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Summary

Kidney organoids derived from human pluripotent stem cells have great utility for investigating 

organogenesis and disease mechanisms, and potentially as a replacement tissue source, but how 

closely organoids derived from current protocols replicate adult human kidney is undefined. We 

compared two directed differentiation protocols by single-cell transcriptomics of 83,130 cells from 

65 organoids with single cell transcriptomes of fetal and adult kidney cells. Both protocols 

generate a diverse range of kidney cells, with differing ratios, but organoid-derived cell types are 

immature and 10–20% of cells are non-renal. Reconstructing lineage relationships by 

pseudotemporal ordering identified ligands, receptors, and transcription factor networks associated 

with fate decisions. Brain-derived neurotrophic factor (BDNF) and its cognate receptor NTRK2 

was expressed in the neuronal lineage during organoid differentiation. Inhibiting this pathway 

improved organoid formation by reducing neurons by 90% without affecting kidney 

differentiation, highlighting the power of single cell technologies to characterize and improve 

organoid differentiation.
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Introduction

Chronic kidney disease affects 26 – 30 million adults in the United States and 11% of 

individuals with stage 3 CKD will eventually progress to end stage renal disease (ESRD) - 

requiring dialysis or kidney transplantation (Coresh et al., 2007). In 2015, 18,805 kidney 

transplants were performed in the United States, but 83,978 patients were left waiting for a 

transplant due to a shortage of organs (System, 2017). New treatments to slow progression 

of kidney disease are desperately needed but progress has been slow in part because the 

kidney is a complex organ but also because the relevance of rodent kidney models to human 

kidney disease is debated (de Caestecker et al., 2015).

In this context, the emergence of methods to direct the differentiation of pluripotent human 

stem cells (PSC) to kidney organoids has been received with great excitement (Lam et al., 

2013; Morizane and Bonventre, 2017; Taguchi and Nishinakamura, 2017; Takasato et al., 

2015; Xia et al., 2013). Over the last four years several groups have published stepwise 

protocols, all based upon kidney development during embryogenesis, resulting in generation 

of kidney tissue in vitro (Morizane and Bonventre, 2017; Taguchi and Nishinakamura, 2017; 

Takasato et al., 2016; Xia et al., 2014). These protocols modulate activity of several 

signaling pathways, principally Wnt and Fgf, to generate renal progenitor populations that 

ultimately self-organize. Mature organoids contain up to hundreds of nephron structures 

including glomeruli, properly segmented tubules and interstitial cell types.

The ability to grow kidney organoids from patient-derived tissue offers unprecedented 

opportunities for the investigation of human kidney development, homeostasis and disease. 

For example, kidney organoids have been used to successfully model and screen for 

modifiers of autosomal dominant polycystic kidney disease (Czerniecki et al., 2018; 

Freedman et al., 2015), acute kidney injury (Morizane et al., 2015) and vascularization of 

the glomerular tuft (Sharmin et al., 2016). A long-term goal is to generate transplantable 

kidneys grown in the laboratory though many challenges remain. Bulk RNA-sequencing has 
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suggested that kidney organoids are most similar to first trimester kidney (Takasato et al., 

2015) and recent marker analysis indicates that organoid nephrons are in the late capillary 

loop stage (Przepiorski et al., 2018), so improving organoid maturation is one such 

challenge. Yet no comprehensive analysis of exactly which cells kidney are generated by 

these protocols, their degree of maturation with respect to adult and the extent to which off 

target cells contaminate organoids has been undertaken to date. This information is a 

prerequisite for optimizing differentiation protocols in order to ultimately leverage kidney 

organoids for investigation of the most common adult kidney diseases such as CKD, diabetic 

nephropathy and acute kidney injury.

Here we have used scRNA-seq and single nucleus RNA-seq (snRNA-seq) to generate 

comprehensive molecular maps describing kidney organoid cell diversity in two separate, 

commonly employed differentiation protocols and two separate pluripotent cell lines, as well 

as in adult human kidney. Our analysis reveals new insights including: 1, both protocols 

generate at least 12 separate kidney cell types; 2, off-target non-renal cell types are present 

in all kidney organoids at similar ratios in human induced pluripotent stem cells (iPSC) vs. 

human embryonic stem cells (hESC); 3, lineage relationships revealed through 

pseudotemporal ordering during kidney organoid differentiation; 4, kidney organoid cell 

types are immature when benchmarked against fetal and adult human single cell datasets and 

5, brain derived neurotrophic factor (BDNF) inhibition reduces off target neuronal 

populations by 90% without altering kidney differentiation. These datasets provide a 

framework for evaluating and improving organoid differentiation protocols using single cell 

transcriptomics.

Results

Single Cell RNA-seq Defines Cell Diversity in Kidney Organoids

We used the hESC line H9 and the iPSC line BJFF.6, the latter created from newborn male 

foreskin fibroblasts and reprogrammed with Sendai virus. We confirmed that the BJFF.6 line 

could efficiently generate kidney organoids using both the protocol described by Takasato et 

al. (Takasato et al., 2016; Takasato et al., 2015), and the protocol described by Morizane et 

al. (Morizane and Bonventre, 2017; Morizane et al., 2015) (Figures 1A and 1B, hereafter 

referred to as the Takasato or Morizane protocol, respectively). Each protocol generated 

nephron-like structures that closely resembled published reports (Figures 1C–1F).

Using DropSeq, we isolated and sequenced mRNA from a total of 71,390 cells harvested 

from day 26 organoids. Organoids were generated using both hESC and iPSC. The Takasato 

protocol generated larger organoids, so we sequenced one or two each from separate 

batches. For the smaller Morizane protocol organoids, we combined 12 organoids each from 

separate batches. We detected about ~1,930 unique transcripts from ~1,115 genes for each 

cell (Table S1). After correcting for batch effects by matching mutual nearest neighbors 

(Haghverdi et al., 2018), we reduced dimensionality by running principal component (PC) 

analysis on the most highly variable genes, and then performed graph-based clustering on 

the significant PCs and finally visualized distinct cell sub-groups using t-distributed 

stochastic neighbor embedding (tSNE). To examine protocol-dependent effects, as well as 

differences between hESC and iPSC-derived organoids, we projected cells according to 
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protocol and cell source. This revealed co-clustering of cells predominantly based on the 

protocol used, with less difference attributable to hESC or iPSC source (Figure 1G).

Unsupervised clustering of the entire pooled dataset identified 23 transcriptionally distinct 

populations present in organoids generated from either the Morizane or the Takasato 

protocol and derived from either hESC or iPSC (Figure 1H). We annotated broad cluster 

classes by comparing unique transcript expression with existing RNA-seq datasets and the 

literature. In Figure 1I, violin plots show expression of marker genes across these clusters. 

There were four broad classes of cell types in the pooled analysis – podocytes, mesenchyme, 

tubular epithelia and off-target cells (Figure 1J). The fraction of these cell classes differed 

both according to protocol, and according to cell source. For example, podocytes made up 

28.5% of Morizane organoids derived from iPSC, but only 14.3% derived from hESC. Off-

target cell types, by contrast, were similar at about 11% of both iPSC or hESC-derived 

Morizane organoids, whereas they represented about 21% of both iPSC or hESC Takasato 

organoids (Figure 1K).

Variations in cell composition between hESC and iPSC-derived organoids complicated 

efforts to reveal subtle distinctions between cells from the two protocols. We therefore 

analyzed organoids derived from iPSC and hESC separately in order to evaluate differences 

between the two protocols. In the iPSC-derived organoids, we analyzed 29,922 single cell 

transcriptomes from two batches of the Morizane (15,951 cells) or Takasato (14,731 cells) 

organoids. To examine potential batch effects and to quantify variability among organoids, 

we projected cells from different batches of iPSC-derived organoids onto the same tSNE 

diagram, which showed that cells were intermixed regardless of batch (Figures S1A and 

S1B). Furthermore, cluster-based correlation analysis on both protocols revealed that the 

correlation for the cells in the same cell cluster from different batches was always greater 

than the correlation for cells in the same batch from different cell clusters (Figures S1C and 

S1D). Proportions of cell clusters from different batches was also similar (Figures S1E and 

S1F). An alternative clustering approach, iterative hierarchical clustering (Baron et al., 

2016), identified the same major organoid cell populations (Figures 2A and 2B).

Clustering on iPSC-derived organoids alone revealed a similar variability in cell frequency 

between Morizane and Takasato protocols as observed in the global clustering analysis 

(Figures 2A and 2B). For example, Morizane organoids contained more podocytes, which 

were marked by the expression of PODXL and NPHS2 (Schwarz et al., 2001), whereas the 

Takasato protocol produced more tubular epithelial cells based on the expression of 

EPCAM, SLC3A1 and WFDC2 (Figures 2A–2D) (Litvinov et al., 1994). Despite this 

variability, both protocols generated very similar cell types since each pair of cell types were 

highly correlated (Figure 2E). Additionally, dendrograms of analogous cell types from both 

cell types revealed very similar cell relationships (Figure 2F). We observed substantial 

numbers of non-renal cell types in both protocols. Morizane organoids contained three 

neuronal clusters and one muscle cluster. Organoids generated using the Takasato protocol 

contained four neuronal clusters and one cluster that we could not annotate but that 

expressed some melanocyte markers such as MLANA and PMEL (Kawakami et al., 1994). 

Similar findings were observed from separate clustering analysis on the hESC-derived 

Wu et al. Page 4

Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organoids, except that muscle cells were common off-target cells present in both protocols 

(Figures S1G-S1M).

We confirmed differences in relative abundance of both renal and non-renal cell types by 

comparing marker gene expression for podocytes (NPHS1) and loop of henle (SLC12A1) as 

well as muscle (MYLPF, MYOG) and neuronal (CRABP1, MAP2) by qPCR (Figures 2G–

2M). To localize neuronal cells, we performed immunostaining for CRABP1, a gene 

expressed in neuronal clusters from both protocols. CRABP1 protein expression localized to 

spindly cells present in the interstitium (Figures 2N and 2O). We could identify co-

expression of MAP2, a microtubule-associated protein expressed exclusively in neurons 

(Dehmelt and Halpain, 2005), in many CRABP1+ interstitial cells (Figure S2A), further 

supporting a neuronal lineage. However, we could also detect coexpression of MEIS1 – a 

marker of kidney stroma (Chang-Panesso et al., 2018) – in some CRABP1+ cells as well 

(Figure S2B). Gene imputation analysis showed CRABP1 expression to be present in a 

small subset of mesenchymal cells from both protocols (Figures S2C and S2D). Expression 

of CRABP1 and MAP2 was low at earlier timepoints but rose substantially by day 26 

(Figures S2F-S2I). Re-analysis of the bulk RNA-seq data in Takasato et al. (Takasato et al., 

2015) ￼￼￼ and very few of the top 50 stromal progenitor genes were coexpressed in the 

CRABP1 cluster (Figures S2K and S2L). These analyses confirm the predominant neural 

identity of CRABP1 expressing cells in the kidney organoid. ). These analyses confirm the 

predominant neural identity of CRABP1 expressing cells in the kidney organoid. ). These 

analyses confirm the predominant neural identity of CRABP1 expressing cells in the kidney 

organoid.

Cell Cycle Analysis

During kidney development, progenitor cell populations are characterized by rapid cell cycle 

progression that slows progressively with differentiation (Short et al., 2014). We analyzed 

cell cycle status as a proxy for degree of differentiation (Kowalczyk et al., 2015). We scored 

all cells from both protocols based on cell cycle gene expression and assigned a cell cycle 

phase (G2M, S or G1). The total fraction of cells in G2M, S or G1 was similar between the 

protocols and cell source at 39.1% and 43.9% in the Morizane and Takasato organoids 

derived from iPSC (Figures S3A and S3B), and 37.7% and 45.1% in hESC-derived 

organoids, respectively (Figures S3C and S3D). However, in the Morizane organoids, cells 

in G2M were limited to two cell clusters – a mesenchymal and neuronal cluster. By contrast, 

in Takasato organoids, G2M phase cells were present as a subset of 6 separate clusters (two 

mesenchymal, two neuron-like, one unidentified and an epithelial cluster). Cell cycle gene 

expression was not driving cluster identity. Both the Morizane M1 cluster and the Takasato 

Lp cluster expressed high levels of the cell cycle gene MKI67, but showed divergent 

expression of COL3A1 (M1) and POU3F3 (Lp) (Figure S3F).

We interpreted the broader proliferative distribution of the Takasato organoid to potentially 

reflect that the organoid had been harvested before it was fully differentiated. Indeed, cell 

cycle analysis on the cells collected from different time points using Takasato protocol 

revealed that the proportion of cycling cells decreased along the kidney organoid 
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differentiation process (Figure S3E), suggesting that the degree of cell differentiation or cell 

type maturity might be negatively correlated with the proliferative capacity.

Kidney Organoid Cell Subsets

Re-clustering of tubular cells identified additional cell clusters in both protocols. We 

detected 8 and 5 tubular subtypes in Morizane and Takasato organoids, respectively (Figures 

3A-3D). This includes a subpopulation that expressed the ureteric bud marker GATA3 

(Labastie et al., 1995) in both protocols. Prior reports have suggested that kidney organoids 

contain derivatives of both major progenitor populations, the metanephric mesenchyme and 

the ureteric bud (Takasato et al., 2015). However, several lines of evidence suggest that the 

GATA3 cluster is actually metanephric mesenchyme-derived distal tubule. First, the GATA3 

cell cluster did not express mature collecting duct markers (e.g. AQP2, AQP4), though this 

could also be explained by immaturity. Second, in addition to principal cells, GATA3 is also 

expressed in distal convoluted tubule and connecting segment in both human and mouse 

kidney (Figures S4A and S4B). Third, the Morizane organoid GATA3 cluster also expressed 

calbindin, a marker of distal tubule (Bindels et al., 1991). We verified that in P1 mouse 

kidney scRNA-seq, calbindin mRNA is expressed in distal tubule and the ureteric bud tip 

whereas in our adult kidney snRNA-seq data, calbindin mRNA was exclusively expressed in 

the distal convoluted tubule and the connecting segment, and not in principal cells (Figures 

S4A and S4B). Finally, comparison of the GATA3 cluster to adult kidney cell types shows 

that it is equally or more similar to distal tubule and connecting segment as to principal cells 

by Pearson’s correlation (Figure 4C). These findings raise significant doubts that ureteric-

bud and its derivatives are generated at all using either the Morizane or the Takasato 

protocol.

We next compared a panel of developmental and differentiation genes in podocyte, proximal 

tubule and loop of henle cell clusters across protocols. This revealed higher expression of 

kidney developmental markers CDH6, EMX2 and SOX4 in the Takasato podocytes 

(Brunskill et al., 2008). Morizane podocytes had somewhat higher expression of podocyte 

differentiation markers and lower expression of proliferation markers (Figure 3E). For 

proximal tubule, both Morizane and Takasato organoids had similar expression of 

differentiation markers and but Takasato proximal tubule had higher expression of 

developmental markers. Morizane proximal tubule had higher expression of genes that were 

difficult to interpret, including metal binding genes MT1M and MT1H (Figure 3F). Loop of 

henle was more differentiated in the Morizane organoids (Figure 3G).

Quantifying Organoid Kidney Cell Maturity

A critical question is the degree to which kidney organoid cell types resemble their native 

counterparts in molecular terms. We addressed this question in three ways. First, we 

compared organoid cell type gene signatures with a recent mouse P1 single-cell RNA-seq 

dataset (Adam et al., 2017). organoid datasets (Figures S4C and S4D). For both organoid 

protocols, the M1 mesenchymal clusters showed medium correlation to cap mesenchyme in 

addition to stroma. Notably, none of the off target clusters (neural, muscle, melanocyte-like) 

correlated to cell types found in P1 kidney.

Wu et al. Page 6

Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also compared organoid cell clusters to a recently generated single cell dataset generated 

from human week 16 kidney (Lindstrom et al., 2018b). This analysis revealed excellent 

correlation of organoid kidney cell types to fetal kidney cell types either by Pearson’s 

correlation or using a multiclass random forest classifier (Habib et al., 2017) (Figures S4E-

S4I). Notably, the off target cell clusters did not map to any human fetal kidney cell types 

with the sole exception of the Takasato N1 cluster, which showed some correlation to a fetal 

kidney cluster annotated as cycling. N1 also expresses a strong cell cycle gene signature, 

likely explaining the correlation (Figure S4H).

Finally, we compared kidney organoid cell types with their adult human counterparts. 

Attempts at single cell RNA-seq failed, however we were successful in generating adult 

human kidney single nucleus RNA-seq data from a 62-year-old white male with a serum 

creatinine of 1.03 mg/dL using the 10X Chromium platform. We sequenced 4,524 nuclei to 

a similar depth (Table S1) as the organoid datasets, and identified 12 distinct epithelial cell 

clusters, including podocytes, proximal tubule (S1–3), loop of henle (descending and 

ascending), distal tubule, connecting segment, principal cells and intercalated cells (type A 

and type B) (Figures 4A and 4B). The absence of stromal or leukocyte populations most 

likely reflects either dissociation bias and/or a cell frequency below our limit of detection 

(Wu et al., 2018).

Single cell RNA-seq measures transcripts from both cytoplasm and nucleus whereas single 

nucleus RNA-seq measures only nuclear transcripts. Nuclei contain only a fraction of total 

cell RNA and while nuclear and cytoplasmic mRNAs correlate highly (Barthelson et al., 

2007), some protein-coding mRNAs are retained in the nucleus (Bahar Halpern et al., 2015). 

Despite these differences, single cell and single nucleus RNA-seq datasets predict cell types 

comparably and with high concordance (Habib et al., 2017; Lake et al., 2017). Therefore, we 

next correlated all kidney organoid epithelial cell types with their corresponding endogenous 

counterpart from human adult kidney. We observed an expected correlation between 

corresponding cell types of organoid and human kidney (Figure 4C). Organoid loop of henle 

correlated with adult loop of henle, but also distal tubule and collecting duct – likely 

reflecting their developmental immaturity.

Although organoid and adult kidney epithelial cell types correlated well, our prior analysis 

suggested that organoid derived cells expressed developmental markers. To visualize overall 

similarities and differences in cellular transcriptomes from specific organoid and adult cell 

types, we performed unsupervised clustering of podocytes, proximal tubule and loop of 

henle clusters from both organoids and adult after batch effects corrected by canonical 

correlation analysis (Butler et al., 2018), and projected the data by tSNE (Figure 4D). As 

expected, the analysis revealed three separate clusters. When we then projected cellular 

origin onto the tSNE, however, there was relatively poor overlap between the organoid-

derived vs adult kidney cells within each cluster (Figure 4E). Further emphasizing the 

transcriptional differences between organoid-derived cells and adult kidney, expression of 

differentiation markers was much higher in adult cell types, whereas developmental marker 

expression was much higher in organoid cell types (Figure 4F). For some of these 

developmental markers (OSR1, POU3F3), expression was high in many organoid cell types 

in the pooled dataset but undetectable in adult kidney. In the same way, some differentiation 
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markers (SLC5A12, UMOD) were strongly expressed in adult clusters, but undetectable in 

organoids (Figure 4G). These results indicate that organoid cell types are substantially 

immature compared to their adult counterparts.

We identified 123 receptors and 97 cognate ligands and mapped their expression to specific 

adult human kidney cells. Most of these mapped to a single predominant cell type (Figures 

S5A and S5B). This allowed for development of a simple connectome model for how mature 

kidney cells might intercommunicate during homeostasis (Figure S5C). Current protocols 

incubate organoids without any growth factors after 12–14 days, but the expression of so 

many ligands in mature kidney suggests a possible need to include soluble factors during the 

maintenance phase of organoid maturation.

Because transcription factors regulate cell state, we next tested the hypothesis that organoid 

cell immaturity might reflect partial expression of the gene regulatory network present in 

mature kidney cells. We identified 54 transcription factors present in adult human proximal 

tubule, over half of which have not been reported previously (Table S2). For example, High 

mobility group nucleosome-binding domain-containing protein 3 (HMGN3) is a thyroid 

hormone binding receptor that regulates gene expression, is strongly expressed in proximal 

tubule, and thyroid hormone is known to regulate renal fluid and electrolyte handling, 

suggesting HMGN3 may mediate thyroid hormone actions in the proximal tubule (Michael 

et al., 1972). In human adult podocytes, we identified 38 transcription factors, 25 of which 

we believe have not been reported previously. We validated expression of six of these 

transcription factors at the protein level (Figures S5D-S5I). Many of the proximal tubule 

transcription factors are expressed solely in proximal tubule, whereas podocyte transcription 

factors are more widely expressed across kidney cell types (Mendeley http://dx.doi.org/

10.17632/m4rfg9wb29.1).

Both proximal tubule cells and podocytes derived from organoids expressed only a fraction 

of the transcription factors we identified in the adult cell types. For example, Takasato 

protocol proximal tubule expressed 11/54 adult proximal tubule transcription factors, and 

Morizane proximal tubule only 9/54 (Table S2). Similarly, both Takasato and Morizane 

protocol podocytes expressed 7/38 adult podocyte transcription factors (Table S3). This 

result suggests that organoid cells, despite expressing some markers of differentiated cells, 

are fundamentally different from their terminally differentiated adult counterparts. 

Collectively, these results identify lineage specific expression of genes that likely regulate 

cell specification, differentiation and proliferation during kidney organoid maturation.

Disease-related Genes Predicted by GWAS are Expressed in Single Cell Types in Adult and 
Organoid Kidney

Human kidney organoids are already being used to model monogenic human kidney 

diseases. However there are many more complex trait disease genes that have been identified 

by Genome-Wide Association Studies (GWAS). Recently Park et al. reported that many 

human monogenic and complex trait genes are expressed predominantly in a single mouse 

kidney cell type (Park et al., 2018). In order to gauge how useful kidney organoids might be 

for modeling disease-relevant genes, we next compared our ability to detect gene expression 

of GWAS hits in adult kidney vs. organoids. We used established GWAS gene lists including 
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117 genes for chronic kidney diseases, 275 genes for hypertension and 777 genes for plasma 

metabolite levels.

We could map expression of 207 of these genes to cell types in our adult kidney single 

snRNA-seq dataset (Figures 5A–5C). Of these 207 mapped genes, we could only detect 

expression of 40 of them (19%) in the correct corresponding organoid cell types (Figures 

5D–5F). In most cases, we confirmed that these GWAS genes are expressed in only a single 

kidney cell type (Figure 5). Unexpectedly, podocytes and mesangial cells expressed a 

substantial number of hypertension genes. These glomerular cell types are not widely 

believed to play important roles in regulating blood pressure. Consistent with their central 

role in secretion and reabsorption, proximal tubule had the highest number of genes 

associated with plasma metabolite levels.

As a complementary approach, we used RolyPoly, a regression-based polygenic model that 

allows prioritization of trait-relevant cell types by combining GWAS and single cell 

expression datasets (Calderon et al., 2017). We focused on CKD and eGFR GWAS hits, and 

asked whether trait-relevant cell types identified using the adult kidney dataset were similar 

to those identified using the organoid datasets. For CKD, RolyPoly identified principal cells, 

type A intercalated cells, podocytes and proximal tubule as trait-relevant cell types. By 

contrast, only distal tubule (which might also represent principal cells) was identified using 

Morizane data and only podocytes using Takasato organoids. Similarly, for eGFR, trait-

relevant cell types using adult kidney data included proximal tubule, podocytes, ascending 

loop of henle and principal cells. The Morizane dataset identified proximal tubule and the 

Takasato dataset failed to identify any trait-relevant cell types (Figures S5J-S5O).

These results confirm and extend those of Park et al., which was performed in mouse and 

not human (Park et al., 2018), but also suggest that kidney organoids are limited in their 

ability to predict trait-relevant cell types in comparison with adult kidney, because many 

GWAS hits are not expressed in organoid cell types.

Lineage Reconstruction during Kidney Differentiation

To explore lineage relationships and the mechanisms of cell fate decisions during kidney 

organoid differentiation, we performed scRNA-seq at separate timepoints during 

differentiation using the Takasato protocol (days 0, 7, 12, 19 and 26). A total of 9,190 cells 

from all five timepoints were projected by tSNE, and days 0, 7 and 12 each formed single 

distinct clusters (Figure 6). Pluripotency gene expression (e.g., POU5F1/Oct4) was 

completely downregulated by day 7 with upregulation of metanephric mesenchyme markers 

(SALL1, FGF18 and HOXB9, Figure 6B) (Brunskill et al., 2008). The day 12 cluster most 

closely resembled the pretubular aggregate, with genes such as JAG1 and LHX1 strongly 

enriched at this timepoint. Multiple clusters corresponding to differentiating cell types were 

present at days 19 and 26, and most later clusters contained cells from both time points, 

reflecting asynchronous differentiation.

We compared our results with the bulk RNA-seq data from (Takasato et al., 2015) by 

deconvolving cell frequency across time using a bulk sequence single-cell deconvolution 

analysis pipeline (Baron et al., 2016). This confirmed downregulation of the pretubular 
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aggregate and posterior intermediate mesoderm and increasing fractions of differentiated 

cell populations with time (Figures S6A-S6H). While differentiation marker expression 

generally increased with time in our dataset, and certain progenitor markers such as CITED1 

decreased over time (Figure 6C), many genes marking developmental cell types persisted at 

day 26. Genes reflecting renal vesicle (DKK1) and S-shaped body (JAG1, CCND1, CDH6 

and LHX1) continued to be expressed, for example, suggesting an ongoing nephrogenic 

program (Figures 3E–3G) (Brunskill et al., 2008). Future enhancements to kidney organoid 

differentiation protocols will need to push maturation of these developmental states towards 

fully mature kidney cell types.

To detect gene expression changes during organoid differentiation, we reconstructed kidney 

lineage relationships by performing pseudotemporal ordering using Monocle2 (Qiu et al., 

2017). The resulting cell trajectories revealed one major branch point, separating loop of 

henle and proximal tubule cell fates from podocyte, stromal and neural cell fates (Figure 

6E). A second branch point distinguished podocyte from stromal and neural fates. Cell fates 

were defined by projecting marker gene expression onto the pseudotime trajectories (Figure 

6F).

Lineage-Specific Expression of Transcription Factors, Receptors and Ligands During 
Organoid Differentiation

Although many steps in murine nephrogenesis are well characterized, the transcriptional 

pathways underlying human kidney development are less well characterized. To identify 

candidate transcription factors and signaling pathways whose modulation might improve 

kidney cell maturation and eliminate off-target cell types we performed branched expression 

analysis modeling (BEAM). We identified a large number (56) of dynamically expressed 

transcription factors over the course of differentiation (Figure S6I). The analysis assigned 

expression of these genes to either of the main branches, but it could not resolve single cell 

cluster expression. We therefore mapped expression of these transcription factors to all 12 

major clusters (Figure S6J). Most genes were expressed in only one or a few cell types. We 

identified five genes (POU2F2, POU3F2, NHLH2, HES6, LHX9) whose expression was 

limited to a neuronal cluster, and confirmed that their expression corresponded to the 

neuronal branch by psedotemporal ordering (Figure S6K). A subset of these TFs have 

previously been implicated in neuronal development. For example, loss of LHX1 prevents 

formation of the neocortex (Bulchand et al., 2001). Similarly, POU3F2 is required for 

survival of hypothalamic neural progenitors (Nakai et al., 1995). Thus, the induction of these 

TFs may be critical for one or more of the neuronal lineages present in kidney organoids. 

For finer mapping of gene expression changes during fate decisions, we performed BEAM 

on the podocyte and mesenchyme/neuron and on themesenchyme and neuron branch 

(Mendeley http://dx.doi.org/10.17632/m4rfg9wb29.1). This analysis included all 

differentially expressed genes as well as transcription factors alone.

To test whether longer organoid incubation times might improve cell differentiation status, 

we grew organoids from Takasato protocol out to 34 days and performed scRNA-seq on a 

total of 6,115 cells (Table S1). We compared expression of differentiation markers across 

clusters, and discovered that differentiation was generally worse not better at this later 
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timepoint, with loss of endothelial cells, reduced expression of differentiation markers across 

most clusters, and the emergence of an off-target muscle cell cluster (Figure S7A). We next 

pooled the day 34 scRNA-seq results with our day 26 results, removed batch effects by 

matching nearest neighbors (Haghverdi et al., 2018) and reclustered. While there was 

overlap with kidney cell clusters, the muscle cluster was unrelated to any day 26 cluster 

(Figures S7B and S7C). Furthermore, we could detect a separate new cluster, also specific 

only to day 34, that expressed a high percentage of mitochondrial genes indicating that these 

are unhealthy cells (Figure S7D). Overall, there was a reduction in the fraction of mature 

kidney cell types, for example mature stroma and proximal tubule, and a substantial increase 

in off-target cell types at day 34 compared to day 26 (Figure S7E).

Since organoid differentiation is accomplished by exposure of iPSC to sequential 

combinations of extrinsic factors, we also searched for ligand and receptor pairs whose 

expression changed in a lineage specific fashion during organoid differentiation. We 

identified 19 receptors with 24 cognate ligands in this way and mapped their expression to 

the major organoid cell types (Figure 7A). NTRK2, which encodes Neurotrophic Tyrosine 

Kinase Receptor, type 2, was expressed exclusively in neural clusters N1 and N3. Its ligand, 

brain-derived neurotrophic factor (BDNF) was also strongly induced in the podocyte/neuron/

stroma branch.

Inhibition of BDNF-NTRK2 Signaling Reduces Off-Target Cells

Since BDNF promotes neuron survival, growth and differentiation (Huang and Reichardt, 

2001), we reasoned that inhibition of signaling by its receptor might reduce off target neuron 

populations in kidney organoids. To test this hypothesis, we first selected a dose of the 

NTRK2 inhibitor K252a (Tapley et al., 1992) that did not alter gross tubular morphology 

(Figure S7F). We administered 250nM K252a beginning at day 12 of the Takasato protocol 

(Figure 7B). Preliminary qPCR data suggested a reduction in off target marker expression 

(Figures S7G and S7H). We therefore performed single cell RNA-seq on K252a-treated 

organoids which revealed a 90% reduction in neuronal cells, from 20 – 22% to 2.1%. There 

was also a decrease in mesenchymal cells from 39.8% to 15.9%, consistent with 

pseudotemporal ordering that placed neurons and kidney mesenchyme in the same branch. 

We observed an increase in tubular cells from 35.2% to 70.4% accompanied by an increase 

in podocytes from 4.2% to 11.5% (Figures 7C–7D). All kidney lineages expressed expected 

marker genes (Figure 7E). The reduction in neuronal cells was confirmed by 

immunofluorescence analysis of an independent batch (Figure 7F).

Discussion

Human kidney and kidney organoids are composed of a wide array of cell types, all required 

for proper development and organ function. Recent studies have begun to characterize these 

cell types using scRNA-seq revealing important new insights (Adam et al., 2017; Chen et al., 

2017; Czerniecki et al., 2018; Der et al., 2017; Lindstrom et al., 2018a; Magella et al., 2018; 

Park et al., 2018). Fulfillment of the promise of human kidney organoids requires 

comprehensive characterization of their cell composition, comparison of differing protocols 

and a better understanding of the degree to which they produce mature, differentiated kidney 
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cell types. Using scRNA-seq, we have established that current protocols generate a 

remarkable diversity of kidney cell types. We also provide the first direct comparison of 

separate differentiation protocols, revealing broadly similar outcomes, but important 

differences in cell ratio and differentiation state. The information provided in this 

comprehensive dataset will guide future attempts to improve differentiation protocols.

These results will help guide protocol choice for investigators interested in modeling kidney 

function or disease. Based on increased expression of podocytes with the Morizane protocol, 

it is better suited for analysis of glomerular biology. Similarly, the Takasato protocol 

generated more tubular epithelium and is better suited for studying the tubulointerstitium. 

Unexpectedly, our analysis suggests the apparent absence of ureteric bud-derived cell types. 

The ureteric bud undergoes branching morphogenesis to form the collecting system, and is 

required for the formation of an interconnected collecting duct (Costantini and Kopan, 

2010). In a recent study, Taguchi and Nishinakamura induced mouse metanephric 

mesenchyme and ureteric bud progenitors separately, and their recombination led to 

organoids with much more complex and interconnected collecting duct architecture than 

previously reported (Taguchi and Nishinakamura, 2017). Similar protocols for human 

pluripotent stem cell-derived kidney organoids have not yet been established. Our results 

suggest that establishing conditions that will support growth of the ureteric bud lineage in 

human kidney organoids is an immediate priority.

One measure of the usefulness of kidney organoids for modeling disease is the degree to 

which organoid cells express disease-relevant genes. We found that organoid cells expressed 

about 20% of trait-relevant genes defined by GWAS, when compared with their adult 

counterparts. Similarly, we could only detect about 20% of the transcription factors present 

in adult proximal tubule and podocytes, when compared with organoid equivalents. 

Consistent with these observations, a global comparison of organoid derived cell types with 

human fetal and adult counterparts revealed that although organoid-derived cells express 

some markers of terminal differentiation, they are all immature. Unexpectedly, longer 

organoid incubation did not improve differentiation, but rather caused reduced expression of 

terminal markers and generated new off-target cells, suggesting kidney cell type 

dedifferentiation with time, consistent with a recent report (Przepiorski et al., 2018). These 

results indicate a need to identify conditions that will better support continued organoid 

maturation.

Off-target cell populations, primarily neural, were present in kidney organoids generated 

from both protocols. By combining pseudotemporal ordering with lineage-specific 

expression of transcription factors, ligands and receptors, our analysis provides a roadmap to 

understand lineage relationships and signaling during differentiation as well as a framework 

around which to test improvements to the differentiation protocol. The expression of BDNF 

and its receptor NTRK2 in neural clusters suggested a strategy to reduce these cell types by 

inhibiting BDNF-NTRK2 signaling. That this strategy reduced off-target cell types by 90% 

suggests that similar analyses could be applied broadly in the organoid field to reduce 

unwanted cell types.
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We envision that analysis of signaling pathways and transcription factors expressed before 

and after branch points will suggest other potential strategies to regulate organoid cell fates. 

Future studies are necessary to determine how modulation of the gene expression patterns 

revealed here can be used to improve organoid maturation and ultimately better model 

physiological function.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Benjamin D. Humphreys (humphreysbd@wustl.edu).

Experimental Model and Subject Details

iPSC Culture—All experiments utilized the BJFF6 human iPSC line reprogrammed by 

Sendai virus from human foreskin fibroblasts (Washington University Genome Engineering 

and iPSC Core). This line is confirmed to be karyotypically normal. BJFF6 cells were 

maintained in 6-well plates coated with matrigel (Corning) in Essential 8 medium (Thermo 

Fisher Scientific). iPSC cells were dissociated using ReLeSR (STEMCELL Technologies), 

confirmed to be mycoplasma free and maintained below passage 50.

Kidney donor—Institutional review board approval for research use of human tissue was 

obtained from Washington University. Renal cortex from a nephrectomy kidney was 

obtained and donor anonymity preserved. The donor was a 62 year-old white male with a 

serum creatinine of 1.03 mg/dL and BUN of 12 mg/dL.

Method Details

Kidney Organoid Differentiation—Kidney organoids were generated following either 

the protocol described by Takasato et al.(Takasato et al., 2016) or that of Morizane et al.,

(Morizane and Bonventre, 2017) with minimal modifications. Briefly, for the Takasato 

approach, BJFF cells were treated with CHIR (8 uM, Tocris Bioscience) in basal medium - 

APEL 2 (STEMCELL Technologies) supplemented with 5% Protein Free Hybridoma 

Medium II (PFHMII, Gibco) - for 4 days, followed by FGF9 (200 ng/mL, R&D Systems) 

and heparin (1 ug/mL, Sigma-Aldrich) for another 3 days. At day 7, cells were collected and 

dissociated into single cells using 0.25 % Trypsin-EDTA (Thermo Fisher Scientific). Cells 

were spun down at 400 g for 3 min to form a pellet and transferred onto a trans-well 

membrane. Pellets were incubated with CHIR (5 uM) for 1 hour and then cultured with 

FGF9 (200 ng/mL) and heparin (1 ug/mL) for 5 days. For the next 13 days organoids were 

cultured basal medium changed every other day. For the Morizane approach, BJFF cells 

were treated with CHIR (10 uM) and Noggin (5 ng/mL, PeproTech) in basal medium - 

Advanced RPMI 1640 medium (Gibco) supplemented with 1X L-GlutaMAX (Thermo 

Fisher Scientific) - for 4 days, followed by 3 days Activin (10 ng/mL, R&D Systems) and 2 

days FGF9 (10 ng/mL) treatment. At day 9, the cells were dissociated with Accutase 

(StemCell technologies) and resuspended in the basic differentiation medium with CHIR (3 

µM) and FGF9 (10 ng/mL), and placed in ultra-low attachment 96-well plates. Two days 

later the medium was changed to basal medium containing FGF9 (10 ng/mL) and cultured 

Wu et al. Page 13

Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for 3 more days. After that, the organoids were cultured in basal medium with no additional 

factors until harvest at day 26. For ES (H9) cell line, we adjusted the concentration of CHIR 

to 5uM in Takasato protocol and to 8uM in Morizane protocol at the initial step.

DropSeq single-cell RNA sequencing—Organoids were dissociated using TrypLE 

Select (Thermo Fisher Scientific) at 37°C with shaking. After 5 min, cells were further 

dispersed by gentle pipetting and filtered through a 40μm cell strainer (pluriSelect). Single 

cell suspension was visually inspected under a microscope, counted by hemocytometer 

(INCYTO C-chip) and resuspended in PBS + 0.01% BSA. Single cells were coencapsulated 

in droplets with barcoded beads exactly as described (Macosko et al., 2015). In brief, cells 

were diluted to a concentration of 100 cells/μL, and co-encapsulated with barcoded beads 

(ChemGenes #Macosko201110), which were diluted to a concentration of 120 beads/µL. 

Droplets of about 1 nl in size were generated using microfluidic polydimethylsiloxane 

(PDMS) co-flow devices (FlowJEM Drop-seq chips). Droplets were collected in a 50-mL 

RNase-free Falcon tube for a total run time of about 15 min. Droplet emulsion was aliquoted 

into 1 mL each of cells and beads and were broken promptly by perfluorooctanol, following 

which barcoded beads with captured transcriptomes were washed and spun down at 4 °C. 

Hybridized RNA was reverse transcribed and ex onuclease-treated using commercial kits 

(See Key Resources Table). The beads from one run were then equally distributed into 

individual PCR tubes with populations of 8,000 beads/tube (~400 cells). PCR tubes were 

separately amplified for 4+9 PCR cycles, and the PCR products were purified by the 

addition of 0.6× Agencourt AMPure XP beads (Beckman Coulter #A63881). The quality of 

the amplified cDNA was evaluated by Bioanalyzer (Agilent 2100) on a High Sensitivity 

DNA chip. Only cDNA with average insertion size >1200 bp were used for downstream 

library preparation and sequencing. cDNA from an estimated 5,000 cells were prepared and 

tagmented by Nextera XT (Illumina) using 600 pg of cDNA input. cDNA library was 

amplified (12 cycles) using custom primers as described (Macosko et al., 2015). Amplified 

libraries were purified with a 0.6× volume of AMPure XP beads and quality was measured 

by Bioanalyzer. Libraries with average length of ~500–700 bp were submitted to Genome 

Technology Access Center (GTAC) of Washington University in St. Louis and sequenced on 

HiSeq 2500 and NovaSeq 6000 (Illumina). We routinely tested our DropSeq setup by 

running species mixing experiments prior to running on actual sample to assure that the cell 

doublet rate was below 5%. Information about experimental replicates and count statistics is 

specified in Supplementary Table S1.

Nuclei isolation and single-nucleus RNA-seq of human kidney—Nuclei were 

isolated with Nuclei EZ Lysis buffer (Sigma #NUC-101) supplemented with protease 

inhibitor (Roche #5892791001) and RNase inhibitor (Promega #N2615, Life Technologies 

#AM2696). Samples were cut into <2 mm pieces and homogenized using a Dounce 

homogenizer (Kimble Chase #885302-0002) in 2ml of ice-cold Nuclei EZ Lysis buffer and 

incubated on ice for 5 min with an additional 2ml of lysis buffer. The homogenate was 

filtered through a 40-μm cell strainer (pluriSelect #43-50040-51) and then centrifuged at 500 

× for 5 min at 4 °C. The pellet was resuspended and washed with 4 ml of the buffer and 

incubated on ice for 5 min. After another centrifugation, the pellet was resuspended with 

Nuclei Suspension Buffer (1× PBS, 0.07% BSA, 0.1% RNase inhibitor), filtered through a 
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20-µm cell strainer (pluriSelect 43-50020-50) and counted. RNA from single nucleus was 

encapsulated, barcoded and reversed transcribed on a 10× Chromium Single Cell Platform 

(10× Genomics). The library was sequenced in HiSeq2500.

Immunofluorescence—Organoids were fixed in 4% paraformaldehyde (Electron 

Microscopy Services), cryoprotected in 30% sucrose solution overnight and embedded in 

optimum cutting temperature (OCT) compound (Tissue Tek). Organoids were cryosectioned 

at 7µm thickness and mounted on Superfrost slides (Thermo Fisher Scientific). Sections 

were washed with PBS (3 times, 5 minutes each), then blocked with 10% normal goat serum 

(Vector Labs), permeabilized with 0.2% Triton-X100 in PBS and then stained with primary 

antibody specific for mouse anti-WT1 (1:200, Santa Cruz Biothechnology, #SC-7385), rat 

anti-ECAD (1:200, Abcam, #ab11512), biotinylated LTL (1:200, Vector Labs, #B-1325), 

sheep anti-NPHS1 (1:200, R&D Systems, #AF4269) and rabbit anti-CRABP1 (1:200, Cell 

Signaling, #13163), chicken anti-MAP2 (1:200, Abcam, #ab5392) and mouse anti MEIS1 

(1:200, Active Motif, #39795). Secondary antibodies included FITC-, Cy3, or Cy5-

conjugated (Jackson ImmunoResearch). Then, sections were stained with DAPI (4′,6′- 

diamidino-2-phenylindole) and mounted in Prolong Gold (Life Technologies). Images were 

obtained by confocal microscopy (Nikon C2+ Eclipse; Nikon, Melville, NY).

BDNF inhibitor (K252a) treatment—We treated the iPSC derived kidney organoids 

differentiated from Takasato protocol with different doses of a BDNF inhibitor, K252a 

(Sigma-Aldrich #K1639). A dose of 250 nM was selected because the organoid size and 

tubular morphology were not altered at this concentration. Starting from day 12, we 

supplemented K252a to the basal medium, and differentiated the organoid to day 26 in the 

presence of K252a. The medium containing K252a was replaced every 2 days. At day 26, 

two different batches of organoids were harvested for DropSeq, immunofluorescence and 

qPCR.

Real Time PCR Experiments—RNA from whole organoids was extracted using the 

RNeasy Mini Kit (Qiagen) and 600 ng of total RNA was reverse transcribed with iScript 

(BioRad). Quantitative polymerase chain reactions were carried out with iQ-SYBR Green 

supermix (BioRad) and the BioRad CFX96 Real Time System with the C1000 Touch 

Thermal Cycler. Cycling conditions were 95°C for 3 minutes then 40 cycles of 95°C for 15 

seconds and 60°C for 1 minute, followed by one cycle of 95°C for 10 seconds. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene. 

Data was analyzed using the 2−∆∆ct method. The following primers were used: GAPDH: Fw 

5‘-GACAGTCAGCCGCATCTTCT −3′; Rv 5‘-GCGCCCAATACGACCAAATC −3´; 

Cited1: Fw 5´-CCTCACCTGCGAAGGAGGA-3´;Rv 5‘-GGAGAGCCTATTGGAGATCCC 

−3´; NPHS1: Fw 5´-CTGCCTGAAAACCTGACGGT −3´; Rv 5‘-

GACCTGGCACTCATACTCCG −3´; SLC3A1: Fw 5´-CAGGAGCCCGACTTCAAGG −3´; 

Rv 5‘-GAGGGCAATGATGGCTATGGT −3´ SLC12A1: Fw 5´-

AGTGCCCAGTAATACCAATCGC −3´; Rv 5‘-GCCTAAAGCTGATTCTGAGTCTT −3´; 

CRABP1: Fw 5´-GCAGCAGCGAGAATTTCGAC −3´; Rv 5‘-

CGTGGTGGATGTCTTGATGTAGA - 3´; MAP2: Fw 5´-CTCAGCACCGCTAACAGAGG 

−3´; Rv 5‘-CATTGGCGCTTCGGACAAG −3´; MYLPF: Fw 5´-
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GAAGGACAGTAGAGGGCGGAA −3´; Rv 5‘-TCTGGTCGATCACAGTGAAGG - 3´; 

MYOG: Fw 5´-GGGGAAAACTACCTGCCTGTC −3´; Rv 5‘-

AGGCGCTCGATGTACTGGAT −3´; MLANA: Fw 5´-GCTCACTTCATCTATGGTTACCC 

−3´; Rv 5´-GACTCCCAGGATCACTGTCAG - 3´; PMEL: Fw 5´-

AGGTGCCTTTCTCCGTGAG Rv 5´-AGCTTCAGCCAGATAGCCACT −3´

Quantification and Statistical Analysis

Preprocessing of DropSeq data—Paired-end sequencing reads were processed as 

previously described using the Drop-Seq Tools v1.12 software available in McCarroll’s lab 

(http://mccarrolllab.com/dropseq/). Briefly, each cDNA read (read2) was tagged with the 

cell barcode (the first 12 bases in read 1) and unique molecular identifier (UMI, the next 8 

bases in read 1), trimmed of sequencing adaptors and poly-A sequences, and aligned to the 

human (GRCh38) or a concatenation of the mouse and human (for the species-mixing 

experiment) reference genome assembly using STAR v 2.5.3a (Dobin et al., 2013). Cell 

barcodes were corrected for possible bead synthesis errors using the 

DetectBeadSynthesisErrors program, and then collapsed to core barcodes if they were within 

an edit distance of 1 as previously described (Macosko et al., 2015). Digital gene expression 

(DEG) matrix was compiled by counting the number of unique UMIs for a given gene (as 

row) in each cell (as column).

Global clustering analysis—To assess the difference in cell composition across 

differentiation protocols and cell lines, we performed global clustering analysis on ten 

datasets from Dropseq sequencing of the day 26 organoids. First, we combined the UMI 

count matrices from different protocols and cell lines into one gene-cell matrix using the 

merge function in R. We then removed the low-quality cells with less than 500 or more than 

4000 detected genes, or if their mitochondrial gene content was > 20%. Genes were filtered 

out that were detected in less than 10 cells. This filtering step resulted in 24,574 genes X 

71,390 cells sampled from four batches Takasato iPS organoids (26,890 cells), three batches 

Morizane iPS organoids (18,072 cells), two batches Takasato ES organoids (19,380 cells) 

and one batch Morizane ES organoids (7,048 cells). The gene expression was then natural 

log transformed and normalized for scaling the sequencing depth to a total of 1e4 molecules 

per cell. Batch effect was corrected by matching mutual nearest neighbors using a recently 

published pipeline (incorporated in scran R package) (Haghverdi et al., 2018). 

Dimensionality reduction and clustering were performed on the batch effect corrected 

expression value using Seurat R tool kit.

A total of 23 clusters were classified from this analysis, consisting of cells from four broad 

“classes” defined as mesenchyme, tubule, podocyte and off-target cells based on their 

marker genes expression. We then performed a post-hoc merging step, where 

transcriptionally indistinguishable clusters are merged back together. First, the distance 

between each pair of clusters within the broad cell class was computed based on the 

averaged expression value of the highly variable genes. Second, hierarchical clustering 

analysis was performed on the distance matrix using the hclust function from R. We then 

merged transcriptionally similar clusters that were placed adjacent on the hierarchical tree. 

With this approach, we identified five transcriptionally distinct subtypes in the tubule class, 
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and 3 distinct subtypes in the mesenchyme class. Finally, we assessed the cell compositions 

by calculating the number of cells in each cluster or broad class, subdivided by the 

differentiation protocol and cell line.

Clustering analysis on the organoid cells from different protocols or cell lines
—Seurat was used for quality control, dimensionality reduction and cell clustering for the 

Dropseq datasets generated by each protocol or cell line. In brief, raw DEG matrices from 

different batches for each protocol on each cell line were combined and loaded into the 

Seurat. For normalization, the DGE matrix was scaled by total UMI counts, multiplied by 

10,000 and transformed to log space. Only genes found to be expressing in >10 cells were 

retained. Additional filtering was set on the number of detected genes and mitochondrial 

gene content to remove the low-quality cells or cell doublets. We note that, depending on the 

sequencing depth and the variations in mitochondrial gene content from dataset to dataset, 

the cutoffs may need to be set on a case-by-case basis. Before clustering, variants arising 

from batch effects, library size and percentage of mitochondrial genes were regressed out by 

specifying the vars.to.regress argument in Seurat function ScaleData. The highly variable 

genes were identified using the function FindVariableGenes. The expression level of highly 

variable genes in the cells was scaled and centered along each gene, and was conducted to 

principal component analysis. We then assessed the number of PCs to be included in 

downstream analysis by (1) plotting the cumulative standard deviations accounted for each 

PC using the function PCElbowPlot in Seurat to identify the ‘knee’ point at a PC number 

after whic successive PCs explain diminishing degrees of variance, and (2) by exploring 

primary sources of heterogeneity in the datasets using the PCHeatmap function in Seurat. 

Based on these two methods, we selected first top significant PCs for two-dimensional t-

distributed stochastic neighbor embedding (tSNE), implemented by the Seurat software with 

the default parameters. We used FindCluster in Seurat to identify cell clusters for each 

protocol. Alternatively, A hierarchical clustering method devised by Baron et al (Baron et 

al., 2016) was recruited to validate the clusters identified by Seurat. To identify the marker 

genes, differential expression analysis was performed by the function FindAllMarkers in 

Seurat with likelihood-ratio test. Differentially expressed genes that were expressed at least 

in 25% cells within the cluster and with a fold change more than 0.25 (log scale) were 

considered to be marker genes. Gene expression of selected markers across clusters were 

visualized using a Python plotting library Matplotlib.

Sub-clustering tubular cells in Morizane protocol (cluster PT1, PT2, and LH) and Takasato 

protocol (cluster PT1, PT2, LH, and Lp) were first combined, then sub-clustered using the 

same approach described above. We identified 12 significant PCs in 3,056 tubular cells from 

Takasato protocol and 10 PCs in 4,933 tubular cells from Morizane protocol, which were 

further assigned into 9 and 5 sub-clusters, respectively. To further compare the cell types 

generated from the two protocols, we extracted the expression matrix for PT2 (a more 

mature PT cluster), LH and podocyte from each protocol, and used the combined matrices as 

input to Seurat. After regressing out potential protocol effect and library size difference, we 

performed differential gene analysis on the PT cells between protocols with likelihood-ratio 

test. Developmental genes were selected based on the anchor/marker genes listed in 

GUDMAP (McMahon et al., 2008) and visualized by DotPlot function in Seurat.
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For the time course Dropseq data, the datasets were preprocessed before being placed in the 

Seurat package. The matrices from all time points were merged into one single matrix with 

the merge function in R. To retain the gene expression variants across time course, all genes 

from each time point were kept in the merged matrix by assigning zeros to the genes for 

those cells who have missing expression value. 20 significant PCs calculated from 1,345 

high variable genes were selected for tSNE and clustering analysis. We identified 14 clusters 

including key cell types corresponding to the important developmental states. We selected 

genes that represent each development stages and visualized them in tSNE map. Initially, we 

used the normalized gene expression value but found that the high dropout events in single 

cell data obscure the dynamic gene expression changes across time course. We therefore 

applied a gene imputation approach named MAGIC (van Dijk et al., 2018) to 

computationally fill in the missing value for all genes in our time course dataset. In brief, the 

merged time-course count matrix was loaded into the MAGIC pipeline written in Python 

(https://github.com/pkathail/magic). Gene expression value in all cells were normalized, 

dimensionally reduced and transformed by the internal algorithms in MAGIC with the 

parameters: n_pca_components=20, random_pca=True, t=6, k=30, ka=10, epsilon=1, 
rescale_percent=99. Developmental genes and marker gene expression across timepoints 

after MAGIC imputation were visualized in the tSNE map constructed by Seurat and on the 

pseudotemporal trajectory tree constructed by Monocle (see methods below).

sNuc-10X data processing and clustering analysis—We used a newly developed 

pipeline, zUMIs (Parekh et al., 2018), to process the single nucleus sequencing data from 

human adult kidney. In brief, we first filtered out the low-quality barcodes or UMIs based on 

sequence with the internal read filtering algorithm built in zUMIs. We then used zUMIs to 

map the filtered reads to human reference genome (GRCh38) using STAR 2.5.3a (two-pass 

mapping mode). Next, zUMIs quantified the reads that were uniquely mapped to exonic, 

intronic or intergenic region of the genome and inferred the true barcodes that mark cells by 

fitting a k-dimensional multivariate normal distribution with mclust package. Finally, a UMI 

count table utilizing both exonic and intronic reads were generated for downstream analysis. 

The whole data processing was executed by running the script on a HPC cluster with 

96×2.3GHz computing cores (http://brc.wustl.edu/?page_id=12) with the following example 

script: bash zUMIs-master.sh -f R1.fastq.gz -r R2.fastq.gz -c 1–16 -m 17–26 -l 98 -n 
Human_kidney - g GRCh38_ref_genome -a GRCh38_ref_genes.gtf -p 30. Clustering 

analysis was performed on Seurat with a similar approach used for analyzing the organoid 

Dropseq datasets.

Integrated analysis of multiple datasets—To compare the cell types derived from 

different organoid protocols/cell lines and those from adult human kidney, we performed 

comparative analysis on multiple datasets by utilizing a recently developed computational 

strategy for integrated analysis (implemented in Seurat v2.0) (Butler et al., 2018). We first 

selected the union of the top 3,000 genes with the highest dispersion from all datasets for a 

canonical correlation analysis (CCA) to identify common sources of variation across the 

datasets. Then CCA was performed based on the normalized expression value of the highly-

dispersed genes. Next, we selected the top dimensions of the CCA by examining a saturation 

in the relationship between the number of principle components and the percentage of the 
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variance explained using the MetageneBicorPlot function in Seurat. We obtained a new 

dimensional reduction matrix by aligning the CCA subspaces with the top dimensions 

computed above. With the new dimensional reduction matrix, we performed clustering 

analysis on the cells or nuclei from different datasets by setting an optimal clustering 

parameters. We visualized the cells by their original identity or by their cluster identity 

classified by this integrated analysis. Differential gene analysis was performed on the cells 

or nuclei from different datasets but grouped in the same cluster after the alignment analysis. 

Differential genes were visualized using the FeatureHeatmap or DotPlot function in Seurat. 

We applied this computational strategy to compare the matched cell types (i.e. podocyte, PT 

and LH) from organoids and adult human kidney.

Cell cycle analysis—We assigned a cell cycle score on each cell according to its gene 

expression of G2/M and S phase markers (Tirosh et al., 2016). Based on this scoring system, 

we classified each cell in either G2M, S or G1 phase using the CellCycleScoring function in 

Seurat. The cells at different cell cycle classifications were visualized in the tSNE map, and 

the expression of cell cycle genes were plotted out using FeaturePlot function in Seurat.

Correlation analysis of kidney organoid and mouse/human kidney—To assess 

the similarity between kidney organoid cell types and embryonic kidney, we re-analyzed two 

previously published Dropseq datasets from mouse E14.5 kidney (GSE104396) (Magella et 

al., 2018), P1 kidney (GSE94333) (Adam et al., 2017) and human fetal kidney (Lindstrom et 

al., 2018b). We used the Seurat clustering parameters described by the authors and 

reproduced the same cell types from the datasets. We calculated the Pearson correlation 

based on the expression patterns of highly variable genes between cell populations within 

the mouse embryonic kidney dataset against the organoid cell types and the UB cell type 

identified from subclustering analysis. we performed the same analysis to compare organoid 

cell types to the human adult kidney cell types identified from the snRNA-seq dataset (data 

from this manuscript). Correlation matrix were visualized by R package pheatmap. Colour 

keys (and dot sizes) represent the range of the coefficients of determination (r2) in each 

analysis.

Hierarchical clustering analysis on the cell types from kidney organoids—To 

reveal the relationship among the matched cell types derived from Morizane and Takasato 

protocols, we extracted the expression profiles for P1, M3, PT2, LH and N2 subtypes from 

the Morizane organoid datasets and expression profiles for P, M3, PT2, LH, N2, and EC 

from the Takasato organoid datasets. Then we normalized the gene expression and computed 

the distance between each pair of cell types based on their average gene expression. 

Hierarchical clustering was performed on the distance matrix using hclust function in R and 

was visualized by dendrogram. We used the dendextend R package to compare the 

dendrogram from the Morizane organoid dataset and the Takasato organoid dataset.

Random Forest model to map cell types from human fetal kidney—To determine 

the congruence between cell types obtained from our organoid datasets and those in a recent 

fetal kidney dataset (Lindstrom et al., 2018b), we trained a multiclass random forest 

classifier (Habib et al., 2017; Shekhar et al., 2016) on the fetal kidney cell clusters and used 
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it to map the organoid cell type. First, we composed a ‘training set’ by sampling 60%of the 

cells from 5 fetal kidney clusters representing mesenchyme, LH, PT, podocyte, endothelium 

and a cycling cell population (defined as mesenchyme progenitor). We next trained a random 

forest using 1,000 trees on the training set using the R package randomForest. We then used 

the remaining 40% of the cells from each cluster from the human fetal kidney dataset to 

validate the performance of the trained classifier. We used this model to assign a class label 

(one of the 5 human fetal kidney cell types) to each cell from kidney organoids. Finally, we 

quantified the number of cells that were mapped to each class label and visualized the data 

using ggplot2 package.

Cell type specific driving force analysis—To identify the key regulators that control 

the cell states, we performed cell type specific driving force analysis using the SINCERA 

pipeline (Guo et al., 2015). This approach consists of three main steps. First, the candidate 

transcription factors (TFs) and their regulatory target genes (TGs) were extracted from the 

DEG list identified in each cluster. Second, cell type specific transcription regulatory 

network (TRN) was constructed by establishing the interaction between TF-TF and TF-TG 

(TG-TF and TF auto-regulations were not considered) as previously described (Lebre, 

2009). Finally, the key TFs were selected based on their network node importance. This was 

accomplished by collecting the value of six node importance metrics including Degree 

Centrality (DC), Closeness Centrality (CC), Betweenness Centrality (BC), Disruptive 

Fragmentation Centrality (DFC), Disruptive Connection Centrality (DCC) and Disruptive 

Distance Centrality (DDC). TFs were ordered by taking the average of the node importance 

from these six matrices.

Deconvolution of bulk RNA-seq data—To examine the possible use of our single cell 

data to infer the cell type compositions (deconvolution) from the bulk RNA profiling, we 

retrieved the previously published RNA-Seq dataset from Takasato et al (GEO accession 

GSE70101)(Takasato et al., 2015). This dataset contains gene expression profiles of time-

course organoids collected at similar time-points (day 7, day 10, day 18 and day 25) as those 

collected for our time-course single cell study. We then applied a single cell deconvolution 

algorithm, BSeq-sc (Baron et al., 2016), to estimate the proportion of iPS cells, PIM, 

pretubular aggregate, PT, LH, podocyte and neurons in each time point from bulk RNA-seq 

datasets. The identified marker genes for each cell type from our time-course single cell data 

were used as an input to estimate the cell proportion in each timepoint of the bulk-seq data 

according to the tutorial from BSeq-sc package (https://shenorrlab.github.io/bseqsc/

vignettes/bseq-sc.html).

GWAS analysis—We downloaded GWAS gene lists associated with chronic kidney 

disease, hypertension and metabolite from the GWAS site (https://www.ebi.ac.uk/gwas/). 

Each associated gene that was identified as significant in a GWAS (reported gene) was 

mapped to the cell type marker gene list obtained from Seurat FindAllMarker function. To 

plot the GWAS genes, we normalized the gene expression value for each cell by z-scores 

and generated a new gene expression matrix with mean z-scores for each GWAS gene by 

averaging the z-score value from all individual cells in the same cluster (i.e. a mean z-scores 
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matrix with GWAS genes as rows and cell type ID as columns). Heatmap.2 function in 

gplots R package was used to create all heatmap graphs in this analysis.

Kidney disease trait association with single cell-based cell types—We used 

RolyPoly, a polygenic method that identifies trait-involved cell types by analyzing the 

enrichment of GWAS signal in cell type specific gene expression (Calderon et al., 2017), to 

associate the kidney disease trait with gene expression profile from our single cell data. 

Since Rolypoly requires four indispensable components as data input (GWAS summary 

statistics, expression data, an expression data annotation file, and linkage disequilibrium 

(LD) information), we prepared each of them as follows. First, we obtained the summary 

meta-analysis data from the CKDGen consortium (http://ckdgen.imbi.uni-freiburg.de) for 

the associations between genotype and CKD or eGFR on the basis of serum creatinine 

(eGFRcrea) based on Li et al’s study (Li et al., 2017; Pattaro et al., 2016). To prepare cell 

type expression data, we computed the average expression on each cell type from Takasato’s 

iPS organoid, Morizane’s iPS organoid, and adult human kidney. To link gene expression 

with the location of GWAS variants, we defined a block as a 10kb window centered around 

each gene’s transcription start site (TSS) as recommended by rolypoly. The TSS for all 

known hg19 genes was downloaded from UCSC Genome Browser (https://

genome.ucsc.edu/). Finally, the linkage disequilibrium (LD) information was provided by 

rolypoly based on the calculation using PLINK for 1000g phase 3 genomes filtered for 

values of R2>0.2 (https://cran.r-project.org/web/packages/rolypoly/vignettes/intro.html). We 

input all these data into the main rolypoly function call using the default parameters. 

Significant association between cell type and CKD or eGFR was determined by p value.

Pseudotemporal ordering—We used Monocle2 (Qiu et al., 2017) (default settings) to 

draw a minimal spanning tree connecting the 9,190 cells collected from time course 

organoids into multiple lineages. As input into Monocle2, we selected the ordering genes 

using a semi-supervised approach as described in the Monocle2 tutorial (http://cole-trapnell-

lab.github.io/monocle-release/docs_mobile/). Specifically, we first defined the genes that 

mark the kidney organoid differentiation process and terminal cell lineage. The criteria for 

the gene selection include: 1) they are putatively reported as markers for the kidney 

developmental state or terminally kidney cell fate. 2) they are specific marker genes 

differentially expressed in the clusters identified by Seurat as noted above. We used them to 

select the ordering genes that co-vary with these markers using the Monocle function 

markerDiffTable. With this approach, we generated a final gene set containing 1,604 genes. 

We then reduced the data space to two dimensions with ‘DDRTree’ method and ordered the 

cells using the orderCells function in Monocle. Individual cells were color-coded based on 

the time points where they were collected to validate the accuracy of the cell ordering. We 

further colored the cells with the cell type identity classified by Seurat as noted above to 

assure that the ordering is meaningful. We plotted the gene expression on the Monocle tree 

using MAGIC imputed value as described above.

Ligand-receptor interaction analysis—To study the ligand-receptor interaction at 

single cell level, we used a human ligand-receptor list comprising 2,557 ligand–receptor 

pairs curated by Database of Ligand−Receptor Partners (DLRP), IUPHAR and Huma n 
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Plasma Membrane Receptome (HPMR) (Hrvatin et al., 2017; Ramilowski et al., 2015). We 

selected the receptors that were only differentially expressed in each cell type from the day 

26 organoid (Takasato protocol), and the ligands that were induced in either branch on the 

cell trajectory based on the results computed by the branched expression analysis modeling 

(BEAM) algorithm in Monocle. To determine the ligand-receptor pairs to plot on the 

heatmap, we required that (i) The ligands are branch-dependent with significant score q-val< 

0.01 based on the score table from BEAM analysis; (ii) The receptors are uniquely 

expressed in each cell type (q-val<0.05 and logFC>0.6); (iii) Each receptor should have at 

least one corresponding ligand to pair with. We used plot_genes_branched_heatmap 
function from the Monoce2 package to plot the ligands and heatmap.2 function from gplots 

package to show the receptors expressed in each cell type. We used the same list of ligand-

receptor pairs to identify cell-type specific ligands and receptors in human adult kidney and 

employed a network approach to visualize the cell type communication based on 

connections of ligand-receptor pairs (Ramilowski et al., 2015).

Real Time PCR data quantification and statistical analysis—Data were presented 

as mean ± SEM. ANOVA with post hoc Bonferroni correction was used for multiple group 

comparison. Student t-test was used to compare 2 different groups. Graph-Pad Prism 

software, version 6.0c (GraphPad Software Inc., San Diego, CA) and SPSS version 22 were 

used for statistical analysis. P-value < 0.05 was considered as statistical significant 

difference.

Experimental Design

The number of replicate organoids is included in Supplementary Table S1. Experimental 

groups were neither randomized not blinded. No sample-size estimates were made and the 

inclusion criteria for analyzing adult human kidney was having normal kidney function and 

no known kidney disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Comprehensive single-cell RNA sequencing demonstrates development of a spectrum 
of cell types in kidney organoids
(A,B) Diagram of human iPS directed differentiation protocols. (C-F) Immunofluorescence 

analysis of day 26 organoid for proximal tubule (LTL), distal tubule (ECAD), and podocytes 

(WT1 and NPHS1) from Morizane protocol (C,D) and Takasato protocol, scale bar, 50 μm. 

(E,F). (G) tSNE projection of all day 26 organoid cells according to protocol (Morizane or 

Takasato) and cell line (iPS or ES). (H) Unsupervised clustering of all organoid cells reveals 

23 separate clusters. (I) Violin plot showing cluster-specific expression of marker genes. (J) 
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Major kidney cell populations depicted after semi-supervised analysis. (K) Proportions of 

kidney and off-target cell types according to protocol and cell source.
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Figure 2: Comparison of kidney cell types and differentiation state in iPS-derived kidney 
organoids generated with both protocols.
(A,B) Heatmap of all cells clustered by recursive hierarchical clustering and Louvain-

Jaccard clustering (Seurat), showing selected marker genes for every population of Morizane 

protocol (A) and Takasato protocol (B). The bottom bars indicate the batch of origin 

(“Batch”) and number of UMI detected/cell (“Depth”). (C,D) tSNE plot of cells based on 

the expression of highly variable genes for the day 26 organoids from Morizane protocol (C) 

and Takasato protocol (D). The detected clusters are indicated by different colors. (E) 
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Heatmap indicating Pearson’s correlations on the averaged profiles among common cell 

types for Morizane and Takasato organoids. (F) Dendrogram showing relationships among 

the cell types in Morizane (left) and Takasato organoid (right). The dendrogram was 

computed using hierarchical clustering with average linkage on the normalized expression 

value of the highly variable genes. (G-M) Quantitative PCR comparing cell marker 

expression for podocyte (NPHS1), PT (SLC3A1), LOH (SLC12A1), neuron (CRABP1 and 

MAP2), and muscle (MYLPF and MYOG) between organoid protocols. ***p<0.001 and 

****p<0.0001. (N,O) Immunofluorescence analysis of neural marker CRABP1 expression 

(green) in Morizane (N) and Takasato (O) protocols. Cells were co-stained with PT (LTL, 

white) and podocyte (NPHS1, red) markers. Scale bar, 50 μm.
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Figure 3: Human kidney organoids contain subclasses of tubular epithelial cells.
(A,B) Heatmap showing selected marker genes for every tubular subpopulation of Morizane 

protocol (A) and Takasato protocol (B) generated from iPS cells. (C,D) tSNE plot of tubular 

subclusters in kidney organoid from Morizane protocol (C) and Takasato protocol (D). The 

detected clusters are indicated by different colors. (E-G) Dotplot comparing the expression 

of cell type signature and developmental/proliferating genes on podocytes (E), proximal 

tubule (F), and LOH (G) between the two protocols.
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Figure 4: Organoid cell types are immature compared to benchmarked adult kidney cell types.
(A) Unsupervised clustering of snRNA-seq of adult human kidney identified 17 distinct cell 

types in human adult kidney. That includes 11 tubular cell types, podocytes, mesangium, 

endothelial cells and macrophages. (B) Heatmap showing uniquely expressed genes for each 

cluster. (C) Pearson correlation analysis comparing the organoid cell types and their 

endogenous counterparts in human kidney. Color bar indicates the correlation score. (D) 

Reclustering of podocytes, proximal tubule (S1-S2) and loop of henle cells derived from 

both organoids and adult kidney, analyzed using canonical component analysis. (E) Cellular 
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origins (Morizane, Takasato or adult kidney) visualized in the tSNE reveal poor overlap 

between organoid-derived and adult-derived cells within in each cluster. (F) Comparison of 

the average expression of marker genes and developmental genes between organoid cell 

types and adult kidney cell types. Expression value was scaled by z-score. (G) Expression of 

developmental factors OSR1 and POU3F3 is strong in organoids but almost undetectable in 

adult kidney. Expression of S1 marker SLC5A12 and loop of henle marker UMOD is strong 

in adult kidney and undetectable in organoids.
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Figure 5: Cell specific expression of disease-relevant genes in adult kidney compared to 
organoids.
Cell specific expression of genes reported in CKD related GWAS (A), hypertension related 

GWAS (B), and plasma metabolite levels related GWAS (C) in adult kidney. Each gene 

reported in a kidney disease related GWAS was assigned to the adult kidney cell type in 

which it was found to be differentially expressed (likelihood ratio test). Heatmap was used to 

visualize the z-score normalized average gene expression of the candidate genes for each 

cell cluster. (D-F) Disease relevant genes identified in (A-C) for which cell-specific 
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expression could also be detected in organoid cell types. Results from both protocols and 

both cell sources were pooled for the analysis.
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Figure 6: Time-course analysis of cells during organoid differentiation reveals lineage 
relationships
(A,B) Projecting cells across time-points to the tSNE. Cells were colored by the time point 

where they were collected (A) or gene expression of stage specific markers (B). (C) 

Validation of the stage specific marker by qPCR. **p<0.01 and ****p<0.001 versus day 7. 

(D) Annotation of cell clusters based on gene expression of cell type specific markers. (E,F) 

Ordering of scRNA-seq expression data according to the pseudotemporal position along the 
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lineage revealed a continuum of gene expression changes from iPSCs to differentiated cell 

types.
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Figure 7: Reduction in off-target cell differentiation by analysis of cell-specific expression of 
receptors and ligands during organoid differentiation.
(A) Heat map showing kinetics of branch-dependent ligand expression identified by BEAM 

(Monocle2) and corresponding cell-specific receptor expression in day 26 organoids from 

the Takasato protocol. The analysis identified that BDNF expression was induced in the 

podocyte/mesenchyme/neuron branch and its receptor NTRK2 was exclusively expressed in 

neurons. (B) Inhibition of the BDNF pathway using K252a (250 nM from days 12 to 26). 

(C) tSNE of K252a treated organoids showing very small neuronal population. (D) Off 
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target cells made up only 2.1% of the total cells in K252a-treated organoids. (E) Violin plot 

showing marker gene expression across clusters in K252a-treated organoids. (F) verification 

of strong reduction in neuronal cells by immunofluorescence staining of an independent 

organoid batch.
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