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ABSTRACT

Background. Sentinel lymph node biopsy is the standard
surgical staging approach for operable triple-negative
breast cancer (TNBC) with clinically negative axillae. In this
study, we sought to develop a model to predict TNBC
patients with negative nodal involvement, who would ben-
efit from the exemption of the axillary staging surgery.
Materials and Methods. We evaluated 30 untranslated region
(30UTR) profiles using microarray data of TNBC from two Gene
Expression Omnibus datasets. Samples from GSE31519 were
divided into training set (n = 164) and validation set (n = 163),
and GSE76275 was used to construct testing set (n = 164). We
built a six-member 30UTR panel (ADD2, COL1A1, APOL2, IL21R,
PKP2, and EIF4G3) using an elastic net model to estimate the
risk of lymph node metastasis (LNM). Receiver operating char-
acteristic and logistic analyses were used to assess the associa-
tion between the panel and LNM status.

Results. The six-member 30UTR-panel showed a high distin-
guishing power with an area under the curve of 0.712,
0.729, and 0.708 in the training, validation, and testing
sets, respectively. After adjustment by tumor size, the
30UTR panel retained significant predictive power in the
training, validation, and testing sets (odds ratio = 4.93,
4.58, and 3.59, respectively; p < .05 for all). A combinato-
rial analysis of the 30UTR panel and tumor size yielded an
accuracy of 97.2%, 100%, and 100% in training, validation,
and testing set, respectively.
Conclusion. This study established an integrative 30UTR-
based model as a promising predictor for nodal negativity
in operable TNBC. Although a prospective study is needed
to validate the model, our results may permit a no axillary
surgery option for selected patients. The Oncologist
2019;24:22–30

Implications for Practice: Currently, sentinel lymph node biopsy is the standard approach for surgical staging in breast can-
cer patients with negative axillae. Prediction estimation for lymph node metastasis of breast cancer relies on clinicopatho-
logical characteristics, which is unreliable, especially in triple-negative breast cancer (TNBC)—a highly heterogeneous
disease. The authors developed and validated an effective prediction model for the lymph node status of patients with
TNBC, which integrates 30UTR markers and tumor size. This is the first 30UTR-based model that will help identify TNBC
patients with low risk of nodal involvement who are most likely to benefit from exemption axillary surgery.
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INTRODUCTION
Triple-negative breast cancer (TNBC), lacking expression of
estrogen receptor (ER), progesterone receptor, and human
epidermal growth receptor 2, represents 15%–20% of
breast cancer incidences [1]. TNBC is a heterogeneous dis-
ease with diverse clinical courses, and pathological, molec-
ular, and genetic features [2]. Molecular insights into
TNBCs revealed intrinsic subtypes with different gene
expression signatures [3, 4]. There is a major need to bet-
ter manage the patients with TNBC using the genetics or
epi-genetics information.

Currently, sentinel lymph node biopsy (SLNB) is the
standard surgical approach for invasive breast cancer
patients with clinically negative axillae. However, SLNB
is time-consuming and costly due to the intraoperative
pathological assessment. Furthermore, as an invasive
surgical procedure, SLNB can cause pain, swelling, bruis-
ing, and lymphedema at the surgical site and increase
the risk of infection and skin or allergic reactions. A pre-
vious study conducted in a large cohort from multicen-
ters reported that 77.2% patients with early TNBC had
negative lymph node involvement [5]. Thus, most TNBC
patients receive overtreatment via axillary surgery,
which increases the surgical comorbidity without sur-
vival benefit. Several clinical trials have been conducted
that have shown that axillary surgery can be avoided in
older patients with cT1cN0 breast cancer [6, 7]. SOUND
(Sentinel node vs. Observation after axillary Ultra-
souND) trial is an ongoing perspective randomized study
in which patients with “low-risk” breast cancer (�2 cm
and negative preoperative axillary ultrasound) are ran-
domized to SLNB � axillary dissection or no axillary sur-
gical staging [8]. Although the results have not been
released, Royal Marsden experience of 10.4 years
median follow-up with a policy of no axillary surgery
revealed axillary surgery could be spared in selected
“low-risk” group [9, 10]. That provides additional sup-
port for the hypothesis that some patients may have
axillary surgery omitted as they will be node negative,
and hence avoid morbidity. However, both these studies
pertain mainly to ER-positive disease. In contrast with
non-TNBC, which has a consistent increase in lymph
node metastasis (LNM) incidence according tumor size,
the nodal involvement risk for TNBC is decoupled from
tumor size [11]. Hence, there is a need to develop a pre-
dictive model and identify molecular markers that can
select patients at low risk for LNM in TNBC who may
not benefit from axillary surgery.

Recently, studies of alternative polyadenylation (APA)
have provided insight into 30UTR length dynamics in human
diseases including cancer, and in various physiological pro-
cesses, such as cell proliferation, differentiation, and develop-
ment [12–14]. An emerging role of APA dynamics in human
cancer has been identified [15–17]. Selected APA events can
be used as prognostic markers in multiple cancers, which adds
superior prognostic power beyond common clinical and
mRNA variables [13]. The value of gene-based assays have
lately been acknowledged and incorporated into the eighth
edition of the primary tumor, lymph node, and metastasis
(TNM) classification of the American Joint Commission of

Cancer (AJCC) for breast cancer [18]. Thus, we hypothesized
that the 30UTR dynamics might be responsible for lymph node
status in TNBC and the 30UTR landscape profiled by microar-
rays could be used as powerful prediction biomarkers.

To address the clinical need for nodal involvement risk
assessment in TNBC patients, we performed 30UTR profiling
on publicly available microarrays from a large number of
TNBC patients with pathologically confirmed lymph node
status. Herein, we propose a six-member 30UTR-panel that
robustly discriminates patients at different risks for LNM,
and combining the panel and tumor size shows a high
accuracy for negative node prediction. To the best of our
knowledge, this is the first study that demonstrates nodal
involvement risk assessment capability of an integrative
30UTR-based model in TNBC.

MATERIALS AND METHODS

Data Collection and Processing
Microarray data collection, normalization, and 30UTR profil-
ing were described in our earlier paper [19]. Briefly, a previ-
ous study [20] identified 327 TNBC samples with follow-up
data and essential clinical information (age, tumor size, and
lymph node status) and deposited the data in Gene Expres-
sion Omnibus (GEO) under Accession Number GSE31519. An
independent dataset of 198 TNBC microarrays (GSE76275)
[4] was recently released, and the essential clinical informa-
tion is available in 143 samples. After initial quality check,
the two datasets were downloaded. R package “ERI-expr”
[21] was used to profile the 30UTR landscape. As previously
described [21], the expression ratio index (ERI) was defined
as the signal intensity ratio of the 50 and 30 probe sets of
the APA sites, which correlates to the ratio of short and
long 30UTR isoforms. Combat [22] was used to adjust the
batch effects when pooling the batches of microarray data.
The adjusted combined ERI data were used in subsequent
analysis.

Development and Validation of LNM Prediction
Model for TNBC
Three hundred twenty-seven primary TNBCs with follow-
up data and essential clinical information from GSE31519
were randomly categorized into either a training set (n = 164)
or a validation set (n = 163) according to chip batch
stratification. We introduced an independent dataset
(GSE76275) to test the robustness of the model. However,
the GSE76275 cohort had a high node-positive rate of
50.3%, which may introduce the heterogeneity to the data-
sets and lower the model performance. Thus, a matched
pairs design was used to overcome the above disadvan-
tages. For each subject of the training set (n = 164), we
randomly sampled the paired subject in GSE76275 with the
same age (≤50 years vs. >50 years), tumor size (≤2 cm
vs. >2 cm), and lymph node involvement (negative vs. posi-
tive) categories with replacement and constructed a testing
set (n = 164).

Using univariate logistic regression, we filtered out
noisy features of the 30UTR ERI data to reduce feature
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dimensionality. A cutoff of 0.2 was set for the p values,
and 30UTRs with a Wald p value <0.2 were kept in subse-
quent prediction modeling. Then, the elastic net model
[23] was used to discover the 30UTRs related to LNM and
to train the 30UTR panel with the selected predictors in the
training cohort. We used R package “glmnet” [24] to per-
form the elastic net analysis. To obtain a parsimonious
model with a modest predictive accuracy, leave-one-out
cross-validation was used to determine the penalty param-
eter λ, and selected λ using one standard error (1SE) cri-
teria [25]. The risk score function was a linear combination
of ERI of the selected 30UTRs via the elastic net modeling.
For the sake of intuitiveness, the z-score (standard risk
score) was also reported for each patient.

To determine the threshold that divided the sample
into the high- or low-risk categories, we analyzed each
value and chose an optimal threshold with the maximal
likelihood according to the logistic regression. To assess
the robustness of the 30UTR panel, we computed risk
scores of the patients in the validation and testing sets and
allocated them to the high- or low-risk groups according to
the risk function and the corresponding threshold deter-
mined in the training set. Receiver operating characteristic
(ROC) analysis and logistic regression were used to evalu-
ate the predictive accuracy of the 30UTR panel in training,
validation, and testing cohorts.

MKI67 Expression Profiling
The microarray CEL files were processed with Bioconductor
package “affy” [26] using RMA background correction and
quantile normalization. As Ki-67 immunochemistry level is
not available, MKI67 expression level was analyzed in all
samples, after adjustment of the batch effect using Com-
bat. All samples with MKI67 expression higher than the
median MKI67 in the training set were classified as high
MKI67, whereas others were classified as low MKI67.

TNBC Subtyping
A Lehmann TNBC subtyping system was proposed after
analyzing 587 TNBC gene expression signature from
21 publicly available datasets [3]. The authors developed
a web-based tool “TNBCtype” [27] for classifying TNBC
samples (http://cbc.mc.vanderbilt.edu/tnbc/). Using this
tool, we obtained the Lehmann subtypes of all samples in
this study. The Burstein TNBC classification system was
established by analyzing 198 TNBC tumors using non-
negative matrix factorization method [4]. The Burstein
subtype information of all samples in the testing set was
acquired from the GEO Accession Viewer (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?ac c=GSE76275).

Statistical Analysis
We used Pearson’s chi-square test to compare the cate-
gorical variables and Student’s t test for continuous
variables. We preferentially used relapse-free survival as
the endpoint for event-free survival. Reverse Kaplan-
Meier method was used to compute the median follow-
up time.

Unadjusted and adjusted odds ratios (OR) with 95%
confidence intervals (95% CI) were computed using logistic

regression analysis. ROC curves were used to illustrate and
evaluate the 30UTR panel and clinicopathological factors to
predict the risk of LNM in patients with TNBC. R package
“pROC” was used to calculate the area under the ROC
curve (AUC).

This study was conducted from November 2016 to April
2018. All statistical analyses were completed using R soft-
ware version 3.2.3 (R Development Core Team, Vienna,
Austria) and SPSS Statistics (SPSS Inc., Chicago, IL). All
reported p values were two-sided, and p < .05 was consid-
ered statistically significant.

RESULTS

Patient Characteristics
We collected 470 TNBC samples from two GEO datasets
(GSE31519 and GSE76275) with essential clinical informa-
tion. To obtain a robust model, 327 TNBC microarrays
from GEO dataset GSE31519 were allocated into training
(n = 164) and validation (n = 163) sets using stratified ran-
dom sampling by microarray batches. However, the dis-
parity of baseline positive lymph node rate (20.8% in
GSE31519 and 50.3% in GSE76275) may introduce hetero-
geneity and lower the validation performance. To over-
come this disadvantage, using a matched pairs design, we
randomly sampled the paired subject in GSE76275 with
the same clinical variable categories with replacement
and constructed a testing set (n = 164). The average age
of patients was 51.9 years (standard deviation [SD] 11.9,
median 51, range 29–80), 53.2 years (SD 12.9, median
52, range 30–84), and 54.2 years (SD 12.6, median
51, range 26–86) in training, validation, and testing
cohorts, respectively. The median follow-up time was
88 months in the training and validation sets. The survival
data of the testing set were not available. Table 1 and
supplemental online Table 1 depict the clinical character-
istics of the subjects.

Establishment and Performance of the 30UTR
Panel to Predict Lymph Node Status in TNBC
Patients
The R package “ERI-expr” was used to analyze the APA pro-
file in microarrays from either HG-U133A or HG-U133 plus
2.0 platforms. As a result, 3,210 APA sites in 1,933 unique
genes and 6,045 APA sites in 3,542 genes were identified
in HG-U133A and HG-U133 plus 2.0, respectively. If a gene
had multiple APA sites, we reported the site closest to the
50 end because 90% significant APA dynamic events occurs
at the first APA site [28].

Using the ERI values, we developed a prediction model
of the lymph node status in TNBC patients with an elastic
net approach to the training set after the initial feature fil-
tering via univariate logistic regression analysis. We calcu-
lated the risk scores for all patients as a weighted sum of
the selected six 30UTRs, and the optimal penalty parameter
was chosen by leave-one-out cross validation via 1SE cri-
teria, which chooses the simplest model whose accuracy is
comparable with the best model. The final model was a
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linear combination of the features selected via elastic net.
Specifically:

logitðp = LNMÞ = −0:934 + 0:446×ADD2−0:225× COL1A1

+ 0:731×APOL2 + 0:241× IL21R ð1Þ
+ 0:227× PKP2−0:232× EIF4G3

The coefficient is the estimated weight of the information
contributed by each predictor, and the risk score gives the
logarithmic odds of LNM. For the sake of intuitiveness, we
computed the standardized risk scores (z-scores) using the
parameters of linear transformation determined by the
training set. As shown in supplemental online Figure 1,
the distribution of the standardized risk score was unimo-
dal with similar peaks among the three sets. To divide
patients into high- and low-risk categories, we went
through all risk scores, and risk score −0.965 (standard risk
score 0.870) with maximal likelihood according to the logis-
tic regression was selected as threshold. Patients with

standardized risk scores >0.870 were classified as being at
high risk of LNM (high-risk group), whereas those with
standardized risk scores ≤0.870 were categorized as being
at low risk of LNM (low-risk group).

In the training cohort, patients at high risk had a higher
risk of LNM (p < .001; OR 5.25, 95% CI 2.25–12.2). The
30UTR panel showed a high accuracy in predicting negative
lymph node status, with a negative predictive value (NPV)
of 85.6% in the training set. The distribution of standard-
ized risk scores was assessed in the training set for lymph
node-positive and -negative cancers, respectively (Fig. 1A).
ROC curve analyses were used to evaluate the predictive
power of the six-member 30UTR panel to discriminate the
lymph node status of TNBC patients, resulting in an AUC of
0.712 (95% CI 0.612–0.812; Fig. 1A).

In the validation and testing sets, we applied the same
threshold and split the patients into two LNM risk groups
to test the robustness of the panel. Logistic analysis
showed a significant difference between high- and low-risk
groups in validation (p = .001; OR 3.86, 95% CI 1.62–9.16)

Table 1. Characteristics of the training, validation, and testing sets

Variable

Training set (n = 164) Validation set (n = 163) Testing set (n = 164)

n (%) n (%) n (%)

Age, years

≤50 78 (47.6) 79 (48.5) 78 (47.9)

>50 86 (52.4) 84 (51.5) 86 (52.1)

Tumor size, cm

≤2 41 (25.0) 41 (25.2) 41 (25.0)

>2 123 (75.0) 122 (74.8) 123 (75.0)

Lymph node

Negative 130 (79.3) 129 (79.1) 130 (79.3)

Positive 34 (20.7) 34 (20.9) 34 (20.7)

MKI67

Low 82 (50.0) 90 (55.2) 69 (42.1)

High 82 (50.0) 73 (44.8) 95 (57.9)

Status at last follow-up

Event-free 107 (65.2) 106 (65.0) NA (NA)

Event 57 (34.8) 57 (35.0) NA (NA)

Lehmann subtype

BL1 35 (21.3) 26 (16.0) 53 (32.3)

BL2 16 (9.8) 14 (8.6) 6 (3.7)

IM 34 (20.7) 32 (19.6) 21 (12.8)

M 31 (18.9) 30 (18.4) 16 (9.8)

MSL 13 (7.9) 12 (7.4) 33 (20.1)

LAR 11 (6.7) 18 (11.0) 18 (11.0)

UNS 24 (14.6) 31 (19.0) 17 (10.4)

Burstein subtype

LAR NA (NA) NA (NA) 23 (14.0)

MES NA (NA) NA (NA) 41 (25.0)

BLIS NA (NA) NA (NA) 53 (32.3)

BLIA NA (NA) NA (NA) 47 (28.7)

Abbreviations: BL1, basal-like 1; BL2, basal-like 2; BLIA, basal-like immune-activated; BLIS, basal-like immunosuppressed; IM, immunomodulatory;
LAR, luminal androgen receptor; M, mesenchymal; MES, mesenchymal; MSL, mesenchymal stem-like; NA, not available; UNS, unstable.
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and testing sets (p = .028; OR 2.63, 95% CI 1.11–6.23). The
NPV was 85.4% and 82.7% in the validation and testing set,
respectively. ROC curve revealed an AUC of 0.729 (95% CI
0.630–0.829) in the validation set and an AUC of 0.708
(95% CI 0.608–0.808) in the testing set (Fig. 1B, 1C).

Next, we investigated whether there was any correla-
tion between the six-member 30UTR-panel (ADD2, COL1A1,
APOL2, IL21R, PKP2, and EIF4G3) and the available clinical
factors (age, tumor size, lymph node, MKI67, and status at
follow-up). Pearson’s chi-square test confirmed a significant
correlation between the risk category and the lymph node
status in all sets (p < .05 for all; supplemental online
Table 2). There was no significant correlation between the
six-member 30UTR-panel and age, tumor size, or status at
follow-up (p > .05 for all), and no association was observed
between MKI67 and the risk category in the training and
validation sets (p > .05; supplemental online Table 2). As
represented in supplemental online Figure 2, ADD2, APOL2,
IL21R, and PKP2 displayed 30UTR shortening in the nodal-
positive samples, whereas COL1A1 and EIF4G3 showed a
preference for 30UTR lengthening in cases with nodal
involvement. Using the median ERI of the training set as a
threshold, the panel member genes were classified into
30UTR shortening or lengthening groups. The APA status of
APOL2, COL1A1, ADD2, IL21R, PKP2 was correlated with
the lymph node status in at least one set (supplemental
online Tables 3–7). The association between the lengthen-
ing of EIF4G3 and nodal positivity is of borderline signifi-
cance (supplemental online Table 8). No significant

correlation between the ERI of panel members and MKI67
expression was observed (supplemental online Fig. 3).

The 30UTR Panel Adds Significant Predictive
Information to Clinical Variables
We assessed the additional predictive power of the six-
member 30UTR-based panel compared with clinical factors
(age at diagnosis, tumor size, MKI67, and status at last
follow-up) and two TNBC subtypes (Lehmann and Burstein
subtypes) using a univariate and multivariate logistic regres-
sion. Univariate analysis revealed that the six-member 30UTR
panel and tumor size were significant predictive factors
in the training, validation, and testing sets throughout (all
p < .05; Table 2). Multivariate logistic regression analysis
revealed that the six-member 30UTR-based panel retained
significant predictive accuracy (Training set: OR 4.93, 95% CI
2.05–11.8, p < .001; Validation set: OR 4.58, 95% CI 1.94–
10.8, p < .001; Testing set: OR 3.59, 95% CI 1.40–9.19,
p = .0077) after adjustment by tumor size (Table 3). The
30UTR panel and tumor size were shown to be independent
predictive factors for LNM.

Furthermore, we investigated the relationship between
tumor size and APA status of six panel members and found
the 30UTR shortening status of all panel genes except
APOL2 had no significant correlation with tumor size (sup-
plemental online Tables 3–8), which supports that the
30UTR panel provides additional predictive information of
lymph node status.

ROC curve
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Figure 1. Risk score by the 6-30UTR-based classifier and ROC curves. (A) Training set. (B) Validation set. (C) Testing set.
Abbreviations: 30UTR, 30 untranslated region; LN, lymph node; ROC, receiver operator characteristic.
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Integrative 30UTR-Based Model Predicts Negative
Lymph Node Status in TNBC Patients
Next, we assessed if combining the 30UTR panel and tumor
size (comprehensive model) could improve the predictive
accuracy of negative nodal status. A combination of the 30UTR
panel and tumor size classified the patients into four

subgroups: low-risk/≤2cm, low-risk/>2cm, high-risk/≤2cm, and
high-risk/>2cm. Table 4 represents the lymph node status
among different risk subgroups in all three sets. Low-risk/
≤2cm group achieved a higher NPV of 97.2%, 100%, and
100% in training, validation, and testing sets, respectively,
which indicated that the comprehensive model could

Table 2. Univariate analysis of clinicopathological variables and six-member 30UTR panel

Variable

Training set Validation set Testing set

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Age, years

≤50 1 — 1 — 1 —

>50 1.03 (0.48–2.19) .95 1.25 (0.58–2.67) .57 1.03 (0.48–2.19) .95

Tumor size, cm

≤2 1 — 1 — 1 —

>2 6.86 (1.57–30.0) .011 6.93 (1.58–30.4) .010 6.86 (1.57–30.0) .011

MKI67

Low 1 — 1 — 1

High 0.74 (0.35–1.59) .44 1.30 (0.61–2.78) .49 0.262 (0.12–0.59) .0011

Status at last follow-up

Event-free 1 — 1 — NA NA

Event 1.65 (0.77–3.57) .20 1.91 (0.89–4.12) .10 NA NA

Lehmann subtype

BL1 1 — 1 — 1 —

BL2 2.25 (0.65–7.80) .20 0.91 (0.19–4.37) .91 4.80 (0.70–33.1) .11

IM 0.75 (0.24–2.31) .62 0.77 (0.22–2.75) .69 3.00 (0.77–11.7) .11

M 0.20 (0.039–1.01) .051 0.37 (0.083–1.67) .20 0.00 (0.00–NA) .998

MSL 0.53 (0.097–2.84) .45 1.11 (0.23–5.47) .90 4.80 (1.49–15.5) .0087

LAR 1.65 (0.39–6.99) .50 0.95 (0.23–4.01) .95 6.11 (1.63–22.9) .0073

UNS 0.41 (0.099–1.72) .22 1.36 (0.41–4.52) .61 2.95 (0.69–12.6) .143

Burstein subtype

LAR NA NA NA NA 1 —

MES NA NA NA NA 0.67 (0.24–1.92) .46

BLIS NA NA NA NA 0.11 (0.029–0.39) <.001

BLIA NA NA NA NA 0.190 (0.058–0.63) .0062

Six-member 30UTR panel

Low 1 — 1 — 1 —

High 5.25 (2.25–12.2) <.001 3.86 (1.62–9.16) .0010 2.63 (1.11–6.23) .028

Abbreviations: —, no data; 30UTR, 30 untranslated region; BL1, basal-like 1; BL2, basal-like 2; BLIA, basal-like immune-activated; BLIS, basal-like
immunosuppressed; CI, confidence interval; IM, immunomodulatory; LAR, luminal androgen receptor; M, mesenchymal; MES, mesenchymal;
MSL, mesenchymal stem-like; NA, not available; OR, odds ratio; UNS, unstable.

Table 3. Multivariate analysis of tumor size and six-member 30UTR panel

Variable

Training set Validation set Testing set

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Tumor size

≤2 cm 1 — 1 — 1 —

>2 cm 6.32 (1.40–28.4) .016 8.41 (1.84–38.4) 0.0060 8.85 (1.93–40.0) .0050

Six-member 30UTR panel

Low 1 — 1 — 1 —

High 4.93 (2.05–11.8) <.001 4.58 (1.94–10.8) <.001 3.59 (1.40–9.19) .0077

Abbreviations: —, no data; 30UTR, 30 untranslated region; CI, confidence interval; OR, odds ratio.
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successfully identify TNBC patients with low LNM risk. Fisher’s
exact test confirmed that the comprehensive model reclassi-
fied the patients into different LNM risk categories (all
p < .001).

Moreover, we investigated the relationship between TNBC
subtyping approaches and LNM. As shown in supplemental
online Table 9, the lymph node status was different among
the Lehmann subtypes in the training (p = .048) and testing
set (p = .006), but no significant correlation was observed in
the validation set (p > .05). Besides, COL1A1 and APOL2 were
correlated to Lehmann subtypes as well (p < .05 in all sets;
supplemental online Tables 4, 5). The Burstein subtypes were
significantly correlated with lymph node status (p < .001; sup-
plemental online Table 10), and ADD2, COL1A1, APOL2, IL2R,
and PKP2 were correlated to the Burstein subtypes (all p < .05;
supplemental online Tables 3–7). These findings suggest
classification patterns related to the various ways of subtyping
of TNBC may be potential approaches for LNM risk evaluation.
However, because we did not have the Burstein subtype infor-
mation in the training and validation sets, the results need to
be further validated in other independent cohorts.

DISCUSSION

In this study, we retrospectively analyzed publicly available
TNBC microarrays and profiled the 30UTR dynamics using
annotated APA data. We constructed and validated a novel
model composed of six-member (ADD2, COL1A1, APOL2,
IL21R, PKP2, and EIF4G3) 30UTRs to improve the axillary
lymph node status prediction for patients with operable
TNBC. Moreover, combining the 30UTR panel and tumor
size could reliably predict patients with negative nodal
involvement who can avoid axillary surgery. The integrative
30UTR-based model retained high prediction accuracy in

the training, validation, and testing sets. We chose TNBC
patients as our study population because this subtype of
breast cancer includes highly heterogeneous diseases with
diverse clinical courses and relapse risk [2, 29]. To the best
of our knowledge, this is the first study to propose a 30UTR
panel in TNBC for nodal involvement prediction.

In recent years, great progress has been made in axillary
management of breast cancer patients. According to the lat-
est guidelines from the American Society of Clinical Oncology,
women with one or two metastatic sentinel lymph nodes
who are planning to undergo breast-conserving surgery with
whole-breast radiotherapy should not undergo axillary lymph
node dissection (in most cases) in light of the results of the
ACOSOG Z0011 trial [30]. The SOUND trial is questioning
whether axillary surgery is needed in “low-risk” breast cancer
patients with positive ER staining [8]. A retrospective cohort
from Royal Marsden revealed the long-term outcomes of
patients with “low-risk” breast cancers who omitted axillary
surgery (postmenopausal, <20 mm grade 1 or <15 mm grade
2, lymphovascular invasion negative and ER positive). The
cohort achieved a favorable axillary recurrence (AR) rate and
distant disease-free survival (DDFS). The SOUND-eligible sub-
set had a 5- and 10-year AR rate of 1.6% and 2.7%, respec-
tively, and DDFS was 100% and 95.8% at 5 and 10 years,
respectively [10]. It suggests carefully selected breast cancer
patients with favorable biology might be safely spared any
axillary surgery. In this study, we aimed to identify TNBC
patients with low risk of axillary lymph node involvement
who would benefit from avoiding SLNB. A systematic review
of 69 trials of SLNB (8,059 patients) showed that sentinel
lymph nodes could be identified in 95% of patients with an
average false-negative rate of 7.3% (range 0%–29%) [31]. The
integrative 30UTR-based model proposed in this study
achieved false negative rates of 2.8%, 0%, and 0% in the train-
ing, validation, and testing set, respectively. Thus, the NPV of
the model is comparable to SLNB. As more patient informa-
tion is not available from the GEO database (ultrasound,
mammogram, fine needle biopsy or core needle biopsy
results, etc.), we had limited clinical variables (age, tumor size,
MKI67) for prediction modeling. With carefully preoperative
evaluation of the axillae nodal status (cN staging), we could
rule out the patients with clinically positive nodes and further
elevated the accuracy of our model. In this study, we com-
bined transcriptome data with traditional clinical variable
(tumor size) to evaluate the LNM risk of breast cancer
patients. Recently, the role of biological factors and gene
expression assays have been increasingly recognized in breast
cancer management. In the eighth edition of the AJCC TNM
staging system for breast cancer, tumor biomarkers and low
Oncotype DX recurrence scores can alter prognosis and stage,
which addresses the importance of tumor biology [18]. Our
results showed that shortening of four 30UTRs (ADD2, APOL2,
IL21R, and PKP2) predicted LNM in patients with TNBC. This is
in agreement with the emerging role of 30UTR shortening,
which allows the escape of oncogenes from microRNA repres-
sion, thus enhancing tumor progression [12, 15]. As expected,
most of the members with shortened 30UTR in the panel were
tumor-associated genes. ADD2 has conserved 30UTR isoforms,
and the DNA methylation status of ADD2 is a screening
marker of colorectal cancer [32, 33]. IL21R is highly expressed

Table 4. Comparisons of lymph node status among
different risk groups

Group Total no.

Lymph node

p value

Negative Positive

n (%) n (%)

Training set <.001

Low-risk, ≤2cm 36 35 (97.2) 1 (2.8)

Low-risk, >2cm 96 78 (81.3) 18 (18.8)

High-risk, ≤2cm 5 4 (80.0) 1 (20.0)

High-risk, >2cm 27 13 (48.1) 14 (51.9)

Validation set <.001

Low-risk, ≤2cm 30 30 (100.0) 0 (0.0)

Low-risk, >2cm 93 75 (80.6) 18 (19.4)

High-risk, ≤2cm 11 9 (81.8) 2 (18.2)

High-risk, >2cm 29 15 (51.7) 14 (48.3)

Testing set <.001

Low-risk, ≤2cm 30 30 (100.0) 0 (0.0)

Low-risk, >2cm 103 80 (77.7) 23 (22.3)

High-risk, ≤2cm 11 9 (81.8) 2 (18.2)

High-risk, >2cm 20 11 (55.0) 9 (45.0)
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in TNBC and enhances the invasion and migration of IL21R+
breast cancer cells in a dose-dependent manner [34]. PKP2
harbors driver mutations that affect transcriptional factors
regulating metastasis gene signatures in metastatic breast
cancer [35]. The remaining two genes (COL1A1 and EIG4G3)
harbored lengthened 30UTRs in nodal-positive cases. COL1A1
was identified as a key gene for noninflammatory breast can-
cer [36]. Our recent work [37] established the competing
endogenous RNA (ceRNA) network of 30UTR dynamics in can-
cer and found the microRNA response elements (MRE) har-
bored in the 30UTR can interact with each other and affect
gene expression via ceRNA mechanisms. We presume the
additional MRE in lengthened 30UTR results in downregulated
gene expression, leading to abnormalities in multiple signaling
pathways and tumor metastasis.

Traditionally, clinical palpability of the mass in axilla,
tumor size, and the tumor grade have been recognized to be
correlated to LNM. Numerous markers, including polysomy of
chromosome 7, nm23, and HRad17, are correlated to the
lymph node status [38]. However, no single marker or combi-
nation of markers is sufficient to obviate surgical axillary stag-
ing. In this study, we found basal-like immunosuppressed and
basal-like immune-activated of Burstein subtype predicted a
lower risk of LNM. Because Burstein subtype information was
only available in the testing cohort, the results need to be fur-
ther validated in other independent cohorts. Recently, acces-
sory examinations have been used to increase the predicted
probability of nodal involvement in clinical practice. For
instance, the ultrasonic features of lymph nodes can help dif-
ferentiate diagnosis of nodal status in breast cancer and sup-
port clinical decision-making [39]. Despite the high positive
predictive value for 18F-fluorodeoxyglucose (FDG)-positron
emission tomography (PET) of nodal involvement in breast
cancer, FDG-PET evaluation is not a sufficient indicator for
nodal involvement; thus, axillary surgery cannot be avoided in
node-PET-negative patients [40]. Models based on microarray
data for prediction of LNM were previously reported in blad-
der cancer [41] and hepatocellular carcinoma [42]. However,
few studies have reported risk prediction tools for LNM using
genomic scale data in breast cancer.

Limitations should be acknowledged for this study. First,
in this retrospective study, we tested the associations
between the integrative 30UTR-based model with the LNM
status rather than true prediction. To evaluate the perfor-
mance of the model, the data from an independent TNBC
cohort, with much higher proportion of nodal involvement
(50.3%) than that in real world (22.8%) [5], was used in this
study. The disparity in baseline LNM rate may introduce het-
erogeneity and lower the performance of the model. In the
GSE76275 cohort, the AUC of the 30UTR panel was 0.643
(95% CI 0.553–0.733) and the NPV was 84.2% (supplemental
online Fig. 4), which was inferior to that in the training and
validation sets. In this study, a matched pairs design was used,
and the subjects from the GSE76275 cohort were randomly
sampled with replacement to construct a new cohort (testing
set), of which the baseline characteristics were comparable to
those of the training set. Thus, a superior NPV of 100%, com-
parable to SLNB, was achieved in the testing set, which merits
a prospective study to validate the model. The preoperative
node status (cN stage) and treatment information (surgery,

chemotherapy, and radiotherapy) of the recruited patients
were not known. Future studies should only include patients
with clinically negative lymph nodes, and the stratification
analysis is suggested to be performed according to the surgi-
cal procedures (breast-conserving surgery or mastectomy).
Second, because the microarrays involved in this study were
profiled through Affymetrix HG-133A or HG-U133 plus 2.0,
which represent 30UTRs from �9.7% of human protein-coding
genes (1,933 genes), the 30UTRs identified here may not rep-
resent the complete 30UTR dynamics of the whole transcrip-
tome. We chose these platforms mainly because of their
wide use in current studies, and the number of accessible chip
data with clinicopathological information was sufficient for
predictive analysis and modeling. Besides, the computational
results of “ERI-expr” algorithms we used in this work were
validated by reverse transcription polymerase chain reaction
in a recent paper [43]. Despite “ERI-expr,” there are several
APA detection algorithms for different platforms, including
APADetect, Dapars, and 30-seq. It remains to validate the
model across platforms in the future. Besides, experimental
studies of the selected 30UTRs are needed to provide the
functional and mechanism insights of 30UTR dynamics in
breast cancer.

CONCLUSION

This study presents a powerful 30UTR-based model by inte-
grating and profiling publicly available microarray data. This
novel model may permit a no axillary surgery option for
selected patients and guide the personalized decision of
axillary surgery in TNBC patients. Once further validated in
a larger independent cohort, the prediction tool could ben-
efit patients with low risk of LNM and facilitate individual-
ized therapy of TNBC.
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