
Breakthrough Technologies

Semiautomated Feature Extraction from RGB Images for
Sorghum Panicle Architecture GWAS1[OPEN]

Yan Zhou,a Srikant Srinivasan,a,2 Seyed Vahid Mirnezami,b Aaron Kusmec,a Qi Fu,c,3 Lakshmi Attigala,a

Maria G. Salas Fernandez,a Baskar Ganapathysubramanian,b and Patrick S. Schnablea,c,4,5

aDepartment of Agronomy, Iowa State University, Ames, Iowa 50011
bDepartment of Mechanical Engineering, Iowa State University, Ames 50011, Iowa
cCollege of Agronomy, China Agricultural University, 100083 Beijing, China

ORCID IDs: 0000-0003-0347-0027 (Y.Z.); 0000-0001-8605-3952 (S.S.); 0000-0003-2295-385X (A.K.); 0000-0001-6653-3385 (M.G.S.F.);
0000-0001-9169-5204 (P.S.S.).

Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the
genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the
large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such
as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to
extract unidimensional and multidimensional features from images of 1,064 sorghum (Sorghum bicolor) panicles from 272
genotypes comprising a subset of the Sorghum Association Panel. GWAS detected 35 unique single-nucleotide polymorphisms
associated with variation in inflorescence architecture. The accuracy of the TIM pipeline is supported by the fact that several of these
trait-associated single-nucleotide polymorphisms (TASs) are located within chromosomal regions associated with similar traits in
previously published quantitative trait locus and GWAS analyses of sorghum. Additionally, sorghum homologs of maize (Zea mays)
and rice (Oryza sativa) genes known to affect inflorescence architecture are enriched in the vicinities of TASs. Finally, our TASs are
enriched within genomic regions that exhibit high levels of divergence between converted tropical lines and cultivars, consistent
with the hypothesis that these chromosomal intervals were targets of selection during modern breeding.

The grass family (Poaceae) includesmaize (Zea mays),
wheat (Triticum aestivum), rice (Oryza sativa), sor-
ghum (Sorghum bicolor), and other cereal crops, which

collectively provide 56% of the calories consumed by
humans in developing countries and over 30% in de-
veloped countries (Amine et al., 2003; Bruinsma, 2003).
The development of the grain-bearing inflorescences of
cereals beginswith the transition of the vegetative shoot
apical meristem (SAM) into an inflorescence meristem,
which later forms into branch meristems and further
generates spikelet meristems (Zhang and Yuan, 2014).
Variation in these developmental processes accounts
for the substantial interspecific and intraspecific varia-
bility in inflorescence architecture observed among the
cereals (Vollbrecht et al., 2005; Huang et al., 2009;
Youssef et al., 2017). The transition of the SAM into an
inflorescence meristem is regulated by genes that affect
both the identity and maintenance of meristems
(Pautler et al., 2013; Zhang and Yuan, 2014). For ex-
ample, in Arabidopsis (Arabidopsis thaliana), meristem
identity is regulated primarily by a negative feedback
loop betweenCLAVATA (CLV) and the homeobox gene
WUSCHEL (WUS), which prevents the misspecification
of meristem cells and the premature termination of
floral and shoot meristems (Laux et al., 1996; Mayer et al.,
1998; Pautler et al., 2013; Tanaka et al., 2013).Mutations of
CLV genes often result in larger inflorescence meristems
(Clark et al., 1997; Fletcher et al., 1999; Jeong et al., 1999).
Similarly, mutations of the CLV1 homolog in maize, thick
tassel dwarf1 (TD1), and the CLV2 homolog, fasciated ear2,
produce tassels with more spikelets and fasciated ears
with extra rows of kernels (Taguchi-Shiobara et al., 2001;
Bommert et al., 2005). The KNOTTED1-like homeobox
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genes also affect inflorescence development by altering
the establishment and maintenance of SAM tissues
(Vollbrecht et al., 2000; Bolduc and Hake, 2009; Bolduc
et al., 2012). Mutations of the maize knotted1 (Kn1) and
the rice Oryza sativa homeobox1 genes both exhibit a
sparse-inflorescence phenotype caused by reduced
meristem maintenance (Kerstetter et al., 1997; Tsuda
et al., 2011). The null allele kn1-E1 is epistatic to the
null allele td1-glf in maize ear development and sug-
gests the importance of Kn1 in regulating both meri-
stem identity and lateral organ initiation (Lunde and
Hake, 2009).
These functional studies of large-effect or qualitative

mutants have greatly enhanced our understanding of
the developmental processes underlying inflorescence
development and architecture. Even so, because many
quantitative traits also are affected by large numbers of
small-effect genes (Buckler et al., 2009; Danilevskaya
et al., 2010; Brown et al., 2011; Li et al., 2012), there re-
mains the opportunity to expand our understanding of
inflorescence development via the application of
genome-wide association studies (GWAS) to identify
associations between specific loci and quantitative
phenotypic variation. GWAS has been used to identify
genes associated with inflorescence architecture in
multiple crops (Brown et al., 2011; Morris et al., 2013;
Crowell et al., 2016;Wu et al., 2016; Zhao et al., 2016; Xu
et al., 2017). Given that thousands or millions of
markers can now be readily discovered and genotyped,
phenotyping is typically the bottleneck for conducting
GWAS. Traditionally, crop scientists have collected
unidimensional traits, such as spike length, spike
width, and branch length and number, manually. This
is time consuming for large populations. Therefore, to
fully utilize the advantages of GWAS, there is a need for
accurate, high-throughput phenotyping platforms.
Computer vision has been shown to be efficient in

isolating inflorescences (Aquino et al., 2015; Zhao et al.,
2015; Millan et al., 2017), and several studies have
attempted to extract inflorescence features from images
of rice and maize (AL-Tam et al., 2013; Crowell et al.,
2014; Zhao et al., 2015; Gage et al., 2017). The com-
plexity of inflorescence architecture complicates the
accurate extraction of phenotypes from images. To
date, two studies have applied image-based pheno-
typing to the genetic analyses of crop inflorescences,
and they focused either only on artificially flattened rice
inflorescences (Crowell et al., 2016) or on unidimen-
sional traits of maize such as tassel length and central
spike length (Gage et al., 2018). Considering that in-
florescences are 3D structures, phenotyping strategies
that flatten an inflorescence or focus on only a single
plane will inevitably fail to capture a considerable
amount of phenotypic variation and, therefore, will
reduce the probability of discovering genes involved in
inflorescence architecture. This limitation highlights the
need for new automated phenotyping platforms that
accurately collect inflorescence traits, especially multi-
dimensional traits, which have not been collected by
previous automated phenotyping projects.

Sorghum is the world’s fifth most important cereal
crop and is a major food crop in some developing
countries (Hariprasanna and Rakshit, 2016). It is evo-
lutionarily closely related to the other well-studied ce-
reals such as maize, wheat, and rice (Paterson et al.,
2009; Schnable et al., 2012; Choulet et al., 2014;
Schnable, 2015). Studies conducted to date on the ge-
netic architecture of sorghum panicles have focused on
unidimensional traits such as panicle length, panicle
width, and branch length (Hart et al., 2001; Brown et al.,
2006; Srinivas et al., 2009; Morris et al., 2013; Nagaraja
Reddy et al., 2013; Zhang et al., 2015; Zhao et al., 2016).
Due to the challenges associated with collecting multi-
dimensional traits such as panicle area, volume, and
compactness, our understanding of the genetic archi-
tectures of these traits is limited.
Sorghum exhibits extensive population structure as-

sociated with both morphological type and geographic
origin (Bouchet et al., 2012; Morris et al., 2013), which
has the potential to introduce false-positive signals into
GWAS analyses unless properly controlled (Yu et al.,
2006; Zhang et al., 2010). In addition, the average extent
of linkage disequilibrium (LD) decay in sorghum is
substantially greater than in maize, due at least in part
to its mode of reproduction (Chia et al., 2012; Morris
et al., 2013). Therefore, each trait-associated single-
nucleotide polymorphism (TAS) identified via GWAS
is likely to be linked to a large genomic region, making
it challenging to identify candidate genes. However,
quantitative trait locus (QTL) studies have identified
syntenic chromosomal regions that control inflores-
cence traits in both maize and sorghum (Brown et al.,
2006). Furthermore, it is possible to identify con-
served sorghum homologs of genes that regulate in-
florescence architecture in maize and rice (Paterson
et al., 2009; Schnable et al., 2012; Zhang et al., 2015).
These findings suggest that scanning chromosomal
regions surrounding sorghum TASs for homologs of
maize and rice genes with known functions in inflo-
rescence architecture could overcome the challenges
in identifying candidate genes caused by sorghum’s
high LD.
In this study, we developed and deployed a high-

resolution imaging pipeline to collect panicle pheno-
types from a subset of the Sorghum Association Panel
(SAP; Casa et al., 2008) consisting of 272 accessions. We
used a semiautomated procedure to extract both
unidimensional and multidimensional traits from
these images. The resulting phenotypic data were
used to perform GWAS, which identified TASs, some
of which are located within chromosomal regions
identified via previously published QTL and GWAS
analyses of sorghum for similar traits. In addition, a
statistically enriched fraction of these TASs are lo-
cated near sorghum homologs of maize or rice genes
known to influence inflorescence architecture. A
genome-wide analysis of population differentiation
suggests that the genomic regions that contain the
TASs have undergone artificial selection during
sorghum breeding.
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RESULTS

Phenotyping

The front and side planes of 1,064 panicles from 272
genotypes (designated SAP-FI; Supplemental Fig. S1)
were imaged (Fig. 1; see “Materials and Methods”). A
MATLAB app from TIM (Toolkit for Inflorescence
Measurement) was used to mark the approximate
boundary of each panicle that was subsequently crop-
ped from the original image. A fully automated trait
extraction protocol (see “Materials and Methods”) then
was used to extract length and width directly from
cropped front plane images.

To evaluate the accuracy of our semiautomated
image-processing method, we manually measured the
length and width of single panicles from 17 genotypes
randomly selected from the SAP-FI. The resulting trait
values were compared with the corresponding values
automatically extracted from images of the same pani-
cles. The coefficient of determination (r2) between the
values of the autoextracted length and width.front
versus ground truth were 0.93 and 0.89, respectively
(Fig. 2), indicating that our pipeline can accurately ex-
tract panicle length and width.

Differences between the values for autoextracted
traits and ground truth as shown in Figure 2 consist of
two components: (1) variation between trait measure-
ments of a 3D panicle and the representation of these
trait measurements in a 2D image, and (2) errors in
autoextracting trait values from a 2D image. To evalu-
ate the first source of variation, we manually mea-
sured lengths from 2D panicle images of the above 17

genotypes using our MATLAB app and compared the
resulting trait values with panicle lengths of ground
truth. The 0.96 value for r2 (Fig. 3) indicated that little
variation was introduced via 2D imaging.

To quantify the second source of variation, we also
manually measured lengths from 2D images of panicles
using our MATLAB app and compared the resulting
trait values with lengths autoextracted from cropped
images. Considering all 1,064 panicles, the r2 was 0.94
(Fig. 3). The r2 value could be increased further to 0.97
by comparing extracted trait values of a genotype av-
eraged across replications and locations (Fig. 3). These
results demonstrate that the second source of error was
minimal and could be well controlled under our ex-
perimental design. Mean trait values were used for all
subsequent phenotypic analyses, including GWAS.

In addition to length and width.front, six other pan-
icle traits were extracted from cropped panicle images.
Width.side was extracted using the same criteria as
width.front but using a panicle’s side plane image.
Because the same pipeline was used to extract width.
front and width.side, we did not collect ground-truth
data for the latter trait. Area and solidity are features of
a 3D object projected onto a 2D plane, so we chose these
two traits to reflect structural variation in panicle size
and compactness projected on the front and side planes,
yielding the traits area.front, area.side, solidity.front,
and solidity.side. Panicle volume was estimated using
information extracted from both planes (see “Materials
and Methods”). No ground-truth data were collected
for the five multidimensional traits due to the challenge
of measuring them by hand. All eight traits exhibited

Figure 1. Phenotyping pipeline used to
extract traits from 1,064 panicles of 272
genotypes. Each panicle was photographed
from both the front and side planes. Seg-
mentation was conducted manually for
subsequent automatic trait extraction.
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high heritabilities (Fig. 4), with the highest for panicle
length (H2 = 0.93) and lowest for width.side (H2 = 0.7).

Phenotypic and Genetic Correlations of Panicle Traits

The phenotypic correlation between two traits is
determined by their genetic and nongenetic correla-
tions and heritabilities (Bernardo, 2010). The genetic
correlation between two traits is a function of pleiot-
ropy (i.e. the effect of a gene on multiple traits; Mackay
et al., 2009). Correlations among the eight traits were
determined by analyzing all pairwise comparisons. The
phenotypic correlations among panicle traits were
strongly associated with their corresponding genotypic
correlations (Fig. 4). For example, the 10 pairs of traits
with the highest phenotypic correlations also exhibited
the highest genetic correlations.
For solidity and area, values of the front plane were

highly correlated with those of the side plane (r = 0.94
and 0.74, respectively; Fig. 4). In contrast, as expected
based on the definition of front and side planes (see
“Materials and Methods”), there was only a low cor-
relation (r = 0.18) between the panicle widths of each
plane. Although width.front was positively correlated
with area.front (r = 0.56), it was poorly correlated with
area.side (r = 0.05), despite the reasonably high

phenotypic correlation between the two area traits
(r = 0.74). The genotypes within the SAP-FI panel ex-
hibit a great deal of variation in panicle architecture
(Supplemental Fig. S1). Some of these genotypes exhibit
a flat shape, in which the width.side is much smaller
than width.front (see, for example, the three genotypes
displayed on the right of Supplemental Fig. S1). In-
spection of individual panicles confirmed that flat
genotypes contribute to the poor correlation between
width.front and area.side (Supplemental Fig. S2). Sim-
ilarly, both solidity traits were negatively correlated
with traits from the front plane (panicle length, width.
front, and area.front) while being positively correlated
with width.side and area.side. Because these pheno-
typic correlations are consistent with their genetic cor-
relations (Fig. 4), we hypothesize that some genes have
functions in both planes.

GWAS

To identify loci that affect panicle architecture,
GWASwas performed on the SAP-FI panel for the eight
panicle traits using an improved version of FarmCPU
(Liu et al., 2016) termed FarmCPUpp (Kusmec and
Schnable, 2018). These analyses identified 49 associations
(Supplemental Fig. S3) representing 46 nonredundant

Figure 2. Comparison of ground-truth mea-
surements and trait values extracted from im-
ages of 17 randomly chosen panicles. A,
Panicle length. B, Panicle width of front plane.

Figure 3. Comparison of panicle lengths
measured manually from images using a cus-
tomMATLAB app and extracted from the same
images using our automated image-processing
pipeline. A, Comparison of ground-truth
measurements and panicle length measured
manually from images of 17 randomly chosen
panicles (front plane). B, Panicle lengths from
1,064 individual images (front plane). C, Panicle
lengths using mean values of 272 genotypes.
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TASs. A bootstrapping process was used to filter false-
positive signals (see “Materials and Methods”). Of the
46 single-nucleotide polymorphisms (SNPs) detected in
the GWAS of the SAP-FI panel, 38 associations, repre-
senting 35 high-confidence, nonredundant TASs, also
exhibited a resample model inclusion probability
(RMIP) $ 0.05 in the bootstrap experiment (see
“Materials and Methods”; Table 1).

Sixty-six percent (n = 23) of these 35 high-confidence,
nonredundant TASs were associated with three of the
eight traits: length (n = 6), solidity.front (n = 8), and
width.front (n = 9). For the three traits measured in both
planes, approximately twice as many TASs were
detected for front plane traits (n = 21) as compared with
the corresponding side plane (n = 10; Table 1). This
probably reflects the lower heritabilities of the side
plane traits relative to the front plane (Fig. 4).

We compared the TASs associated with panicle
length andwidth.front with published QTL and GWAS
results (Hart et al., 2001; Brown et al., 2006; Srinivas
et al., 2009; Morris et al., 2013; Nagaraja Reddy et al.,
2013; Zhang et al., 2015; Zhao et al., 2016). Encourag-
ingly, two of our six TASs for panicle length are located
within previously reported QTL intervals (Supplemental
Table S1; Hart et al., 2001; Srinivas et al., 2009), and an-
other (at position 8,065,027 bp on chromosome 1) is lo-
cated within the interval reported by a previous GWAS
for panicle length (Zhang et al., 2015). One of the nine
TASs identified for width.front (at position 3,724,913 bp
on chromosome 3) was located within regions identified
via previous QTL and GWAS on panicle width and
branch length (Hart et al., 2001; Brown et al., 2006; Morris
et al., 2013; Zhang et al., 2015). Given the differences in

genetic materials used in these studies and the fact that
SAP-FI is only a subset of the original SAP used for
GWAS by others, it is not surprising that the results of
these studies do not fully overlap.

Only three TASs were associated with multiple traits:
two were associated with both solidity.front and so-
lidity.side (Table 1) and one with both area.side and
volume. The limited number of overlapping SNPs was
unexpected given the substantial correlations among
traits (Fig. 4). We hypothesized that this low overlap
is due to false-negative associations that arose as a
consequence of the modest effect sizes of many of
the detected TASs (standardized effect sizes , 0.5;
Supplemental Fig. S4) in combination with the rela-
tively small size of our panel, which limited the power
of statistical tests. To evaluate this hypothesis, we
compared the high-confidence TASs for one trait with
all significant TASs identified via bootstrapping that
exhibited an RMIP $ 0.05 for a second trait highly
correlated with the first one. This process identified
nine additional TASs (Supplemental Table S2) affecting
highly correlated traits, supporting our hypothesis that
our stringent control of false-positive signals reduced
the ability to detect TASs that associated with multiple
traits. Similar to previous studies on the effect sizes of
pleiotropic TASs for maize inflorescences (Brown et al.,
2011), the standardized effect sizes of the 12 sorghum
TASs that affect multiple traits were similar for both
members of pairs of affected traits (Supplemental
Fig. S5).

Identification of Candidate Genes

The sorghum genome exhibits extensive LD (Morris
et al., 2013). Although estimates of LD vary across the
genome (Hamblin et al., 2005; Bouchet et al., 2012;
Morris et al., 2013), we elected to use a genome-wide
average estimate of LD in our search for candidate
genes because our local estimates of LD surrounding
TASs were noisy, perhaps due to the relatively
small number of SNPs per Mb (200 = 146,865/730-Mb
genome) and missing data in this genotyping by
sequencing-derived SNP set. Hence, we screened
700-kb windows centered on each TAS for candidate
genes (see “Materials and Methods”).

The limited number of sorghum genes that have been
subjected to functional analyses complicates the iden-
tification of candidate genes. We overcame this chal-
lenge by looking for sorghum homologs of maize and
rice genes (Supplemental Table S3) associated previ-
ously with inflorescence architecture (Vollbrecht et al.,
2005; Tanaka et al., 2013; Zhang and Yuan, 2014) lo-
cated within the 700-kb windows surrounding TASs
(see “Materials and Methods”).

Using this procedure, nine candidate genes were
identified (Table 2). A permutation test (see “Materials
and Methods”; P = 0.026) indicated that sorghum ho-
mologs of maize and rice genes known to affect inflo-
rescence architecture are enriched in chromosomal

Figure 4. Phenotypic and genetic correlations among panicle traits.
Traits are ordered using the hclust function of R, with phenotypic and
genetic correlations indicated by ellipses and squares, respectively.
Traits extracted from the front or side plane are distinguished by the
extensions .front and .side, respectively. The heritability of each trait is
shown on the left.
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regions surrounding TASs. In addition, the maize and
rice homologs of each of the nine sorghum candidate
genes have functions consistent with the traits used to
identify associations (Table 2), and five of these maize
and/or rice genes were associated with relevant traits
based on GWAS conducted in those species (Table 2).

Population Differentiation

Because inflorescence traits can influence per plant
yield, these traits have likely been targets of selection.
According to Casa et al. (2008), the SAP-FI (n = 272)
used in this study contains 55 elite inbred lines and
landraces that were developed in the United States, 40
cultivars collected worldwide, and 177 converted
tropical lines. The latter group was generated by the
Sorghum Conversion Program (SCP), which aimed to
introduce novel genetic variation from exotic, tropical

germplasm collected from around the world into
modern U.S. breeding lines (Stephens et al., 1967).
During this process, tropical lineswere backcrossed to a
single adapted line (BTx406) and selection was per-
formed only for flowering time and plant height. Spe-
cifically, there was no direct selection for panicle
architecture; thus, much of the natural genetic variation
present in the tropical lines associated with panicle
traits presumably would have been retained in the
converted tropical lines (Casa et al., 2008; Thurber et al.,
2013). As a group, the 177 converted tropical lines have
shorter and narrower panicles as well as smaller cross-
sectional areas compared with the 40 cultivars
(Supplemental Fig. S6). The origins of the 40 cultivars
and exotic donors of the 177 converted tropical lines
have similar geographic distributions (Casa et al., 2008).
Hence, by identifying chromosomal regions that exhibit
statistically significant differences in allele frequencies
between the two groups (see “Materials and Methods”),

Table 1. List of 35 significant TASs affecting 38 trait associations

Trait SNP 2log10(P value) Estimate Effect Standardized Effect Size RMIP

Area.front S1_3176715 9.80 25.75 0.27 0.47
Area.front S4_12278584a 6.56 24.16 0.20 0.13
Area.front S4_60591319 6.88 25.38 0.25 0.19
Area.front S10_1793055 6.58 4.96 0.23 0.22
Area.side S3_3201555b 9.47 6.55 0.51 0.16
Area.side S3_58994806a 8.07 3.53 0.28 0.12
Area.side S5_17518239 6.74 4.07 0.32 0.44
Area.side S6_49755954 7.91 23.28 0.26 0.30
Panicle length S1_8065027a,c 6.69 0.98 0.22 0.07
Panicle length S2_63553713a,c 15.21 3.36 0.74 0.75
Panicle length S3_58920501a 6.92 0.90 0.20 0.05
Panicle length S8_14556347c 7.28 21.67 0.37 0.40
Panicle length S10_50809289 10.68 1.31 0.29 0.19
Panicle length S10_54184063 6.88 20.84 0.18 0.17
Solidity.front S2_10933862b 15.07 20.07 0.71 0.82
Solidity.front S2_70599334 10.56 20.03 0.32 0.09
Solidity.front S2_76284762a 9.48 0.04 0.41 0.05
Solidity.front S3_56132328 6.59 0.02 0.16 0.27
Solidity.front S4_56171463 15.34 20.03 0.36 0.45
Solidity.front S6_60219786a 7.39 0.02 0.26 0.07
Solidity.front S8_6056282b 7.40 20.03 0.36 0.13
Solidity.front S10_1149373 6.62 20.02 0.24 0.05
Solidity.side S1_19664643a 7.20 20.04 0.59 0.31
Solidity.side S2_10933862b 10.13 20.05 0.66 0.81
Solidity.side S7_54381792 9.13 0.04 0.56 0.31
Solidity.side S8_6056282b 7.57 20.03 0.41 0.38
Volume S3_3201555b 9.34 33.33 0.53 0.45
Width.front S2_68297155 14.17 0.53 0.38 0.72
Width.front S3_3724913 8.87 0.48 0.34 0.48
Width.front S3_57037006 10.99 0.71 0.50 0.69
Width.front S4_65197133 7.61 0.53 0.38 0.10
Width.front S5_11264509 7.98 0.58 0.41 0.15
Width.front S6_60559938 6.62 0.42 0.30 0.17
Width.front S8_26248649 8.04 0.58 0.42 0.18
Width.front S8_45726712 9.35 0.44 0.31 0.12
Width.front S9_3027904 7.81 0.62 0.44 0.24
Width.side S3_2724080a 9.57 0.27 0.43 0.19
Width.side S10_60236042a 6.82 0.15 0.23 0.08

aHave the candidate gene located within 350 kb on either side of the TAS (Table 2). bPleiotropic TASs in GWAS of the full set. cTASs that
overlap with previously reported QTLs or GWAS intervals (Supplemental Table S1).
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we can identify regions that have putatively been under
selection. We could then ask whether such chromo-
somal regions are enriched for our TASs.
A prior comparison of the parental and converted

tropical lines generated in the SCP identified chromo-
somal regions on the long arms of chromosomes 6, 7,
and 9 that exhibit signatures of selection. Consistent
with the nature of the SCP, these regions contain clus-
ters of genes (Ma1, Ma6, Dw1, Dw2, and Dw3) that
regulate plant height and flowering time (Thurber et al.,
2013). Our comparison between the 177 converted
tropical lines and 40 cultivars also identified the regions
(Fig. 5) associated with flowering time and plant height
described by Thurber et al. (2013). At first, this result
was surprising, but subsequent analyses on previously
reported plant height loci (Brown et al., 2008; Li et al.,
2015) revealed that the 40 cultivars have lower fre-
quencies of the favorable alleles of three height genes
located on chromosomes 6, 7, and 9 that were contrib-
uted by BTx406 than the converted tropical lines.
In addition to the adaptation genes located on chro-

mosomes 6, 7, and 9, we also identified genomic regions
that exhibit signatures of selection that were not iden-
tified by Thurber et al. (2013); Fig. 5). These regions
probably reflect selection during modern breeding for
agronomic traits, potentially including panicle archi-
tecture. Consistent with the hypothesis that selection
has occurred for panicle traits, 26 of our 35 TASs

colocalized within chromosomal regions that exhibit
evidence of selection. Eight of these 26 TASs are linked
to candidate genes (Fig. 5). Based on permutation tests,
more overlap was observed than would be expected if
the TASs had not been under selection (P , 0.001).
To further test this hypothesis, we determined trait

values for area.front for each of the four potential gen-
otypes associated with the two TASs for this trait, both
of which exhibited signatures of selection. For the first
TAS (S1_3176715), the reference (R) allele is associated
with larger area.front. In contrast, the alternative (A)
allele of the second TAS (S4_12278584) is associated
with larger area.front. Considering all members of the
SAP-FI, the RA and AR genotypes have the largest and
smallest area.front values, respectively (Fig. 6). Con-
sistent with our hypothesis that differences in allele
frequencies of these two TASs in the two groups are due
to selection for panicle architecture, the favorable R
allele of SNP S1_3176715 exhibits a higher (29%) fre-
quency in the cultivars (26 of 40) than in the converted
tropical lines (89 of 177). The frequency of the favorable
A allele of SNP S4_12278584 is not higher in the culti-
vars than in the converted tropical lines; only one of the
40 cultivars carries the least favorable genotype of both
SNPs (AR). Although not statistically significant
(Fisher’s exact test, P = 0.069), this frequency (one of 40)
is 5 times lower than that observed in the converted
tropical lines (20 of 177; Fig. 6). Similarly, the frequency

Figure 5. Identification of chromosomal regions that exhibit evidence of selection. Allele frequencies were compared between
177 converted tropical lines and 40 cultivars. A 99.5% fixation index cutoff is indicated by horizontal dashed lines. Vertical
dashed lines designate the positions of 35 TASs. TASs located within divergent regions are indicated in red. Two TASs on chro-
mosome 3 at 58,920,501 and 58,994,806 bp are represented by a single red dashed line. Candidate genes are labeled. Gray
shading on chromosomes 6, 7, and 9 indicates genomic regions identified by Thurber et al. (2013) carrying maturity and plant
height genes introduced in the SCP.
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of the least favorable genotypic class determined by the
two SNPs associated with panicle length was reduced
in cultivars as compared with the converted tropical
lines (Fig. 6). These results at least suggest the possi-
bility that chromosomal regions surrounding some of
the TASs identified in this study may have been targets
of selection during modern breeding.

DISCUSSION

Given the substantial reductions in the cost of geno-
typing large panels, phenotyping has become the bot-
tleneck for large-scale genetic analyses of crops. Two
groups have reported pipelines (P-TRAP and PANo-
rama) to capture phenotypes of rice panicles using
photographs of flattened panicles (AL-Tam et al., 2013;
Crowell et al., 2014). In both cases, only a single image
was analyzed per flattened panicle. Hence, these pipe-
lines are not suitable for extracting multidimensional
traits associated with the 3D structures of panicles.
Others have used complex imaging chambers to mea-
sure 3D structures of limited numbers of Arabidopsis
inflorescences (Hall and Ellis, 2012), but it would
be difficult to scale this approach to phenotype large
diversity panels.

Here, we present a low-cost, easy-to-replicate pipe-
line that was used to phenotype panicles in a sorghum
diversity panel. To explore variation in panicle architecture

among the members of this diversity panel, we cap-
tured images from the two planes of a panicle. This
enabled us to extract not only unidimensional traits,
such as panicle length and width, but also multidi-
mensional traits, such as area.front, area.side, solidity.
front, solidity.side, and volume. Extracted trait values
for panicle length and width exhibited high accuracies
(0.93 and 0.89, respectively) as compared with ground-
truth measurements of intact panicles. Because it is not
possible to extract ground-truth data for multidimen-
sional traits, we could not determine the accuracy of our
pipeline for these traits. Even so, since the heritabilities
were high (0.7–0.93), we conducted a GWAS for these
traits and identified candidate genes associated with
some of the TASs.

Given the extensive LD present in sorghum, it is not
possible to conclude that any particular candidate gene
affects the associated trait. However, the enrichment of
sorghum homologs for maize and rice genes known to
affect inflorescence architecture near these TASs, and
the correspondence of their functions in maize and rice
with the associated phenotypes in sorghum (Table 2),
support the accuracy of our phenotyping pipeline and
the hypothesis that at least some of the candidate genes
are causative.

Functional studies (Tanaka et al., 2013; Zhang and
Yuan, 2014) have demonstrated that many genes that
regulate inflorescence development are functionally con-
served among grass species. More specifically, GWAS

Figure 6. Evidence of selection against alleles
for small panicle areas and short panicles. The
allele from the reference genome of BTx623 is
designated as the reference (R) allele, and
other alleles are designated as alternative (A)
alleles. A and B, Panicle area. C and D, Panicle
length. A and C, Phenotypes associated with
all four genotypes of TASs S1_3176715 and
S4_12278584 (A) and TASs S1_8065027 and
S3_58920501 (C) in the complete panel. B
and D, Genotype frequencies of TASs in the
converted tropical lines and cultivars.
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suggest the conservation of genetic architecture be-
tween rice panicles and maize tassels (Brown et al.,
2011; Crowell et al., 2016; Xu et al., 2017). Hence, we
prioritized our selection of candidates by identifying
sorghum homologs of inflorescence genes discovered
previously in maize and rice. In this manner, we iden-
tified nine candidate genes, most of which are related to
Kn1 (Fig. 7).
In maize, both Kn1- and Ra1-related genes affect

tassel development, and many auxin-related genes are
targeted by both the RA1 and KN1 proteins (Vollbrecht
et al., 2005; McSteen, 2006; Eveland et al., 2014). Al-
though our GWAS associated many Kn1-related sor-
ghum genes with panicle architecture, no TASs were
found in LD with members of the ramosa pathway. This
was surprising because, in maize, this pathway con-
tributes to the formation of spikelet pair meristems and
has been associated with tassel architecture via GWAS
(Brown et al., 2011; Wu et al., 2016; Xu et al., 2017).
Given the level of functional conservation between
these two species, it is unlikely that the ramosa pathway
does not contribute to the development of sorghum

panicles. Instead, the failure of our GWAS to detect
associations with genes in the ramosa pathway suggests
that differentially functional alleles of these genes are
not segregating at high frequencies in the SAP-FI. This
finding highlights the value of combining high-
throughput phenotyping with GWAS to identify
standing variation that can be used to select targets for
marker-assisted breeding.
On average, cultivars have larger panicles than con-

verted tropical lines, and our results suggest that, by
employing phenotypic selection, breeders have selected
for favorable alleles of genes that regulate panicle ar-
chitecture. Even so, our results also indicate that culti-
vars have not been purged of unfavorable alleles of
these genes. This is likely because most TASs identified
in this study exhibit only moderate effect sizes and,
consequently and consistent with expectation (Bernardo,
2008, 2016; Heffner et al., 2009), traditional phenotypic
selection has not yet fixed favorable alleles at all rele-
vant loci. This presents an opportunity to employ the
TASs identified in our GWAS to design a marker-
assisted selection program to improve panicle archi-
tecture traits with impact on final grain yield.
The general imaging and data analysis approach

reported here could be used to phenotype other grass
species with panicle structures similar to those of sor-
ghum. Often, academic software is not supported on
the latest versions of operating systems. Our code is
based on built-in MATLAB functions, which does not
put the burden of long-term maintenance on the de-
velopers or users. Hence, anyone in possession of our
scripts can run them onMATLAB, which is commercially
maintained and routinely updated to cater to all operating
systems. In addition, our semiautomated trait extraction
pipeline requires no advanced hardware; any commer-
cially available laptop is capable of completing trait ex-
tractions from1,000 imageswithin 24 h.As such, it should
be possible to deploy this method even at remote breed-
ing stations in developing countries.

MATERIALS AND METHODS

Imaging Panicles

A total of 302 sorghum (Sorghum bicolor) genotypes from the SAP (Casa et al.,
2008) were grown at two Iowa State University experimental farms (Kelley
Farm in Ames, Iowa, and Burkey Farm in Boone, Iowa) in 2015. This panel was
planted in a randomized complete block design with two replications at each
location, as described previously by Salas Fernandez et al. (2017). One panicle
per replicate per location was harvested during the third week of October and
imaged using a light box. A few genotypes had some panicles with drooping
primary branches. To avoid artifacts due to these drooping panicles, we se-
lected for phenotyping within such genotypes only those specific panicles that
did not droop. The light box was constructed with a Pacific Blue background to
ensure easy segmentation of panicles in subsequent image-processing steps.
This box was designed to accommodate the diversity of panicles in the SAP
(Fig. 1), with dimensions of about 45 cm tall, 36 cm wide, and 24 cm deep. All
images were captured using a single Canon 5DS DSLR camera with EF100 mm
f/2.8LMacro IS USM lens. The camera wasmounted at a fixed height and angle
to ensure consistent imaging.

Each panicle was mounted upright in the center of the light box with a
reference scale of knowndimensions placed next to it. The reference scale allows
the automated conversion of size-dependent traits from the number of pixels

Figure 7. Potential relationships among nine candidate genes (plus
ga20ox) and their functions in inflorescence development. Kn1 is a key
regulator of floral transition (Vollbrecht et al., 2000; Zhang and Yuan,
2014) that is essential for meristem maintenance and is involved in the
initiation of spikelet and floral meristems in rice and maize (Kerstetter
et al., 1997; Tsuda et al., 2011). Analyses of maizemutants demonstrate
that Kn1 regulates the cytokinin (CK) pathway, perhaps via interactions
with Td1, a suppressor of the WUS gene (Bommert et al., 2005; Lunde
and Hake, 2009). Kn1 also participates in regulating GA levels in the
SAM through ga20ox and various KNOTTED1-like homeobox proteins
(Bolduc and Hake, 2009). In sorghum, the expression of Kn1 is strongly
correlated with DCL-3, which is involved in the production of 24-
nucleotide siRNAs that target genes (e.g. ga20ox) involved in homeo-
stasis of the GA and brassinosteroid pathways to alter branch meristems
in rice (Wei et al., 2014). In addition, GWAS on panicle area identified
one WUS-related homeobox transcription factor, DWT1, which in rice
is associated with GA signaling, participates in panicle meristem
elongation, and is potentially downstream of ga20ox (Wang et al.,
2014). In maize, tsh4 regulates the establishment of lateral meristem
boundaries followed by meristem initiation and is regulated via the
expression of Kn1 and Bd1 (Chuck et al., 2010). In rice and maize, Kn1
participates in spikelet meristem initiation and floral meristem initia-
tion, which are positively regulated by Bd1 and MADS3 (Kerstetter
et al., 1997; Yamaguchi et al., 2006; Bolduc and Hake, 2009).
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occupied in the image to real lengths (i.e. inches or centimeters). The reference
scale was initially a 6.5-cm-widewhite scale but was later changed to a 2.54-cm-
wide (1 inch) yellow scale, for easier extraction from the blue background.
Because the images were 2D projections of the panicles, the panicles were im-
aged along two perpendicular planes, based on a front view and a side view.
The plane that exhibited the largest cross-sectional area, as determined via vi-
sual inspection, was designated the front plane and the plane perpendicular to
it as the side plane. The front plane of a panicle was always imaged first.

Extraction of Traits from Images

Wedeveloped a pipeline, TIM (available at the Schnable Lab’s GitHub page:
https://github.com/schnablelab), to semiautomatically extract traits from
panicle images. The trait extraction via TIM involved the following steps: (1)
segmentation of the panicle and the reference scale from the background using
a custom-built MATLAB app (Supplemental Methods); (2) measurement of
traits on the segmented panicle; and (3) conversion of trait values from pixels to
metric measurements using a reference scale (Fig. 1; Supplemental Methods).
Trait measurement was performed in a fully automatedmanner using standard
image-processing algorithms (described in Supplemental Methods). Image
processing is particularly suited to traits that can be cumbersome to measure by
hand, such as the exact cross-sectional area of the panicle, solidity, etc. How-
ever, some traits, such as length and width, can be challenging to extract via
automated image processing from strongly curved panicles whose tips touched
the bottom of the light box, making it difficult to distinguish the first internode
of a panicle’s rachis. Therefore, we removed 30 genotypes that consistently
exhibited U-shaped panicles across locations and repetitions; thus, 272 geno-
types and 1,064 panicles were used subsequently for image processing and data
analyses. Due to missing data, the total number of imaged panicles was 1,064,
rather than 1,188 (= 272 3 2 repetitions/location 3 2 locations). In this report,
this subset of the SAP (n = 272 genotypes) will be referred to as SAP-FI.

Trait Extraction

Eight panicle traits were extracted from front and side plane images of the 1,064
panicles as described below. These are length, width, area, volume, and solidity. Of
these, width, area, and solidity were extracted from both the front and side planes.
Length is defined as the length of themain panicle axis from the region of the lowest
branch point to the tip of the panicle. Because length is expected to be the same in the
two planes, it was extracted from only the front plane. Volume is a derived quantity
that is estimated jointly fromthe frontandsideplane images.The frontplaneandside
plane imageswerefirstmatched to each other height-wise. Subsequently, thewidths
from the front plane and side planewere extracted along the length of the panicle in
slices from the top to the bottom (Supplemental Methods). Assuming that the
maximum and minimum widths represent the major axis and the minor axis of an
ellipse, it is possible to calculate the elliptical cross-sectional area (an ellipse being an
approximation of the shape of the panicle). Integrating the cross-sectional area over
the height of the panicle provides an approximate volume of the panicle.

The remaining traits, width, area, and solidity, were extracted from both the
front and side plane images (width.front, width.side, area.front, area.side, so-
lidity.front, andsolidity.side).Width represents themaximumvalueof thewidth
of the panicle obtained from the longest line that can be drawn between the two
boundaries of the panicle and that is perpendicular to the panicle’s length
(Fig. 1). Area refers to the projected area of the panicle on a 2D plane, because
the panicle is a 3D structure. Separate area measurements were obtained from
the number of pixels contained within the projections of the panicle on the front
and side planes. Solidity is a measure of whether the panicle is loosely or tightly
packed. It is derived from the convex hull, which is the smallest polygonal
bounding curve that encompasses the shape of the panicle. Solidity is the ratio
of the projected area of the panicle to the area of its convex hull.

With the exception of solidity, which is a dimensionless quantity, all trait
values were measured in units of pixels. The pixel-to-cm conversion was
obtained from the pixel width of the 1-inch yellow scale in each image (pixel/
cm = pixel width of yellow scale/2.54) to obtain the actual lengths of these
panicles. Phenotype values of every trait were then transformed into standard
units (cm for length and width, cm2 for area, and cm3 for volume) based on the
pixel/cm ratio calculated for each image.

Analysis of Phenotypic Data

For each phenotype, variance components were estimated using the lme4
package (Bates et al., 2015) in R (version 3.4.2) using the following function: lmer

(phenotype; (1|genotype) +(1|location) + (1|Location/Rep) + (1| genotype:
location)). Entry mean-based heritability values (H2) were calculated from
variance components estimates (Bernardo, 2010) as follows: H2 = VG/[VG +
(VGE/n) + (Ve/(nr)], where VG is the genotypic variance, VGE is the variance of
genotype by location interaction, Ve is the residual variance, n is the number of
locations, and r is the number of replications. Phenotypic correlations among
eight traits were estimated using Pearson correlations between two traits using
the mean value of each genotype via the cor function of R.

Genotyping Data

We used SNP data generated and imputed by Morris et al. (2013). These
SNPs were filtered to retain only those with a minor allele frequency. 0.05 and
a missing rate of less than 60% in the SAP-FI. The remaining 146,865 SNPs were
used to calculate genetic correlations among the eight panicle traits using bi-
variate genomic relatedness-based restricted maximum likelihood analysis
from GCTA (Yang et al., 2010, 2011).

GWAS

GWAS was conducted using the 146,865 SNPs in R using a version of
FarmCPU (Liu et al., 2016) termed FarmCPUpp, which was modified to in-
crease computational efficiency and reduce run times (Kusmec et al., 2017).
FarmCPU combines SNP-based covariate selection (MLMM; Segura et al., 2012)
and restricted kinship matrices (SUPER; Wang et al., 2014) to reduce false
positives and negatives. Simulations demonstrate that FarmCPU achieves both
of these goals in addition to increasing computational efficiency (Liu et al.,
2016). Principal component analysis was conducted on the SNP data using
the R prcomp function. The first three principal components were used as
covariates to control for population structure. FarmCPUpp’s optimum bin se-
lection procedure was conducted using bin sizes of 50, 100, and 500 kb and
pseudoquantitative trait nucleotide values of 3, 6, 9, 12, and 15. Statistical sig-
nificance was determined after Bonferroni correction: a = (0.05/total number of
SNPs).

Initially, GWAS was conducted using all 272 accessions of the SAP-FI
(Supplemental Table S4). To identify high-confidence SNPs, bootstraps were
conducted for each phenotype following previously describedmethods (Brown
et al., 2011; Wallace et al., 2014). The full panel was first divided into four
subpanels determined via fastSTRUCTURE (Raj et al., 2014). Then, we per-
formed 100 bootstraps with each iteration randomly assigned 10% of the phe-
notypic valueswithin each subpanel asmissing. Then, for each iteration, GWAS
was repeated using the same parameters as for the full panel. The RMIP was
calculated based on the fraction of bootstraps in which an SNP was associated
significantly with the phenotype. Only SNPs with RMIP $ 5 (five out of 100
iterations) were considered for further analysis.We alsomade this processmore
stringent by requiring these hits to be significant in the GWAS conducted on the
full panel. These SNPs were defined as high-confidence TASs and used to
screen for candidate genes.

Colocalization of TASs and Candidate Genes

Genome-wide LD was assessed using PLINK (version 1.9; www.cog-
genomics.org/plink/1.9/; Chang et al., 2015) by calculating the pairwise r2 of
every SNP within 1 Mb using 25-kb steps. The average length of the interval
within which r2 fell below 0.1 was 350 kb. Hence, we scanned 350 kb upstream
and downstream of each TAS for candidate genes.

Potential candidate genes were first identified by screening the literature for
cloned maize (Zea mays) and rice (Oryza sativa) genes with known functions in
inflorescence architecture (Supplemental Table S3). The corresponding sor-
ghum homologs, based on sorghum genome V1.4 from PlantGDB (http://
www.plantgdb.org/SbGDB/), of the resulting 67 maize and 17 rice genes were
identified using MaizeGDB (Schnable et al., 2012) and the rice genome anno-
tation project (Kawahara et al., 2013), respectively. To test whether the distri-
bution of candidate genes was enriched in regions surrounding the TASs, we
performed 1,000 permutations during which 35 SNPs (equal to the number of
TASs detected via GWAS) were selected randomly from the 146,865 SNPs for
each permutation. We then recorded the number of permutations in which nine
or more candidate genes were present within 700-kb windows surrounding the
randomly sampled SNPs. This process was repeated for 10 iterations, and the
median P value from these iterations was used to evaluate the significance.
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Population Differentiation

A total of 177 converted tropical lines and 40 cultivars from the SAP-FI were
used to analyze genome-wide population differentiation. Genotypic data of the
two subpanels were first filtered to have a missing rate of less than 5% within
each subpanel. The Hudson estimator of fixation index (Hudson et al., 1992)
was calculated using the 74,142 filtered SNPs shared by both subpanels to es-
timate the genome-wide divergence between the two, following previously
described methods (Bhatia et al., 2013).

Accession Numbers

Sequence data used in this article can be found in the Sequence ReadArchive
database (www.ncbi.nlm.nih.gov/sra) under accession number SRA062716.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Example showing the structural diversity of
SAP-FI.

Supplemental Figure S2. Phenotypic correlation between width.front and
area.side, with examples showing genotype panicle shapes that are cir-
cled in the scatterplot.

Supplemental Figure S3. Manhattan and QQ plots for eight panicle traits.

Supplemental Figure S4. Standardized effect sizes of 38 TASs.

Supplemental Figure S5. Standardized effect sizes of SNPs associated with
multiple traits.

Supplemental Figure S6. Box plot of values of eight panicle traits in 177
converted tropical lines and 40 cultivars.

Supplemental Table S1. TASs that overlapped with previously reported
QTL and GWAS intervals on panicle length, panicle width, and branch
length.

Supplemental Table S2. List of TASs with pleotropic effect in 100
bootstraps.

Supplemental Table S3. List of sorghum homologs of maize or rice genes
with known functions on inflorescence architecture.

Supplemental Table S4. List of mean phenotypic values of eight panicle
traits of 272 genotypes used in GWAS.

Supplemental Methods. The instructions to ToolKit for Inflorescence Mea-
surements (TIM).
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