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Myeloperoxidase (MPO) was first described as a highly abundant protein in neutrophils in 

19411. In 1958, MPO was purified2, but the function remained unknown. Over the next 

decade, studies revealed the mechanisms of degranulation3 and reactive oxygen species 

production4 by neutrophils during phagocytosis. A series of pivotal studies in 1967 and 1968 

by Klebanoff proposed the classical role of MPO in phagocytosis, suggesting that the MPO-

halide-H2O2 system is a powerful anti-microbial mechanism5–7. Highly reactive products of 

this system, including HOCl, are short-lived and react rapidly with any oxidizable group to 

kill pathogens during phagocytosis. Less reactive products, including H2O2 and some 

chloroamines, can travel to be toxic at a distant site. Since MPO is a strongly basic protein 

and can bind to surface of a negatively charged cell, this potentially allows for continuous 

propagation of the anti-microbial response.

In contrast to the classical role of MPO, there has been significant evidence that MPO can 

damage host tissue and contribute to human disease, specifically those that involve damage 

to the endothelium in the vasculature. Leukocyte-endothelial interactions are critically 

regulated to maintain macro and microvascular health. Leukocyte MPO traditionally has 

been considered as a robust oxidation system that potentially has deleterious effects at the 

blood-endothelial interface, as well as the subendothelial space. Leukocyte interaction with 

the endothelium first involves an encounter with the endothelial glycocalyx. MPO has been 

shown to be released at or near the glycocalyx, accumulate along the endothelium, and be 

transported across endothelial cells8. MPO targets extracellular matrix proteins9, reduces 

NO availability10,11, and mediates neutrophil recruitment and activation12,13 (Figure). MPO 

plays a role in renal disease14, sickle cell disease15, ischemia/reperfusion injury16, 

atherosclerosis17, and sepsis18,19.
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In this issue of ATVB, Manchanda et al reveal yet another deleterious role of MPO on the 

endothelium. Their cell culture and in vivo mouse studies elegantly demonstrate that MPO 

leads to the collapse of the endothelial glycocalyx. The authors revealed a novel mechanism 

in which MPO forms a physical interaction with glycocalyx heparan sulfate 

glycosaminoglycan residues leading glycocalyx collapse, independent of the classic catalytic 

function of MPO. The cationic charge of MPO destabilizes the negatively-charged 

endothelial glycocalyx, allowing for neutrophil recruitment and subsequent activation. 

Furthermore, MPO also stimulated the shedding of syndecan-1, a marker of endothelial 

glycocalyx breakdown. This is significant because these studies uncover another deleterious 

role of MPO on the endothelium.

Although this report by Manchanda et al reveals a novel function of MPO, it also raises 

multiple questions. The exact mechanism by which MPO binds to heparan sulfate remains to 

be elucidated. Does MPO have specific binding sites or rather is MPO binding non-specific 

for heparan sulfate? Heparan sulfate binds to proteins using a small number of cationic 

surface amino acids. The authors suggest that the binding is non-specific since MPO has 

more than 70 of these amino acids. Positive control experiments also showed positively 

charged polylysine binds to the glycocalyx reducing its negative charge. It is also important 

to note that neutrophil primary granules contain other cationic proteins, and these results do 

not exclude the possibility of their impact on the endothelial glycocalyx.

Overall, it is clear that MPO has many roles in changes in the endothelium. Studies 

examining the impact of MPO on altering endothelial function traditionally have focused on 

downstream products and actions of MPO catalytic activity, including tyrosine 

chlorination20, HOCl production21, MMP activation by cysteine oxidation22, and chlorinated 

lipid production19. The current study by Manchanda et al provides an important new 

mechanism for MPO elicited endothelial dysfunction. This is potentially an important and 

novel paradigm, but as is with all new models, important questions remain to further 

elucidate this model. Future studies should establish the role of the non-catalytic function of 

MPO in glycocalyx alterations in human disease.
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Figure. 
The impact of MPO on the endothelium. Classically, MPO produces HOCl near the 

neutrophil-endothelial interface. Apart from the catalytic activity, MPO can also recruit and 

activate neutrophils. This novel paper demonstrates a physical interaction between MPO and 

heparan sulfate, leading to glycocalyx collapse. After transcytosis into the subendothelial 

space, MPO can also target extracellular matrix proteins and reduce NO bioavailability.
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