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Single-molecule full-length complementary DNA (cDNA) sequencing can aid genome annotation by revealing transcript
structure and alternative splice forms, yet current annotation pipelines do not incorporate such information. Here we present
long-read annotation (LoReAn) software, an automated annotation pipeline utilizing short- and long-read cDNA sequencing,
protein evidence, and ab initio prediction to generate accurate genome annotations. Based on annotations of two fungal genomes
(Verticillium dahliae and Plicaturopsis crispa) and two plant genomes (Arabidopsis [Arabidopsis thaliana] and Oryza sativa), we show
that LoReAn outperforms popular annotation pipelines by integrating single-molecule cDNA-sequencing data generated from
either the Pacific Biosciences or MinION sequencing platforms, correctly predicting gene structure, and capturing genes missed
by other annotation pipelines.

Genome sequencing has advanced nearly every dis-
cipline within the biological sciences, as the ongoing
decreasing sequencing costs and increasing computa-
tional capacity allows many laboratories to pursue
genomics-based answers to biological questions. New
sequencing technologies designed to sequence longer
contiguousDNAmolecules, such as Pacific Biosciences’
(PacBio) single-molecule real-time sequencing (SMRT)
and Oxford Nanopore Technologies’ (ONT) MinION,
have ushered in the most recent genomics revolution
(Koren and Phillippy, 2015). These advances are further
enhancing the ability to generate high-quality genome
assemblies of large, complex eukaryotic genomes
(Faino et al., 2015; Chin et al., 2016; Davey et al., 2016;
Jiao and Schneeberger, 2017).

A high-quality genome assembly, represented by
(near-)chromosome completion, helps address many
biological questions but often requires functional fea-
tures to be further defined (Thomma et al., 2016). The
process of genome annotation, i.e. the identification of
protein-coding genes and their structural features, such
as intron-exons boundaries, is important to capture
biological values of a genome assembly (Yandell and
Ence, 2012). Genomes can be annotated using computer
algorithms in so-called ab initio gene predictions and
using wet-lab-generated data, such as complementary
DNA (cDNA) or protein datasets for evidence-based
predictions, and current annotation pipelines typically
incorporate both types of data (Cantarel et al., 2008;
Yandell and Ence, 2012). Ab initio gene prediction
tools are based on statistical models, most often hid-
den Markov models, which are trained using known
proteins, and typically perform well at predicting
conserved or core genes (Goodswen et al., 2012; Yandell

and Ence, 2012). However, the ab initio prediction ac-
curacy decreases for organism-specific genes, for genes
encoding small proteins and across organisms with
differing intron-exon features (Ter-Hovhannisyan et al.,
2008; Hoff et al., 2016). Furthermore, ab initio annota-
tion of nonmodel genomes remains challenging as ap-
propriate training data are not always available, and
genome characteristics across organisms can vary (Reid
et al., 2014). To improve genome annotations, cDNA
sequencing (RNA-seq) data can be incorporated to train
ab initio software (Hoff et al., 2016) and to provide
additional evidence for defining accurate gene models
(Wang et al., 2009).Most genome annotations to date rely
on a combination of short-read mapping data and ab
initio gene prediction. However, errors occur during this
process because short-read RNA-seq data cannot always
be unequivocallymapped, because a single readdoes not
span a gene’s full length, and because of differences in
evidence weighting leading to gene prediction. LoReAn
was developed to also use information from long-read
sequencing data to help address issues of mapping and
gene structure, with greater emphasis given to empirical
mapping data during the gene prediction process.

Current annotation pipelines use a combination of
ab initio and evidence-based predictions to generate
accurate consensus annotations. MAKER2 is a user
friendly, fully automated annotation pipeline that
incorporates multiple sources of gene prediction infor-
mation and has been extensively used to annotate eu-
karyotic genomes (Cantarel et al., 2008; Holt and
Yandell, 2011; Smith et al., 2011, 2013; Amemiya et al.,
2013; Ming et al., 2015; Lamichhaney et al., 2016). The
Broad Institute Eukaryotic Genome Annotation Pipe-
line (here referred to as BAP) has mainly been used to
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annotate fungal genomes (Linde et al., 2015; Muñoz
et al., 2015; Ma et al., 2016) and integrates multiple
programs and evidences for genome annotation (Haas
et al., 2008, 2011). BRAKER1 and CodingQuarry are
two gene-prediction software packages that utilize
RNA-seq data and genome sequence to predict gene
models. BRAKER1 is a pipeline for unsupervised RNA-
seq-based genome annotation that combines the ad-
vantages of GeneMark-ET and Augustus. BRAKER1 is
a two-step software that combines GeneMark-ET and
intron-hints, derived from mapped RNA-seq, to gen-
erate a species-specific database that Augustus can use
for gene prediction (Hoff et al., 2016). CodingQuarry is
a pipeline for RNA-Seq assembly-supported training
and gene prediction, which is only recommended for
application to fungi. In this tool, Cufflink’s assembled
RNA-seq is used to build a hidden Markov model that
is used for gene prediction (Testa et al., 2015). A limi-
tation of these annotation pipelines is that experimental
evidence from short-read RNA-seqmapping can be lost
due to evidence weighting, and the pipelines cannot
natively exploit gene structure information from single-
molecule cDNA sequencing.

In addition to improving genome assembly (Phillippy,
2017), long-read sequencing data can be used to improve
genome annotation. The use of single-molecule cDNA se-
quencing can increase the accuracy of automated genome
annotation by improving genome mapping of sequencing
data, correctly identifying intron-exon boundaries, directly
identifying alternatively spliced transcripts, identifying
transcription start and end sites, and providing precise
strand orientation to single-exon genes (Minoche et al.,
2015; Abdel-Ghany et al., 2016; Wang et al., 2016). How-
ever, several hurdles limit the implementation of long-read
sequencing data into automated genome annotation, such
as the higher per-base costs when compared to short-read
data, the relatively high error rates for long-read se-
quencing technologies, and the lack of bioinformatics tools
to integrate long-read data into current annotation pipe-
lines (Faino andThomma, 2014; Laver et al., 2015). Thefirst
two limitations are addressed by the continual re-
duction in sequencing cost and improved base calling
by long-read sequencing providers and the develop-
ment of bioinformatics methods to correct for se-
quencing errors (Loman et al., 2015; Laehnemann
et al., 2016). To address the disconnect between ge-
nome annotation pipelines and the latest sequencing
technologies, we developed the long-read annotation
(LoReAn) pipeline. LoReAn is an automated annota-
tion pipeline that takes full advantage of MinION or
PacBio SMRT long-read sequencing data in combina-
tion with protein evidence and ab initio gene predic-
tions for full-genome annotation. Short-read RNA-seq
can be used in LoReAn to train ab initio software.
Based on the reannotation of two fungal and two plant
species, we demonstrate that LoReAn can provide
annotations with increased accuracy by incorporating
single-molecule cDNA sequencing data from different
sequencing platforms.

RESULTS

LoReAn Design and Implementation

The LoReAn pipeline can be conceptualized in two
phases. The first phase involves genome annotation
based on ab initio and evidence-based predictions
(Fig. 1A; blue arrows) and largely follows the workflow
previously described in the BAP (Haas et al., 2008,
2011). This first phase produces a full-genome annota-
tion and requires the minimum input of a reference
genome, protein sequence of known and, possibly,
related species, and a species name from the Augustus
prediction software database (Stanke et al., 2008).
We implemented two changes into the first phase of
LoReAn, which we refer to as BAP+. First, LoReAn
used RNA-seq reads as input in combination with
the BRAKER1 software (Hoff et al., 2016) to produce
a species-specific database for the Augustus predic-
tion software. Additionally, RNA-seq data were as-
sembled into full-length cDNA using Trinity software
(Grabherr et al., 2011), and the assembled transcripts
were aligned to the genome using both the program to

1Funding was provided to D.E.C. by the Human Frontiers in
Science Program (HFSP) long-term fellowship (LT000627/2014-
L). Work in the laboratory of B.P.H.J.T. is supported by a Vici
grant of the Research Council for Earth and Life Sciences (ALW)
of the Netherlands Organization for Scientific Research (NWO).
The Arabidopsis long-read sequencing was performed within the
ZonMw-project number 435003020 entitled “Arabidopsis tran-
script isoform identification using PacBio sequencing technol-
ogy.”

2These authors contributed equally to the article.
3Current address: Department of Plant Pathology, Kansas State

University, Manhattan, Kansas 66056.
4Current address: Department of Genetics, Center for Molecular

Medicine, University Medical Center Utrecht, Utrecht University,
3584 CX Utrecht, the Netherlands.

5Current address: Department of Plant Developmental Biology, Max
Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.

6Current address: Botanical Institute, Cluster of Excellence on Plant
Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany.

7These authors contributed equally to the article.
8Author for contact: bart.thomma@wur.nl.
9Senior author.
10Current address: Department of Environmental Biology, Univer-

sity La Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Luigi Faino (luigi.faino@uniroma1.it).

L.F. and B.P.H.J.T. conceived the project; D.E.C. performed data
collection for the Illumina sequencing, and J.E.V.-I. performed cDNA
normalization and sequencing on the Minion with help from D.E.C.;
A.P. performed the Arabidopsis short- and long-read experiments;
H.R. performed experiments to confirm the annotation results for the
Ave1 locus; L.F .and J.E.V.-I. wrote the LoReAn Python script; L.F. ran
the annotations, and L.F. and D.E.C. performed the analysis; D.E.C.
wrote the paper with L.F. and B.P.H.J.T; funding, guidance, and over-
sight of the project were provided by B.P.H.J.T.

[OPEN]Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.18.00848

Plant Physiol. Vol. 179, 2019 39

Cook et al.

http://www.plantphysiol.org
mailto:luigi.faino@uniroma1.it
http://www.plantphysiol.org/cgi/doi/10.1104/pp.18.00848


assemble spliced alignments (PASA; Haas et al., 2008)
and the genomic mapping and alignment program
(GMAP;Wu andWatanabe, 2005). The output of PASA
software was passed to the Evidence modeler (EVM;
Haas et al., 2008) as cDNA evidence while the output of
GMAP was given to EVM as ab initio evidence.

The second phase of LoReAn incorporates single-
molecule cDNA sequencing with the annotation
results of the first phase by utilizing an alternative ap-
proach to reconstruct full-length transcripts (Fig. 1A,
red arrows). Single-molecule long-read sequencing

reads are mapped to the genome using GMAP, which
allows the determination of transcript structure (i.e.
start, stop, and exon boundaries) from a single cDNA
molecule (Kri�zanovic et al., 2018). The underlying ref-
erence sequence is extracted to overcome sequence er-
rors associated with long-read sequencing, and these
sequences are combined with the gene models from the
first phase in a process we refer to as “clustered tran-
script reconstruction” (Fig. 1, A and B). Through this
process, consensus gene models are built by combining
the first- and second-phase gene models that cluster at

Figure 1. Schematic overviewof the LoReAn pipeline and clustered transcript reconstruction. A, Illustration of the computational
workflow for the LoReAn pipeline. Gray boxes represent input data, and each white box represents a step in the annotation
process with mention of the specific software. The boxes connected by blue arrows integrate the steps from the previously
described BAP, described in the text as phase one of LoReAn (Haas et al., 2008). The LoReAn pipeline (boxes connected by red
arrows) integrates the BAP workflow but additionally incorporates long-read sequencing data, described in the text as phase two
of LoReAn. The blue box, “BAP annotation,” represents the annotation results from the BAP pipeline used for comparison in this
study, while the orange box “LoReAn annotation” represents the annotation results from the LoReAn pipeline using long-read
sequencing data. Dashed arrows represent optional steps for the pipeline. B, Illustration of the clustered transcript reconstruction.
Gene models are depicted as exons (boxes) and connecting introns (lines). Blue models represent BAP annotations, while red
models represent hypothetical long readsmapped to the genome.Orangemodels represent consensus annotations reported in the
final LoReAn output. Various scenarios can occur: (i) High-confidence predictions from the BAP are kept regardless of whether
they are supported by long reads. (ii and iii) Clusters of mapped long reads are used to generate a consensus prediction model,
unless the model is supported by less than a user-defined minimum depth. (iv) Overlapping BAP and mapped long reads are
combined to a consensus model. (v) Two annotations are reported if no consensus can be reached for the BAPand clustered long-
read data.
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the same locus. Optionally, model clustering can be con-
ducted in a strand-specificmanner (LoReAn stranded, see
Supplemental Data for details), where only gene models
mapping on the same DNA coding strand are used to
build a consensus model. These high-confidence models
are mapped back to the reference using GMAP to correct
open reading frames, and subsequently, PASA is used
to update the gene models by identifying untranslated
regions (UTRs) and alternatively spliced transcripts to
generate a final annotation. Sequence-based support for
the final gene models (Fig. 1B, orange models) can come
from the first phase annotation alone (Fig. 1B, i), the sec-
ond phase, given a sufficient level of support (Fig. 1B, ii
and iii), or through a combination of the two phases
(Fig. 1B, iv and v). If a single consensus annotation cannot
be reached between the two phases, both annotations are
kept in the final output (Fig. 1B, v).

LoReAn Produces High-Quality Gene Predictions Based
on Gene, Exon, and Intron Metrics Compared to the
Reference Annotation and Empirical Data

To test the performance of LoReAn, we reannotated
the genome sequence of the haploid fungus Verticillium
dahliae, an important pathogen of hundreds of plant
species, including many crops (Fradin and Thomma,
2006; Klosterman et al., 2009). The genome of V. dahliae
strain JR2 was used for testing LoReAn because it is as-
sembled into complete chromosomes and has a manu-
ally curated annotation, providing a high-confidence
resource for reference (Faino et al., 2015). A total of 55
annotations were generated and compared, of which 24
were produced using LoReAn, 12 using BAP and 12
usingBAP+with different genomemasking and ab initio
options (description in Supplemental Data), along with
output from the annotation software MAKER2,
BRAKER1, Augustus, and two each from CodingQuarry
and GeneMark-ES. We determined the quality of anno-
tation outputs by comparing each to the reference an-
notation for exact matches to either genes or exon
locations (Fig. 2A; Supplemental Tables S1 and S2; ref-
erence annotation contains 11,385 gene models and
28,142 exons). These comparisons were used to calculate
sensitivity (how much of the reference is correctly pre-
dicted), specificity (how much of the prediction is in the
reference), and F1 score (the harmonicmean of sensitivity
and specificity). These metrics were calculated based on
commonly described methods used within the gene
prediction community (see "Materials andMethods" and
Keibler and Brent [2003], Yandell and Ence [2012], and
Chan et al. [2017]). Hard masking, where short DNA
repeat (.10 bp) sequences are removed from the genome
prior to annotation, significantly affected the quality of
predicted gene and exon models, with partially masked
or nonmasked genome inputs producing significantly
improved annotations (Supplemental Figs. S1A and
S2A; Supplemental Tables S3 and S4). On average, the
"fungus" option (-f) of the ab initio software GeneMark-
ES produced the best gene and exon predictions

(Supplemental Figs. S1B and S2B; Supplemental Tables
S3 and S4). Gene predictions from LoReAn using cod-
ing strand information (LoReAn-s) produced statisti-
cally similar results to LoReAn for exact match genes
and similar results to LoReAn and BAP for exact match
exons (Supplemental Tables S2 and S3). However, the
F1 score for exact match gene and exon predictions
were significantly higher for LoReAn stranded com-
pared to the other three outputs (Supplemental Figs.
S1C and S2C), indicating that using strand information
improves the overall quality of the annotation.
A single output from LoReAn and BAPwere selected

for further comparison to the outputs from the other
annotation software (i.e. MAKER2, CodingQuarry,
GeneMark, BRAKER1, and Augustus). The LoReAn-
stranded run using the "fungus" option of GeneMark-
ES (referred to as LoReAn-sF throughout) and the BAP
run using the "fungus" option of GeneMark-ES (re-
ferred to as BAP-F throughout) using a nonmasked
genome were selected because they had the highest F1
scores and used similar settings to the other pipelines,
thereby enabling comparisons (Fig. 2A, highlighted by
horizontal yellow lines). The seven annotation pipelines
were compared by computing the number of predicted
genes that matched the reference and the number of
reference genes that were matched (i.e. numbers for
specificity and sensitivity). A x2 test of independence
indicated a significant, nonequal association between
the seven annotation pipelines and the tested annotation
metrics (Pearson’s x2 test of independence,x2 = 913.61,P
value , 2.2e-16). Plotting the residuals of the x2 test
indicated that LoReAn-sF had the largest positive as-
sociation for correctly predicting gene models (columns
1 and 3, Fig. 2B) and the largest negative association for
predicting wrong gene models or missing gene models
(columns 2 and 4, Fig. 2B). These results show that there
are statistically significant differences between the
tested pipelines for annotation quality, and the residual
analysis indicates that LoReAn-sF has the best associa-
tion with desirable annotation metrics.
To further characterize gene prediction differences

between annotation pipelines, four outputs were se-
lected for comparison. MAKER2 and CodingQuarry
were selected as they represent popular annotation
choices and performed well, along with the output of
LoReAn-sF and BAP-F, as they are the focus of the
study. The gene predictions were compared head-to-
head in the absence of a reference annotation by de-
termining the overlap between exact match genes.
There were 4,584 genes with the same predicted struc-
ture (i.e. start, stop, intron position) from the four
pipelines, equivalent to approximately 40% of the genes
in the reference annotation (Fig. 3A). BAP-F predicted
the fewest unique genes (1,352), while MAKER2 pre-
dicted the most (3,157; Fig. 3A). However, the use of
exact match gene structure to identify unique coding
sequences is potentially misleading, as two gene pre-
dictions can code for the same or a similar protein
without the exact same structure. To generate a more
biologically relevant comparison of unique protein

Plant Physiol. Vol. 179, 2019 41

Cook et al.

http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1
http://www.plantphysiol.org/cgi/content/full/pp.18.00848/DC1


coding differences, we grouped translated protein se-
quences of each annotation into homologous groups
using orthoMCL (Li et al., 2003; Chen et al., 2006). Using
these groups, we identified protein coding sequences
that were unique to a single annotation pipeline, re-
ferred to as singletons. We identified 1,429 singletons
across the four annotations, with CodingQuarry pre-
dicting the most (461) and BAP-F predicting the fewest
(180; Fig. 3D). To validate the predicted singletons, the
percent coverage of the predicted transcripts was cal-
culated using short-read RNA-seq data. Singletons
from LoReAn-sF were covered on average across 80%
of their length by mapped RNA-seq reads, while the

next highest was CodingQuarry with 63% average
coverage. Nonparametric statistical test for the rank
of the mean coverage shows that singletons predicted
by LoReAn-sF had significantly higher RNA-seq
coverage compared to the other pipelines (Fig. 3B;
Kruskal-Wallis test). Analyzing the length of the pre-
dicted singletons indicated that CodingQuarry pre-
dicted the shortest singletons, while the other pipelines
were not statistically different than one another
(Fig. 3C; Kruskal-Wallis test). The singletons were fur-
ther grouped by the presence/absence of introns and
RNA-seq coverage, as gene models with introns and
RNA-seq support are more likely to be true genes.

Figure 2. Annotation quality summary for exact match genes to the reference. A, Gene annotation quality summary, where each
horizontal bar represents an annotation output and each colored dot represents the sensitivity (green), specificity (purple), and F1
score (red). The annotations are labeled using the left grid, where the group of horizontal black dots defines the parameters used in
the annotation. Possible parameters include using LoReAn, BAP, or BAP+ pipeline, stranded mode for LoReAn (Stranded), the
fungus option for GeneMark-ES (Fungus), or the BRAKER1 program for Augustus (BRAKER1). Annotation options are grouped by
the level of referencemasking—partially masked (Part.), nonmasked (None), or fully masked (Mask). The results from additionally
tested annotation pipelines are shown at the bottom. Three vertical gray lines represent the first quantile, median, and third
quantile for the F1 score. The two annotations highlighted with a yellow horizontal bar were used for subsequent analysis. B, The
proportion of exact match to nonmatching gene predictions (specificity) and exact match to missing gene predictions (sensitivity)
were compared using a x2 test of independence. The residuals from the analysis are shown with the size and color representing
the magnitude and direction of the association between rows and columns. GeneMark-ES-F, GeneMark gene prediction software
using the "fungus" option. LoReAn-sF, LoReAn using strand information and the "fungus" option of GeneMark-ES. BAP-F, The
Broad Institute eukaryotic genome annotation pipeline described in the text and using the "fungus" option of GeneMark-ES.
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Singletons that contained at least one intron and had
RNA-seq reads covering at least 75% of their length
were considered the highest-confidence models. Pair-
wise, two-sample test for equal proportions indi-
cated the outputs of LoReAn-sF and MAKER2 were
statistically similar for the proportion of singletons in

this high-confidence group, but both were significantly
higher than the other two pipelines (Supplemental
Table S5). The collective, comprehensive comparison of
LoReAn versus other commonly used annotation soft-
ware shows that LoReAn outperforms these for many
gene prediction quality metrics.

LoReAn Predicts the Most Accurate Intron Locations
Compared to Empirical RNA-seq Predictions

Annotation comparisons are commonly made
against a reference annotation. This carries inherent
problems, however, as many organisms do not have a
high-confidence reference annotation. Additionally, the
overlap between the software used to generate a given
reference annotation and that being tested introduces
bias in the analysis. To evaluate the annotation outputs
produced here in the absence of a reference annotation,
we devised an approach to quantify annotation quality
based on empirical RNA-seq output rather than a ref-
erence annotation. The locations of predicted introns
from the annotation outputs were compared to the lo-
cations of the inferred introns from long- and short-read
mapped data, using the same annotation outputs
compared earlier for gene and exon locations (Fig. 4A).
This analysis also allowed the reference annotation to
be compared to the intron locations inferred from the
RNA-seq data. To formally test for statistical differ-
ences, the same annotation pipelines compared earlier
were compared using a x2 test of independence, which
indicated a significant, nonequal association between
the annotation pipelines and intron predictions (Pear-
son’s x2 test of independence, x2 = 3,220.7, P value ,
2.2e-16). The residual plot of the x2 test shows the
magnitude and direction of the association between the
pipelines and the predictions (Fig. 4B). Multiple two-
sample tests of proportions between the annotation
predictions and the reference annotation, testing if the
annotation prediction showed improved metrics when
compared with the reference, showed that only
CodingQuarry outperformed the reference annotation
for the specificity metric (Supplemental Table S6). This
indicated the reference annotation was the most similar
to the RNA-seq data, which is not surprising given the
high-quality reference annotation. The analysis was
rerun to test if the LoReAn-sF outperformed the other
pipelines, and LoReAn-sF outperformed the other
software in nearly every instance (Table1). This further
indicates that the LoReAn software offers improved
annotation performance when evaluated against RNA-
seq data in the absence of a reference annotation.

Only the LoReAn Pipeline Correctly Annotates the Ave1
Effector Locus

Plant-pathogenic fungi encode in planta-secreted
proteins, termed effectors, which serve to facilitate in-
fection (Cook et al., 2015; Lo Presti et al., 2015). Effectors

Figure 3. Analysis of predicted singletons across four pipelines. A,
Venn diagram showing the overlap and uniqueness of predicted genes
based on genomic location. The Venn diagram shows that 4,584 genes
were annotated with the exact same features across all four pipelines.
The numbers captured by only a single annotation pipeline are con-
sidered singletons—genes whose structure is uniquely annotated by a
given pipeline. Note, these singletons do not necessarily represent
unique loci. B, Short-read RNA-seq data were mapped to the genome,
and the percent length coverage of each gene annotation was calcu-
lated. The data were not completely normally distributed, so a non-
parametric Kruskal-Wallis test was used to rank the mean of the
coverage. Data are shown as violin plots, with the tails representing the
data range and the mean and SD are shown as a black point and black
vertical lines, respectively. Letters shown above each violin plot rep-
resent post-hoc statistical groupingswhere plots with the same letter are
statistically indistinguishable. Multiple comparisons were made using
the nonparametric Kruskal-Wallis rank of means, and post-hoc differ-
ences were determined using Fisher’s least significant difference, P ,
0.05 with Bonferroni correction. C, Same as in B except the mean rank
of the singleton length is analyzed. D, The orthoMCL singletons from
each pipelinewere grouped into one of four categories shown in the key
representing if the singleton contained an intron or not and if the sin-
gleton’s length was covered by over 75% with RNA-seq data. The
number of singletons within each of the four categories is shown.
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are generally characterized as lineage-specific small,
secreted, Cys-rich proteins with generally no char-
acterized protein domains or homology, characteris-
tics which can make effectors difficult to predict with
automated annotation (Sperschneider et al., 2015).
To test how LoReAn and the other annotation pipe-
lines performed at a specific effector locus, we de-
tailed the annotation results for the V. dahliae Ave1

locus, which encodes a small-secreted protein that
functions to increase virulence during plant infection
(de Jonge et al., 2012). As previously reported, a con-
siderable number of short RNA-seq reads uniquely
map to the Ave1 locus (de Jonge et al., 2012), along with
single-molecule cDNA reads identified here (Fig. 5A).
Interestingly, MAKER2, BAP, Augustus, GeneMark-
ES, and CodingQuarry (default) each failed to predict

Figure 4. Annotation quality summary for
predicted introns exactly matching RNA-
seq-inferred introns. A, Predicted intron
quality summary, where each horizontal
bar represents an annotation output, and
each colored dot represents the sensitivity
(green), specificity (purple), and F1 score
(red) as described in Figure 2A. B, The
proportion of exact match to nonmatching
intron predictions (specificity) and exact
match to missing intron predictions (sensi-
tivity) were compared using a x2 test of in-
dependence as described in Figure 2B.
GeneMark-ES-F, GeneMark gene prediction
software using the "fungus" option. LoReAn-
sF, LoReAn using strand information and
the "fungus" option of GeneMark-ES.

Table 1. x2 test of proportions for predicted exact match introns inferred from RNA-seq mapping data in V. dahliae

Pipeline
Predictions Matching

RNA-seq

Predictions

Not Matching

Predictions

Missing

Specificity Less Than

LoReAn-sFa
Sensitivity Less

Than LoReAn-sFb

BAP-F 13,128 5,284 5,446 ,0.0001 ,0.0001
MAKER2 12,509 5,903 6,065 ,0.0001 ,0.0001
CodingQuarry 12,021 3,001 6,553 N.S.c ,0.0001
GeneMark-ES-F 12,323 5,274 6,251 ,0.0001 ,0.0001
BRAKER1 11,491 4,739 7,083 ,0.0001 ,0.0001
Augustus 11,857 6,079 6,717 ,0.0001 ,0.0001
Reference annotation 13,935 4,145 4,639 N.S.c N.S.c

LoReAn-sF 13,780 3,899 4,794 Not applicable Not applicable

aColumn reports P values for the x2 test of proportions for the specificity metric bColumn reports P values for the x2 test of proportions for the
sensitivity metric cN.S., not significant with a P value greater than 0.05
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the previously characterized Ave1 gene despite the
abundance of uniquely mapped reads (Fig. 5B;
Supplemental Fig. S3). The MAKER2, BAP, and
Augustus pipelines predicted a separate gene on
the opposite strand located to the 39 end of the Ave1
gene that is absent in the reference annotation.
The CodingQuarry software run with the "effector"

option predicted the correct coding sequence model
for Ave1. The LoReAn-sF, LoReAn-s, PASA, GMAP,
and BAP+ software predicted two genes at the locus,
one corresponding to the known Ave1 gene, and an
additional gene to the 39 end of Ave1 (called Ave1c),
similar to the gene model identified by MAKER2
(Fig. 5B; Supplemental Fig. S3).

Figure 5. The LoReAn pipeline most accurately annotates a specific fungal locus encoding a strain-specific gene. A, Short-read
RNA-seq data mapped to the locus are shown as a coverage plot (gray peaks) and as representative individual reads (yellow
boxes). Long reads from single-molecule cDNA data mapped to the locus are shown as a coverage plot (gray peaks) and rep-
resentative reads (purple boxes). Thick black lines linking mapped reads represent gaps in the mapped reads and are indicative of
introns. The long-read data were split bymapping strand and coverage plots for forward (red) and reverse (blue) coverage plots. B,
Gene model predictions from four annotation pipelines are illustrated. Light blue boxes represent untranslated regions (59 and 39
UTR), dark blue boxes represent coding sequence boundaries, and thin black lines depict introns. Arrows in the introns indicate
the direction of transcription. TheMAKER2 and BAP pipelines predict a single transcript coded on the reverse strand at the 39 end
of the knownAve1 transcript. LoReAn-sF predicts two transcripts corresponding to theAve1 gene alongwith the similar transcript
predicted by MAKER2. The reference Ave1 transcript is shown in gray. C, To confirm the presence of an alternative splice site in
the 59UTR of the Ave1 transcript, 18 cDNA clones were randomly chosen and sequenced. Isoform 1 sequence is identical to the
reference Ave1 sequence andwas identified in 15 of the 18 clones. Isoform 2 has a 5-bp insertion in the 59UTR resulting from an
alternative exon splice site andwas identified in 3 of the 18 sequenced clones. The Ave1 reference sequence is shown from bases
71 through 86. D, The presence ofAve1 and the additional gene transcribed to the 39 end ofAve1, termedAve1close (Ave1c), was
confirmed using PCR on genomic DNA (gDNA) and cDNA. PCR using gene specific primers, termed Ave1 fw + rev (pink arrows)
orAve1c fw + rev (yellowarrows), shows that both genes are expressed in either potato dextrose broth (PDB) Czapek-dox (CPD) or
half-strength Murashige-Skoog (1/2 MS) media. The inverse orientation of the two genes was confirmed using forward primers
only, which amplified the entire locus, resulting in a band of approximately 1,118 bp, but does not amplify product using cDNAas
the template.
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LoReAn-sF additionally predicted two mRNAs cor-
responding to the previously characterized Ave1 gene,
termed isoform-1 and -2 (Fig. 5B). To confirm the
presence of two Ave1 isoforms, cDNAs were amplified
and cloned into vectors, and 18 clones were randomly
selected for sequencing. A majority of the sequenced
transcripts, 15 of 18, had a sequence corresponding
to isoform-1, the known Ave1 transcript, while the
other three were the isoform-2 sequence (Fig. 5C). The
isoform-2 transcript is the result of an alternative splice
junction 5 bp upstream of the previously identified
splice site in theAve1 59UTR intron and is not predicted
to alter the protein coding sequence. The accuracy of the
new gene prediction at the Ave1 locus (two Ave1 iso-
forms and one additional gene model) was additionally
tested by showing the expression of the Ave1c gene.
Two sets of primers (Ave1 and Ave1c fw and rev) am-
plified bands of the expected sizes, confirming the ex-
pression of both genes across various V. dahliae growth
conditions (Fig. 5D, top amplification panel). We also
attempted to amplify a specific product from both ge-
nomic DNA and cDNA to confirm the orientation and
rule out a transcriptional fusion. Consistent with the
annotation, the amplification using a genomic DNA
template was successful, while the cDNA template
failed to amplify a product (Fig. 5D, bottom amplifi-
cation panel, primersAve1 fw +Ave1c fw). Collectively,
these results confirm that LoReAn predicts the most
accurate gene models at the Ave1 locus, including a
splice-variant of Ave1.

LoReAn Produces the Most Accurate Annotation of a
Second Fungal Genome Using PacBio Iso-seq Reads

The basidiomycete Plicaturopsis crispa, mostly known
for its wood-degrading abilities, has a relatively com-
plex transcriptome with high levels of exons per gene—
5.6 exons per gene compared to V. dahliae’s 2.5 exons
per gene (Gordon et al., 2015). A total of nine annota-
tions of the P. crispa genome from five pipelines were
generated using publicly available short-read Illumina
RNA-seq and single-molecule PacBio Iso-seq data
(Kohler et al., 2015). The LoReAn annotations predicted
the greatest number of genes, transcripts, and exons,
while BAP and BAP+ had the greatest number of genes,
transcripts, and exons exactly matching the reference
(Table 2; Supplemental Table S7). The F1 scores for
exact match genes was highest for the BAP outputs, but
overall similar between the annotations (Fig. 6A).
Testing the exact match gene proportions used for
sensitivity and specificity indicated significant associ-
ation between annotation pipelines and the met-
rics (Fig. 6B; Pearson’s x2 test of independence, x2 =
3,220.7, P value ,2.2e-16). LoReAn-sF scored sig-
nificantly higher than MAKER2 for sensitivity and
specificity of exact match gene proportions and higher
than GeneMark-ES for exact match sensitivity
(Supplemental Table S8). However, these comparisons
depended on the starting reference annotation.

To better understand the differences between the
outputs, we applied the empirical intron analysis and
calculated the annotation quality metrics (Fig. 6C).
The sensitivity and specificity proportions for exact
match introns indicated significant differences across
the pipelines (Fig. 6D, Pearson’s x2 test of indepen-
dence, x2 = 8,583, P value ,2.2e-16). Using x2 tests of
proportions between the individual annotation out-
puts to that of the reference annotation showed that
LoReAn in stranded mode using a masked or non-
masked genome produces significantly improved in-
tron location estimates than the current reference
(Table 2). LoReAn stranded outperformed all other
pipelines for exact intron specificity and sensitivity
(Supplemental Table S9). These results indicate the
LoReAn pipeline produces an improved annotation
compared to the current reference and produces re-
sults as good and, under some metrics, better than
other annotation options.

LoReAn Produces High-Quality Annotations for Larger
Plant Genomes Using PacBio Iso-seq Data

To further test LoReAn, we reannotated the 135-
megabase (Mb) Arabidopsis and 375-Mb rice (Oryza
sativa) genomes using PacBio Iso-seq data. These ge-
nomes are larger and contain a higher percentage of
repetitive elements than the two fungal genomes tested.
The Arabidopsis annotations generated here were
compared to the reference annotation, TAIR10, which
is highly curated and represents one of the most com-
plete plant genome annotations (Lamesch et al., 2012;
Berardini et al., 2015). The LoReAn outputs using a
nonmasked genome had the highest number of genes
and transcripts exactly matching the reference, while
BAP+ had the highest number of exact match exons
(Supplemental Table S10). We conducted similar anal-
yses as used for the fungal genomes for exact match
genes compared to the reference annotation (Fig. 7, A
and B). There was a significant difference across the
pipelines for sensitivity and specificity of exact match
genes (Fig. 7B; Pearson’s x2 test of independence,
x2 = 22,393, P value ,2.2e-16). Two-sample proportion
testing showed LoReAn-sF outperformed MAKER2,
GenMark-ES, and Augustus for predicting genes
based on exact match analysis (Supplemental Table
S11). Similar results were seen for the inferred intron
analysis (Fig. 7, C and D). The pipelines were not
equal for exact intron sensitivity and specificity
(Fig. 7D; Pearson’s x2 test of independence,
x2 = 38,926, P value ,2.2e-16). The results of the
pipelines were compared to those from the reference
annotation, and LoReAn using a masked genome
in standard or stranded mode and MAKER2 out-
performed the current reference annotation for match-
ing intron location specificity (Table 3). None of the
pipelines outperformed the reference annotation for
sensitivity, reflecting the high quality of the TAIR10
annotation.
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The same analysis procedures for the rice genome
showed LoReAn performed as well as or better than the
other tested pipelines for gene and intron predictions
(Fig. 8; Supplemental Table S12). There was a signifi-
cant difference between the pipelines for exact match
gene sensitivity and specificity (Pearson’s x2 test of in-
dependence, x2 = 50,019, P value ,2.2e-16) with the
LoReAn outputs having strong associations to posi-
tive annotation metrics (Fig. 8B). Indeed, pairwise two-
sample proportion testing of the other pipelines against
LoReAn-s showed that LoReAn-s was significantly
better for both gene prediction sensitivity and speci-
ficity (Supplemental Table S13). LoReAn also per-
formedwell for predicting exact intron locations (Fig. 8,
C and D), and again, there was a significant difference
across the pipelines for gene sensitivity and specificity
(Pearson’s x2 test of independence, x2 = 984,030, P
value ,2.2e-16). All LoReAn pipelines outperformed
the reference annotation for intron match specificity,
and LoReAn using the full-genome and strand infor-
mation outperformed the reference annotation for
intron match sensitivity (Table 4). These data show that
LoReAn provides robust results across genomes of
varying features and sizes and, in many instances, out-
performed other currently used annotation software.

DISCUSSION

High-throughput sequencing continues to have pro-
found impacts on biological systems and the questions
researchers are addressing. The technical improve-
ments and associated reduction in cost have resulted in
a deluge of high-quality model and nonmodel genomes
from across the kingdoms of life. To capture the value of
these assembled genomes, equal advances are needed
in defining the functional elements of the genome. One
such technical advance is the ability to sequence full-
length single-molecule cDNAs that directly contain
information on transcript structure and alternative
forms. This information has previously helped iden-
tify alternatively spliced transcripts (Au et al., 2013;

Abdel-Ghany et al., 2016), but single-molecule long-
reads have not been systematically incorporated into
annotation pipelines. The newly developed LoReAn
pipeline integrates both short-read RNA-seq and long-
read single-molecule cDNA sequencing with ab initio
gene prediction to generate high-accuracy gene pre-
dictions. In total, three separate analyses using a
reference annotation, head-to-head comparison, and
comparison to empirical data indicate that LoReAn
produces high-quality annotations of the four genomes
tested. These results show that LoReAn has improved
performance for predicting gene structures and intron
locations.
Whereas several genome annotation tools use ex-

perimental data (i.e. RNA-seq) for gene prediction,
none of them fully utilize this information. This is ap-
parent for genes such as Ave1, where there is ample
RNA-seq evidence supporting the gene model, but
prediction software, including MAKER2, GeneMark-
ES, and BAP, do not predict the gene. The annotation
pipeline CodingQuarry also does not predict the Ave1
transcript when run in the default mode but does pre-
dict the transcript when run using the "effector" option.
LoReAn correctly predicts the Ave1 transcript, plus an
additional new transcript at the locus. The ability to
correctly annotate genes with unique features or re-
stricted taxonomic distribution, such as effectors, is
relevant to many biological questions and will aid
comparative genomic studies. LoReAn was designed
to incorporate information from both short- and long-
read RNA-seq data, as we believe with increasing
sequencing depth, length, and accuracy, this signifi-
cant source of empirical evidence will greatly improve
gene prediction.
The technical and biological characteristics of a ge-

nome will impact the annotation options needed to
achieve high-quality gene predictions. Genome mask-
ing significantly affected the gene prediction output of
the V. dahliae annotation. From a technical aspect, ge-
nome masking prior to annotation can have a large
impact when annotating highly contiguously assem-
bled genomes. Fragmented genome assemblies often

Table 2. x2 test of proportions for predicted exact match introns inferred from RNA-seq mapping data in P. crispa

Pipeline
Predictions Matching

RNA-seq

Predictions Not

Matching

Predictions

Missing

Specificity Less Than

Reference Annotationa
Sensitivity Less Than

Reference Annotationb

LoReAn 58,831 8,235 29,119 N.S.c ,0.001
LoReAn-M 58,798 8,219 29,152 N.S.c ,0.001
LoReAn-s 58,556 7,318 29,394 ,0.001 ,0.001
LoReAn-sM 58,622 7,326 29,328 ,0.001 ,0.001
BAP 54,565 8,204 33,385 N.S.c N.S.c

BAPplus 53,943 7,159 34,007 ,0.001 N.S.c

Augustus 52,525 8,773 35,425 N.S.c N.S.c

GeneMark-ES-F 51,450 11,085 36,500 N.S.c N.S.c

MAKER2 50,228 10,881 37,722 N.S.c N.S.c

Reference annotation 57,837 80,54 30,113 Not applicable Not applicable

aColumn reports P values for the x2 test of proportions for the specificity metric bColumn reports P values for the x2 test of proportions for the
sensitivity metric cN.S., not significant with a P value greater than 0.05
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lack repetitive regions and are de facto masked.
Masking the telomere-to-telomere complete V. dahliae
strain JR2 genome resulted in gene predictions that
were fragmented because of coding regions over-
lapping masked regions. Our results indicate that
genome masking of short repetitive DNA decreases
the quality of the genome annotation and that using a
partially (only masking repeats .400 bp) or non-
masked genome may improve annotation results.
From a biological perspective, our results show that
strand information had a significant impact on anno-
tation quality for the V. dahliae genome. Compact
fungal genomes have genes with overlapping UTRs,

which make gene prediction difficult. Using strand
information, LoReAn can assign transcripts to the
correct coding strand and avoid the prediction of
fused genes. Additionally, strand information is used
to assign single-exon genes to the correct strand.
These results need to be confirmed on a greater
number of genomes with diverse characteristics be-
fore being fully generalizable. Collectively, our re-
sults suggest that both technical and biological
information, such as assembly completeness and
coding sequence overlap, can impact genome anno-
tation quality and should be considered early during
project design.

Figure 6. Assessment of gene and intron predic-
tions from P. crispa. A, Annotation quality metrics
are shown for exact match genes as detailed for
Figure 2A. LoReAn, LoReAn in nonstranded mode
using a nonmasked genome; LoReAn-M, LoReAn
in nonstranded mode using a masked genome;
LoReAn-s, LoReAn in stranded mode using a
nonmasked genome; LoReAn-sM, LoReAn in
stranded mode using a masked genome; BAP,
broad annotation pipeline; BAP+, broad annota-
tion pipeline plus additional modifications de-
scribed in text. B, The proportion of exact match to
nonmatching gene predictions (specificity) and
exact match to missing gene predictions (sensi-
tivity) compared using a x2 test of independence
as described in Figure 2B. C and D are for exact
match intron analysis, represented as in A and B,
respectively.
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Our results show that LoReAn can successfully use
single-molecule cDNA sequencing data from different
platforms to produce high-quality genome annotations,
similar to or better than the current community refer-
ences for four diverse genomes. This suggests robust
performance of LoReAn across sequencing platforms
and for annotating small fungal genomes of 35 Mb to
the rice genome of ;375 Mb. We speculate that the use
of annotation software such as LoReAn, which incor-
porates single-molecule cDNA sequencing into the an-
notation process, will significantly improve genome
annotation and aid in answering biological questions
across all domains of life.

MATERIALS AND METHODS

Growth Conditions and RNA Extraction

Verticillium dahliae strain JR2 (Faino et al., 2015) was maintained on potato
dextrose agar plates grown at approximately 22°C and stored in the dark.
Conidiospores were collected from 2-week-old potato dextrose agar plates
using half-strength potato dextrose broth (PDB), and subsequently 1 3 106

spores were inoculated in glass flasks containing 50 mL of either PDB, half-
strength Murashige and Skoog (MS) medium supplemented with 3% Suc, or
xylem sap collected from greenhouse-grown tomato (Solanum lycopersicum)
plants of the cultivar Moneymaker. For analysis ofAve1 transcription,V. dahliae
strain JR2 was additionally grown in 50 mL of Czapek-dox media following the
manufacturer’s guidelines (Oxoid Microbiology Products, Thermo Scientific).
The cultures were grown for 4 d in the dark at 22°C and 160 rpm. The cultures
were strained through miracloth (22 mm; EMD Millipore), pressed to remove

Figure 7. Assessment of gene and intron predic-
tions from Arabidopsis. A, Annotation quality
metrics are shown for exact-match genes as de-
tailed for Figure 2A. LoReAn, LoReAn in non-
stranded mode using a nonmasked genome;
LoReAn-M, LoReAn in nonstranded mode using a
masked genome; LoReAn-s, LoReAn in stranded
mode using a nonmasked genome; LoReAn-sM,
LoReAn in stranded mode using a masked ge-
nome; BAP, broad annotation pipeline; BAP+,
broad annotation pipeline plus additional modi-
fications described in text. B, The proportion of
exact match to nonmatching gene predictions
(specificity) and exact match to missing gene
predictions (sensitivity) compared using a x2 test
of independence as described in Figure 2B. C and
D are for exact match intron analysis, represented
as in A and B, respectively.
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liquid, and flash frozen in liquid nitrogen. Next, the cultures were to ground to
powder with a mortar and pestle using liquid nitrogen to ensure samples
remained frozen.

RNA extraction was carried out using TRIzol (Thermo Fisher Scientific)
following manufacturer guidelines. Following RNA resuspension, contami-
nating DNA was removed using the TURBO DNA-free kit (Ambion, Thermo
Fisher Scientific), and the RNA was checked for integrity by separating 2 mL of
each sample on a 2% agarose gel. RNA samples were quantified using a
Nanodrop (Thermo Fisher Scientific) and stored at 280°C.

Library Preparation and Sequencing—Illumina

Each RNA sample from V. dahliae strain JR2 grown in PDB, half-strength
MS, and xylem sap was used to construct an Illumina sequencing library for
RNA-sequencing by the Beijing Genomics Institute following manufacturer
guidelines (Illumina). In brief, mRNA was enriched using oligo(dT) magnetic
beads. The RNAwas then fragmented and double stranded cDNA synthesized
following manufacturer guidelines (Illumina). The fragments were then end-
repaired and poly-adenylated to allow for the addition of sequencing adapters,
followed by fragment enrichment using PCR amplification. Library quality was
assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies). Qualified
libraries were sequenced on an Illumina HiSeq-2000 (Illumina) at the Beijing
Genomics Institute.

cDNA Synthesis and Normalization, Library Preparation,
and Sequencing—ONT

For the synthesis of single-stranded cDNA, 1 mg of each RNA sample was
reverse-transcribed using the Mint-2 cDNA synthesis kit as described by the
manufacturer (Evrogen), using the primers PlugOligo-1 (59 end) and CDS-
1 (39 end). For each sample, 1 mL of cDNAwas amplified with PCR for 15 cycles
(95°C for 15 s, 66°C for 20 s, and 72°C for 3 min) to generate double-stranded
cDNA and purified with 1.83 volume Agencourt AMPure XP magnetic beads
(Beckman Coulter).

Three cDNA samples were normalized with the Trimmer-2 cDNA nor-
malization kit following the manufacturer’s guidelines (Evrogen). The cDNA
was precipitated, denatured, and hybridized for 5 h. Next, the double-stranded
cDNA fraction was cleaved and the remaining single stranded cDNA amplified
with PCR for 18 cycles (95°C for 15 s, 66°C for 20 s, and 72°C for 3 min).

Librarypreparation for the three sampleswasperformedusing theNanopore
Sequencing Kit (v. SQK-MAP006) following the manufacturer’s guidelines
(ONT). The cDNA was end-repaired and dA-tailed using the NEBNext End
Repair and NEBNext dA-Tailing Modules following the manufacturer’s in-
structions (New England BioLabs [NEB]). The reactions were cleaned using an
equal volume of Agencourt AMPure XP magnetic beads (Beckman Coulter),
followed by ONT adapter ligation using Blunt/TA Ligation Master Mix (NEB).
The adapter-ligated fragments were purified using Dynabeads MyOne Strep-
tavidin C1 (Thermo Fisher Scientific).

Sequencing was performed on three different MinION flow cells (v. FLO-
MAP103, ONT). After priming the flow cells with sequencing buffer, 6mL of the

library preparation was added. Additional library preparation (6 mL) was
added to the flow cells at 3, 17, and 24 h after the run was started. Base-calling
was performed using the Metrichor app (v. 2.39.1, ONT), and Poretools
(v. 0.5.1) was used to generate FASTQ files from theMetrichor produced FAST5
files (Loman and Quinlan, 2014).

Software in LoReAn Pipeline

LoReAn is implemented in Python3. Usage and parameters to run LoReAn,
including default settings, are detailed at https://github.com/lfaino/LoReAn/
blob/master/OPTIONS.md. Mandatory parameters are protein sequences of
related organisms, a reference genome sequence, and an identification name for
the species form the Augustus database. Other inputs are as follows: short-
reads (i.e. Illumina RNA-seq), which may be single or paired-end, and long-
reads from either MinION or SMRT sequencing platforms. LoReAn outputs a
GFF3 file with genome annotations.

The most convenient way to install and run LoReAn is by using the Docker
(https://www.docker.com/) image. Information about the software and how
to use it can be found at the https://github.com/lfaino/LoReAn repository.
Additional information regarding the settings used for programs in this work
can be found in the Supplemental Data. The following programs and versions
were used for LoReAn: for read mapping, STAR (version 2.5.3a; Dobin et al.,
2013) and GMAP (v. 2017-06-20; Wu and Watanabe, 2005); to assemble and
reconstruct transcripts from short reads, Trinity (v. 2.2.0; Grabherr et al., 2011)
run on “genome-guided mode,” followed by PASA (v. 2.1.0; Haas et al., 2008);
to map protein sequences, AAT (v. 03-05-2011; Huang et al., 1997); for gene
prediction, GeneMark-ES (v4.34; Lomsadze et al., 2014) and Augustus (v3.3;
Stanke et al., 2008) as ab initio software but BRAKER1 (v. 2; Hoff et al., 2016) in
substitution of Augustus to generate ab initio gene prediction for organisms not
present in the Augustus catalog when RNA-seq is supplied; GMAP (v. 2017-06-
20; Wu and Watanabe, 2005) for long-read mapping and for assembled ESTs
after Trinity assembly; EVM (v. 1.1.1; Haas et al., 2008) to combine the output
from the previous tools to generate a combined annotation model. For EVM,
evidence weights were set to 1, and default options were used. Bedtools suite
(v. 2.21.0; Quinlan and Hall, 2010) was used to extract the genomic sequence,
merge, and cluster the long-reads. iAssembler (v. 1.32; Zheng et al., 2011) was
used to call a consensus on the clusters (i.e. the process of transcript recon-
struction). GenomeTools (v. 1.5.9) software was used at several stages in
the LoReAn pipeline (Gremme et al., 2013). Additional information about the
tools used can be found at https://github.com/lfaino/LoReAn/blob/master/
README.md.

Genome Masking

To study the effect of genome masking on automated genome annotation
with LoReAn, the pipeline was run on stranded mode using three reference
genomeswithdifferent levelsof repetitionmasking: a fullymaskedgenomewith
all repetitive sequences masked, a partially masked genome where only repe-
titions larger than 400 bps were masked, and a full genome with no repetition

Table 3. x2 test of proportions for predicted exact match introns inferred from RNA-seq mapping data in Arabidopsis

Pipeline
Predictions Matching

RNA-seq

Predictions Not

Matching

Predictions

Missing

Specificity Less Than

Reference Annotationa
Sensitivity Less Than

Reference Annotationb

LoReAn 67,064 57,969 4,376 N.S.c N.S.c

LoReAn-M 66,199 45,073 5,241 ,0.001 N.S.c

LoReAn-s 67,003 57,897 4,437 N.S.c N.S.c

LoReAn-sM 66,133 44,987 5,307 ,0.001 N.S.c

BAP 64,444 59,868 6,996 N.S.c N.S.c

BAPplus 65,037 59,153 6,403 N.S.c N.S.c

Augustus 63,137 70,107 8,303 N.S.c N.S.c

GeneMark-ES 61,815 80,017 9,625 N.S.c N.S.c

MAKER2 60,289 26,238 11,151 ,0.001 N.S.c

Reference annotation 69,657 54,910 1,783 Not applicable Not applicable

aColumn reports P values for the x2 test of proportions for the specificity metric bColumn reports P values for the x2 test of proportions for the
sensitivity metric cN.S., not significant with a p-value greater than 0.05
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masking. Repeats were masked using RepeatMasker software as previously
described (Faino et al., 2016).

LoReAn Stranded Mode

To use the software in strand mode efficiently, sequences from the same
transcript need to have the same strand. However, sequencing is random and,
depending from which fragment sequencing starts, fragments from the same
transcript could be sequenced in forward or reverse orientation compared to the
transcription direction. Unlike in DNA sequencing, the direction of the cDNA
long-read sequencing can be inferred by localizing only one or both directions
between the 39 adapter or the 59 adapter used during the cDNA production.
Using the Smith-Waterman alignment, the location of the adapter/s in the se-
quenced fragments can be identified and the sequencing orientation adjusted
based on the adapter alignment onto the fragments. For the MinION data

generated, the 59 PlugOligo-1 AAGCAGTGGTATCAACGCAGAGTACGCG
GG and 39-CDS AAGCAGTGGTATCAACGCAGAGTACTGGAG primer
sequences associated with the cDNA synthesis and normalization process
were used to identify the coding strand for each long read. For the PacBio
Arabidopsis (Arabidopsis thaliana) experiment, primers AAGCAGTGGTATC
AACGCAGAGTACGCGGG and AAGCAGTGGTATCAACGCAGAGTACT
TTTT were used for the correction of the transcript orientation. Rice (Oryza
sativa) and Plicaturopsis crispa PacBio transcripts were oriented by using the
sequence AAAAAAAAAAAAAAAAAAAAAAAAAAAAGTACTCTGCGT
TGATACCACTGCTT.

Annotation Quality Definitions

The common metrics sensitivity, specificity, and accuracy were used to
compare the annotation features. These metrics have been previously discussed

Figure 8. Assessment of gene and intron predic-
tions fromO. sativa. A, Annotation quality metrics
are shown for exact match genes as detailed for
Figure 2A. LoReAn, LoReAn in nonstranded mode
using a nonmasked genome; LoReAn-M, LoReAn
in nonstranded mode using a masked genome;
LoReAn-s, LoReAn in stranded mode using a
nonmasked genome; LoReAn-sM, LoReAn in
stranded mode using a masked genome; BAP,
broad annotation pipeline; BAP+, broad annota-
tion pipeline plus additional modifications de-
scribed in text. B, The proportion of exact match to
nonmatching gene predictions (specificity) and
exact match to missing gene predictions (sensi-
tivity) compared using a x2 test of independence
as described in Figure 2B. C and D are for exact
match intron analysis, represented as in A and B,
respectively.
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in the context of annotations (Yandell and Ence, 2012). In brief, sensitivity is a
measure of howwell an annotation identifies the known features of a reference,
also called a true positive rate. Here, sensitivity was calculated as ([Annotation
matching reference/total Reference] * 100) for a specific feature of interest and
represented the percentage of known reference features captured. Specificity
is a measure of how many of the annotated features were in the reference,
also called positive predictive value. Here, specificity was calculated as
([Annotation matching reference/total Annotation] * 100) for a specific fea-
ture of interest and represented the percentage of all the annotation features
that matched the reference. These comparisons can be for any annotation fea-
ture, such as genes, transcripts, or individual exons for exact matches or for a
specified overlap to a reference. The F1 score accounted for both sensitivity and
specificity to measure annotation quality in a single number, calculated as the har-
monic mean of sensitivity and specificity ([Sensitivity * Specificity]/[Sensitivity +
Specificity]) * 2.

Head-to-Head Comparisons between Annotations

To determine the unique protein-coding genes annotated between
LoReAn-sF, BAP-F, MAKER2, and CodingQuarry, the annotations were com-
pared using orthoMCL (Li et al., 2003). OrthoMCL was downloaded from
https://github.com/apetkau/orthomcl-pipeline and run using default settings.

Intron Analysis

Intronswereextracted frommappedreadsusing the samemethodology from
BRAKER1 (Hoff et al., 2016). Introns supported from at least two reads were
extracted and used in the intron set. Genome tool software (Gremme et al., 2013)
was used to annotate introns in the gff3 file. Custom scripts were used to
identify exact match intron coordinates from the annotation files that over-
lapped with the intron coordinates from the RNA-seq data. Sensitivity, speci-
ficity, and F1 score were calculated as described before.

Statistical Comparisons between Annotation Outputs

Statistical comparisons were made using the R software package (R Core
Team, 2016). x2 tests of independence (chisq.test in R) were computed to test for
association between the annotation pipelines and the sensitivity and specificity
metrics. The residuals of the test were used to assess the direction and magni-
tude of the associations across the data, but no formal post-hoc testing was
performed on this data. Two-proportion z-tests (prop.test in R) were used to
compare individual annotation results against the reference annotation or
against a LoReAn output. These tests were conducted for both gene and intron
features using the number of matched features and nonmatched features or the
number of matched and missing features (i.e. specificity and sensitivity). The
two-sample tests were conducted as one-tailed to determine the difference
compared to the reference, and Bonferroni multiple testing correction was ap-
plied to adjust the P value needed to reject the null hypothesis. For singleton
analysis, the read coverage and length data were compared using the

nonparametric Kruskal-Wallis test (kruskal in R from the agricolae [de
Mendiburu, 2016] package) to avoid the assumption of equal distribution
and variance of the data. The proportion of highest-quality singletons from
each pipeline were compared against the results of LoReAn-sF using the two-
proportions z-test. The effect of genomemasking, ab initio options and pipeline
options were tested using ANOVA, and Tukey’s honestly significant post-hoc
test (alpha = 0.05) was used to determine statistical grouping.

Ave1 Isoform Analysis

Ave1 isoforms were confirmed using cDNA-PCR of infected plant material
withV. dahliae strain JR2. Specific primers for theAve1 gene (F-TTTAACACTTC
ACTCTGCTCTCG; R-CCTTGTGTGCTGCTTTGGTA) and for Ave1c gene (F-C
GCCGGCAATACTATCTCAA; R-ATCCTGTGGGCAACAATAGC) were used
to identify the two Ave1 isoforms.

Availability

The LoReAn source code is available at https://github.com/lfaino/LoReAn/
and provided under an MIT license, available at https://github.com/lfaino/
LoReAn/blob/master/LICENSE. Documentation and software are available at
https://github.com/lfaino/LoReAn. The software can run on all platformswhen
deployed via Docker (https://www.docker.com/).

All genome annotations, scripts, and additional files generated and/or an-
alyzed in the paper can be found at https://github.com/lfaino/files-paper-
LoReAn.git.

A dataset to test the correct installation of the tool can be found at https://
github.com/lfaino/LoReAn-Example.git. This dataset contains all the data to
annotate a single chromosome of V. dahliae strain JR2.

Accession Numbers

The V. dahliae strain JR2 reference annotation version 5 was used in the
analysis. Version 5 was generated by comparing the concordance of all gene
models of version 4 with the long-read information. Subsequently, the im-
proved version 5 was deposited at ENSEMBL fungi database and can be
downloaded at http://fungi.ensembl.org/Verticillium_dahliaejr2/Info/Index.

The P. crispa reference genome and annotation were downloaded from JGI
(http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Plicr1).
The Arabidopsis genome sequence and reference annotation were downloaded
from the TAIR database (ftp://ftp.arabidopsis.org/home/tair/Sequences/
whole_chromosomes/; https://www.arabidopsis.org/download_files/Genes/
TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff). The rice
genome sequence and annotation were retrieved from the ENSEMBL plant
database (http://plants.ensembl.org/Oryza_sativa/Info/Index). The sequenc-
ing data are accessible at the NCBI SRA database. The short-read Arabidopsis
dataset is deposited under SRA accession number SRR5446746 and the PacBio
dataset under SRA accession number SRR5445910. The V. dahliae Illumina
transcriptome is deposited under accession number SRR5440696, while the

Table 4. x2 test of proportions for predicted exact match introns inferred from RNA-seq mapping data in O. sativa

Pipeline
Predictions Matching

RNA-seq

Predictions Not

Matching

Predictions

Missing

Specificity Less Than

Reference Annotationa
Sensitivity Less Than

Reference Annotationb

LoReAn 84,679 33,790 37,383 ,0.001 N.S.c

LoReAn-M 81,707 15,929 40,355 ,0.001 N.S.c

LoReAn-s 84,880 33,749 37,182 ,0.001 0.007
LoReAn-sM 81,870 15,892 40,192 ,0.001 N.S.c

BAP 77,609 85,999 44,453 N.S.c N.S.c

BAPplus 75,048 39,740 47,014 N.S.c N.S.c

Augustus 64,279 94,836 57,783 N.S.c N.S.c

GeneMark-ES 1,958 447,395 120,104 N.S.c N.S.c

MAKER2 78,819 57,887 43,243 N.S.c N.S.c

Reference annotation 84,325 38,746 37,737 Not applicable Not applicable

aColumn reports P values for the x2 test of proportions for the specificity metric bColumn reports P values for the x2 test of proportions for the
sensitivity metric cN.S., not significant with a P value greater than 0.05
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Nanopore transcriptome data are deposited as SRR5445874. The P. crispa Pac-
Bio reads were downloaded from the publicly accessible NCBI SRA site, runs
SRR5077068 to SRR5077144 and Illumina data from run SRR1577770. The
O. sativa data were downloaded from the European Nucleotide Archive under
runs ERR91110 and ERR911111 and the Illumina data from run ERR748773.

Supplemental Data
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