown that 

imputation from population-specific reference panels provides comparable imputation 

accuracy for variants with MAF > 0.1%. as using reference panels with 15 times larger 

sample size with only broad ancestry-matching (i.e. European). Although panel sizes are 

similar, the population-specific reference panel results in higher imputation accuracy than 

the mixed-ancestry 1000G panel (Auton et al., 2015) for variants with MAF ≥ 0.05%. This 

has also been observed by a recently published study on Estonians(Mitt et al., 2017).

To address the issue of imputing different versions of the same variant from different 

reference panels, we propose the “best p-value” approach, which analyzes all versions of 

each imputed variant and accounts for the multiple testing. Our simulation study 

demonstrated that this approach has higher power for detecting association signals than 

selecting the imputed variant with highest imputation quality given the distributions of the 

imputation quality metrics from different reference panels may be quite different, even 

adjusting for additional variants tested.

The UK10K study and the Genome of the Netherlands (GoNL) Consortium suggested that 

merging multiple reference panels to a larger reference panel would improve imputation 

performance, especially for less frequent variants(Deelen et al., 2014; J. Huang et al., 2015). 

Compared to this approach, our “best p-value” approach does not require access to all 
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reference panes and is feasible even if not all reference panel haplotypes are directly 

accessible. If large imputation reference panels, such as the HRC(McCarthy et al., 2016), are 

not directly accessible, conducting association tests for all imputed versions of genotype 

with slightly higher computational cost will be an effective strategy.

In summary, we recommend creating a small size ancestry-matched reference panel using 

whole genome sequencing to allow for improved imputation of low frequency variants that 

may be enriched in that ancestral group, performing genotype imputation using the ancestry-

matched reference panel and other large publicly available databases, and analyzing all 

versions of imputed variants in downstream association testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Number of variants that are imputed by different reference panels
The corresponding percentage is the variants number out of all 23.8 million variants that are 

successfully imputed by any of the three reference panels.
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Figure 2. Distribution of numbers of variants that are imputed from only one reference panel or 
from multiple reference panels in different MAF categories
Variants that are imputed by 1000G only are categorized as SNPs and non-SNP variants, 

including indels, deletions, complex short substitutions and other structural variant classes. 

1000G, 1000 Genomes Phase 3; WGS, whole-genome sequencing; HRC, Haplotype 

Reference Consortium; MAF, minor allele frequency
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Figure 3. HRC and HUNT WGS panels show comparable imputation quality
a. comparing the mean empirical R2 (y axis) reported by different reference panels for 

variants that are directly genotyped categorized by the MAF (x axis) without any ImpRsq 

threshold applied.

b. comparing the mean Imputation R2 (y axis) reported by different reference panels for 

variants that are directly genotyped categorized by the MAF (x axis) without any ImpRsq 

threshold applied.

c. comparing the mean Imputation R2 (y axis) reported by different reference panels for all 

imputed variants (ImpRsq > 0.3) by the MAF (x axis).

d. comparing the mean Imputation R2 (y axis) reported by different reference panels for all 

imputed variants by the MAF (x axis) without any ImpRsq threshold applied.

1000G, 1000 Genomes Phase 3; WGS, whole-genome sequencing; HRC, Haplotype 

Reference Consortium; MAF, minor allele frequency; ImpRsq, imputation quality metric R2
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Figure 4. Comparison of power to detect true associations between best p-value and best Rsq 
approaches via simulation studies
For each MAF category, 3,000 directly genotyped variants were randomly selected based on 

their MAF estimated with genotypes obtained from the chip array to estimate the power. The 

power is calculated as the proportion of significantly associated variants across three 

imputed panels based on each strategy given the corresponding significance threshold. 

ImpRsq > 0.3 was applied to remove poorly imputed genotypes. The numbers of variants 

that were successfully imputed from at least two reference panels and used in the simulation 

studies are: 2,513 with MAF > 0 and ≤ 0.001; 2,989 with MAF > 0.001 and ≤ 0.01; 3,000 
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with MAF > 0.01 and ≤ 0.05; and 3,000 with MAF > 0.05. MAF, minor allele frequency; 

ImpRsq, imputation quality metric R2
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Table 2

Reference panels used for genotype imputation

Reference Panels Variants Sample Size Population

Haplotype Reference Consortium(McCarthy et 
al., 2016) (HRC)

39 million SNPs (MAC ≥ 5) 32,488a Cosmopolitan (mostly European)

1000 Genomes Phase 3 Version 5(Auton et al., 
2015) (mean depth < 8×)

81 million Biallelic SNPs, indels, 
deletions, complex short substitutions 

and other structural variant classes 
(MAC ≥ 2)

2,504 Cosmopolitan

HUNT Whole Genome Sequencing (HUNT 
WGS) (mean depth ~ 5×)

20 million SNPs 2,201a Norwegian

a
HRC and HUNT whole-genome sequencing data set have 1,023 samples in overlap.

MAC: minor allele count
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