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•  Background and Aims  The question of which cellular mechanisms determine the variation in leaf size has 
been addressed mainly in plants with simple leaves. It is addressed here in tomato taking into consideration the 
expected complexity added by the several lateral appendages making up the compound leaf, the leaflets.
•  Methods  Leaf and leaflet areas, epidermal cell number and areas, and endoreduplication (co-) variations were 
analysed in Solanum lycopersicum considering heteroblastic series in a wild type (Wva106) and an antisense 
mutant, the Pro35S:Slccs52AAS line, and upon drought treatments. All plants were grown in an automated phenotyp-
ing platform, PHENOPSIS, adapted to host plants grown in 7 L pots.
•  Key Results  Leaf area, leaflet area and cell number increased with leaf rank until reaching a plateau. In contrast, 
cell area slightly decreased and endoreduplication did not follow any trend. In the transgenic line, leaf area, leaflet 
areas and cell number of basal leaves were lower than in the wild type, but higher in upper leaves. Reciprocally, cell 
area was higher in basal leaves and lower in upper leaves. When scaled up at the whole sympodial unit, all these 
traits did not differ significantly between the transgenic line and the wild type. In response to drought, leaf area was 
reduced, with a clear dose effect that was also reported for all size-related traits, including endoreduplication.
•  Conclusions  These results provide evidence that all leaflets have the same cellular phenotypes as the leaf they 
belong to. Consistent with results reported for simple leaves, they show that cell number rather than cell size deter-
mines the final leaf areas and that endoreduplication can be uncoupled from leaf and cell sizes. Finally, they re-
question a whole-plant control of cell division and expansion in leaves when the Wva106 and the Pro35S:Slccs52AAS 
lines are compared.

Key words: Solanum lycopersicum, compound leaf, leaflet, drought stress, cell division, cell expansion, endore-
duplication, tomato.

INTRODUCTION

The remarkable variation in leaf shape and size among plants 
and within the same plant fascinates many scientists working 
in developmental biology. Because the regulation of leaf area 
expansion has a prominent role in light capture, photosynthesis, 
transpiration and thus plant biomass production, it has been the 
focus of many agronomic studies. Control of leaf area expan-
sion at the cellular and molecular levels has been investigated 
for years in different model plants, providing insights into the 
complex regulation of leaf morphogenesis (Rodriguez et  al., 
2014; Vanhaeren et al., 2016). Each individual leaf is made up 
of cells that divide and expand at different rates and during dif-
ferent periods depending on species, genotypes, environmen-
tal conditions, leaf developmental stage, leaf tissue and cell 
type within a given tissue (Pyke et al., 1991; Donnelly et al., 
1999; Tardieu et al., 2000; Rymen et al., 2007; Skirycz et al., 
2011; Wuyts et al., 2012). The canonical cell cycle, resulting 
in cell division, involves a DNA duplication phase followed by 
mitosis. In some species, leaf cells can enter a cell cycle vari-
ant, the endoreduplication cycle, in which mitosis is skipped 

and cells repeatedly replicate their DNA, resulting in endopol-
yploidy (Edgar et  al., 2014). Endopolyploid cells are gener-
ally larger than others, as shown in the epidermis of different 
organs such as leaf, stem and sepals in Arabidopsis thaliana 
(Melaragno et al., 1993; Roeder et al., 2010) and the pericarp of 
tomato fruits (Cheniclet et al., 2005). The correlation between 
ploidy and cell size depends on cell identity. It is, for example, 
weaker in the palisade mesophyll cells than in the epidermis of 
A. thaliana leaves (Katagiri et al., 2016).

The respective contributions of cell division and cell expan-
sion to final leaf size and the inter-relationships between these 
processes have been analysed in both dicot and monocot sim-
ple leaves (Horiguchi et  al., 2006; Massonnet et  al., 2011; 
Gonzalez et  al., 2012; Nelissen et  al., 2016). Despite differ-
ent spatial and temporal organizations of these processes, sev-
eral molecular mechanisms controlling leaf size are conserved 
between dicots and monocots (Nelissen et  al., 2016). The 
final leaf size is mainly determined by its cell number rather 
than the mean cell size. This has been observed in plants of 
the same genotype grown in various environmental conditions 
(see Granier et al., 2000 for different species), in populations 
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of recombinant inbred lines (Ter Steege et al., 2005 in Aegilops 
tauschii; Tisné et al., 2008 in A. thaliana) and even for leaf size 
variation among species (Gazquez and Beemster, 2017). A few 
studies have shown that the variability in leaf size according to 
their rank was more related to changes in cell number than in 
cell size (Ashby, 1948 in Ipomoea; Tisné et al., 2011 in A. thali-
ana), revealing that the cell cycle also plays a role in hetero-
blasty. The relationship between cell number and leaf size is 
less clear when it is analysed in genotypes affected in cell cycle 
gene expression. An increase in leaf cell number caused by the 
upregulation of cell cycle activator genes or by the downregula-
tion of cell cycle inhibitor genes can coincide with an increas-
ing, decreasing or unaffected leaf size (Hemerly et al., 1995; 
Autran et al., 2002; Cookson et al., 2005, Tojo et al., 2008). 
These results have cast doubt on the crucial role of the cell 
cycle as the engine of organ growth, leading to a reconsider-
ation of the organ growth theory in many reviews (Kaplan and 
Hagemann, 1991; John and Qi, 2008; Sablowski, 2016).

Compound leaves add further complexity with respect to simple 
leaves. Their morphogenesis is still subject to debate and it is still 
unclear if they are reduced to the sum of their leaflets, or if they 
constitute an organ on their own (Champagne and Sinha, 2004). 
In some studies, they are seen as partially indeterminate structures 
that share properties with both shoots and simple leaves (Sattler 
and Rutishauser, 1992). In others, it is suggested that the entire 
compound leaf is equivalent to a simple leaf and that leaflets arise 
by sub-divisions of a simple blade (Kaplan, 1975). Tomato leaf is 
used as a model for studying the genetic control of compound leaf 
development (Hareven et al., 1996; Champagne and Sinha, 2004). 
Its organization is odd-pinnate as leaflets develop symmetrically 
on both sides of the rachis. In contrast to a simple leaf, the contri-
bution of cellular processes to tomato leaf area plasticity and their 
interactions has not been analysed so far.

The aim of this work was to analyse the respective contribu-
tions of epidermal cell number and adaxial epidermal cell size 
to final area in the compound leaf of tomato, together with the 
extent of endoreduplication. To provide insights into the cellular 
organization of the whole leaf area, these traits were analysed in 
the different leaflets of the successive leaves along a sympodial 
unit. This experimental protocol extended to compound leaves 
the standard protocols previously applied to simple leaves in 
order to facilitate the comparison with previous results (Hemerly 
et al., 1995; Autran et al., 2002; Cookson et al., 2007; Tojo et al., 
2008; Massonnet et  al., 2011; Gazquez and Beemster, 2017). 
To enrich the debate on the different theories about leaf growth 
control, the same traits were measured in a transgenic line with 
reduced expression of CCS52A, a gene specifically associated 
with the switch from the mitotic cycle to endoreduplication in 
different organs (De Veylder et  al., 2011). Previous studies in 
tomato have shown that the reduction in CCS52A expression 
induces the formation of smaller plants delayed in their devel-
opment, of small fruits with smaller cells and higher cell dens-
ity in the pericarp and with reduced levels of endoreduplication 
(Mathieu-Rivet et  al., 2010). Finally, variability in leaf areas, 
leaflet areas and leaf cellular-related traits was analysed in plants 
subjected to different soil water deficit treatments monitored by 
the PHENOPSIS automated platform (Granier et al., 2006). This 
platform has been used to date for studies on A.  thaliana and 
was modified here (mechanics and software) to host, weight and 
adjust soil water content of tomato plants in large pots.

Altogether, our results provide insights into the organiza-
tion of the tomato compound leaf at the cellular scale. They 
highlight the importance of considering the leaf rank along the 
sympodial unit when different traits are compared, and clearly 
demonstrate that the whole compound leaf at a given rank can 
be summarized by one of its single leaflets for phenotyping pur-
poses. Thanks to the large variability in tomato leaf area caused 
either by spatial position on the plant, genetic perturbation or 
drought treatments, our results provide additional evidence that 
leaf area is tightly related to epidermal cell number without 
simple direct links with other leaf size-related traits, namely 
cell area and endoreduplication.

MATERIALS AND METHODS

Plant material, sowing and seedling pre-culture

Before sowing, 147 seeds of cherry tomato plants (Solanum 
lycopersicum), line West Virginia 106 (Wva106), and nine 
seeds of an antisense mutant, the Pro35S:Slccs52AAS transgenic 
line (described in Mathieu-Rivet et al., 2010), were sterilized 
in a solution of Barychlore (0.5  g of Barychlore and 50  mL 
of 50 % ethanol) for 15  min followed by three rinses with 
absolute ethanol and drying under a laminar flow hood for at 
least 15 min. Seeds were sown in sterilized boxes filled with 
a 1/4 Murashige and Skoog medium (MS including vitamins, 
Duchefa, MO 222) with 7.5 g sucrose L–1 and 8 g phyto-agar 
L–1. The pH of the solution was adjusted between 5.8 and 6 
with a solution of 2 m KOH and the MS medium was steri-
lized. Boxes were set up in a growth chamber equipped with the 
PHENOPSIS automaton (Granier et al., 2006) for 20 d. Light 
in the growth chamber was provided by a bank of cool-white 
fluorescent tubes and iodide discharge lamps for 16 h d–1 with 
a photosynthetic photon flux density of 200 μmol m–2 s–1 at pot 
height. Air vapour pressure was maintained at around 0.8 kPa 
and temperature was set at 25 and 20 °C during the day and 
night periods, respectively.

Fifty-two pots of 7 L were weighed before and after filling 
with soil (Klasmann, Substrat SP 15 %). Soil aliquots were dried 
to estimate the amount of dry soil and the water content in each 
pot at the time of filling (Granier et al., 2006). Three tomato 
seedlings were then put in the centre of each pot and immedi-
ately irrigated with 30 mL of nutrient solution (Liquoplant rose, 
Plantin, dilution 4:1000). Day air temperature was set at 23 °C. 
Seedlings were irrigated manually with 30 mL of nutrient solu-
tion twice a day for 1 week. Then, plants were thinned out, con-
sidering developmental stage homogeneity, to keep only one 
plant per pot. Lateral shoots were removed and flowers were 
shaken three times a week during the whole experiment.

Automatic adjustment of soil water content

The PHENOPSIS automaton, so far used to host and irrigate 
automatically 504 pots of 250 mL mainly for A. thaliana plants 
(Granier et al., 2006), was modified to manage up to 70 pots of 
7 L for larger plants, here tomato. Trays set up in the growth 
chamber were changed to host larger pots (14 trays with five 
holes each of 18.6 cm diameter). The weighing/watering station 
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was modified. The balance was changed to reach a higher 
weighing capacity (Precisa, Serie 320 XB-Modell XB10200G 
IP65) and the pneumatic actuator was replaced by an electric 
one (DS-dynatec, PCDY 136–185°). It was linked to a container 
filled with nutrient solution (Liquoplant rose, Plantin, dilution 
4:1000). The software was modified to adapt the automaton dis-
placements to this new configuration.

The 52 plants were grown at a constant soil water content of 
1.4 g H2O g–1 dry soil until the fifth leaf was fully emerged, i.e. 
when all leaflets were unfolded. From this stage, five different 
watering regimes, stable over time, were imposed on Wva106 
plants until the end of the experiment (seven plants per regime): 
0.6, 0.9, 1.2, 1.4 and 1.6 g H2O g−1 dry soil, respectively (Fig. 1). 
At the same stage, 14 Wva106 plants were submitted to a more 
severe water deficit induced by cessation of irrigation until the 
end of the experiment (pots were still weighed daily to follow the 
decrease in soil water content over time as shown in Fig. 1). The 
three pots with the transgenic lines were maintained at a soil water 
content of 1.4 g H2O g−1 dry soil until the end of the experiment.

Measurement of leaf size-related traits

For each individual plant, leaf size-related traits were meas-
ured when all compound leaves of the first sympodial unit had 
reached their final size (as checked by measuring the length of 
the last emerged leaflet). At the time of harvest, even the most 
stressed plants did not show any signs of dieback.

For each plant, the first sympodial unit was composed of a 
maximum of 13 compound leaves (Fig. 2A). The first two com-
pound leaves could not be measured because of senescence for 

all watering regimes. For the well-watered Wva106 plants, the 
third compound leaf was composed of five leaflets, while all 
the others were composed of seven leaflets (Fig. 2A, B). For the 
Wva106 plants grown in soil water deficit regimes, the fourth 
compound leaf was sometimes composed of five leaflets only. 
For the Pro35S:Slccs52AAS transgenic line, the third, the fourth, 
the fifth and some of the sixth compound leaves were composed 
of five leaflets, while all others were composed of seven leaflets.

All compound leaves of the first sympodial unit were cut at 
the base of their rachis and scanned. Then, areas of individual 
leaflets (cm2) were measured on the leaf scans with the ImageJ 
image analysis software (Wayne Rasband, National Institutes 
of Health, USA). For each compound leaf, whole leaf area was 
calculated as the sum of their leaflet areas.

Measurement of adaxial epidermis anatomy

Adaxial epidermal imprints were obtained by drying off a 
translucent varnish coat spread on the adaxial side of each leaf-
let from all successive compound leaves (from leaf 3 to leaf 13). 
The imprint was peeled off and immediately stuck on a micro-
scope slide with one-sided adhesive tape. Imprints were placed 
under a microscope (Leitz DM RB; Leica, Wetzlar, Germany) 
coupled to the ImageJ image analysis software (Fig. 2C). Only 
adaxial epidermal cells were considered in this study and they 
are referred to hereafter as epidermal cells throughout the text. 
For each leaflet, at least 75 epidermal cells were drawn manu-
ally in a middle zone of the mature leaflet, i.e. considering 
tip–base but also midrib–margin parts. This zone of the leaf-
let was selected after a preliminary experiment which showed 
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Fig. 1.  Experimental set-up from sowing to harvest. Tomato seeds of Wva106 wild type and of the Pro35S:Slccs52AAS transgenic line were sown in MS medium. 
Seedlings were grown for 3 weeks in boxes set up in the growth chamber. Two to three young plants were then transplanted into each of the 52 individual pots 
filled with soil. Pots were irrigated manually for 1 week. Around 17 d after sowing, plants were thinned out to keep one plant per pot and pots were irrigated by 
the PHENOPSIS automaton to reach a soil water content of 1.4 g H2O g–1 dry soil. All plants were grown at 1.4 g H2O g–1 dry soil until the emergence of the fifth 
leaf. At this time (represented by a horizontal green line illustrating the variability of dates depending on plant and genotypes), seven specific watering regimes 
were set up with seven Wva106 plants per watering regime. The three pots of the transgenic Pro35S:Slccs52AAS line were grown at 1.4 g H2O g–1 dry soil only. 
Among the seven watering regimes, five were stabilized at: 1.6, 1.4, 1.2, 0.9 and 0.6 g H2O g–1 dry soil over time, whereas for the other two regimes, soil water 
content decreased over time without re-irrigation. These two last treatments were considered together hereafter and called severe water deficit (swd). Treatments 
are represented by coloured lines with a gradient increasing from the lowest (red) to the highest (blue) soil water content. For each watering regime, data are means 
of soil water content calculated before and after daily irrigation considering the seven pots in each treatment for Wva106. Depending on plant to plant variability 
within the same genotype and treatment but also depending on genotypes and drought treatments, leaf 9 emerged between 28 and 33 d after sowing, as shown by 

the horizontal blue line.
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that epidermal cell density does not vary from the tip to the 
base of mature leaflets (Fig. 2C; Kruskal–Wallis test by ranks, 
P-value = 0.1313). The distribution of the cell area per leaflet 
was obtained by pooling data from all cells drawn in the leaflets 
at the same position in the compound leaf. The mean epider-
mal cell number per leaflet was calculated as the ratio of mean 
leaflet area to mean leaflet epidermal cell area. The distribution 
of cell area per leaf was obtained by pooling data from all cells 
drawn in the different leaflets within the same compound leaf. 
The mean epidermal cell number per leaf was calculated as the 
ratio of leaf area to mean leaf epidermal cell area.

Ploidy levels in leaves and leaflets

Just before leaf scan, discs of leaflets were harvested at the base, 
middle and tip of the leaflet on the left side of the midvein, using 
a punch of 8 mm diameter. Discs were immediately put in a 2 mL 
Eppendorf and frozen in liquid nitrogen. Samples were then stored 
at –80 °C until flow cytometry measurements. Frozen disks were 
chopped with a razor blade and incubated in 200 μL of extraction 
buffer for 2 min. Extracted nuclei were fixed with 200 μL of 70 
% ethanol for 2 min and stained with 800 μL of 4’,6-diamidino-
2-phenylindole (DAPI). The solutions were filtered to eliminate 
all structures with a diameter >30 μm. The remaining solutions 
were analysed by flow cytometry with a C6 BD Accuri system. 
All reagents were obtained from BD Biosciences.

Ploidy histograms were pooled according to leaflet pos-
ition, leaf rank, genotype and soil water content treatment. The 

positions of the peaks corresponding to the various nuclear 
classes, i.e. nuclei in 2C, 4C and 8C, were manually identified 
and windows were positioned according to a reference sample 
with nuclei extracted from young tomato leaves with a high 
proportion of dividing cells (Supplementary Data Fig. S1). This 
manual treatment allowed the removal of noise, i.e. all counts 
below the 2C peak that can come from different origins (mainly 
chemicals interacting with DAPI and maybe also some debris 
resulting from chopping). This manual treatment was impos-
sible for samples harvested from leaves of the antisense mutant 
mainly because the position of the first peak was not easily 
detectable and this affected all results. Positions of peaks of 
16C and 32C nuclei were deduced from other peak positions 
assuming that DNA content was additive. Peak positions as 
identified in Supplementary Data Fig. S1 were conserved for 
the whole study. Ploidy histograms were quantitatively ana-
lysed with the R software (R Development Core Team, 2014) 
for Wva106 plants under all watering regimes.

Extracting trends for different morphological variables

We applied the LOESS method (Cleveland, 1979), a stand-
ard non-parametric regression method, to extract trends (e.g. 
leaf area as a function of leaf rank) for different morpho-
logical variables of interest. The LOESS method depends on 
two parameters: the smoothing parameter or span that defined 
the neighbours for fitting local linear regression models 
and the degree of the polynomial of these linear models. We 
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formed by the main stem and successive compound leaves and inflorescences. The number of compound leaves varies from one sympodial unit to the other. In 
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systematically used polynomials of first degree partly because 
of the limited range of the explanatory variable (e.g. 11 suc-
cessive ranks for the leaves). The span was selected using the 
corrected Akaike information criterion (AICc), a usual model 
selection criterion that finds the best trade-off between the par-
simony and the prediction capability of the model.

RESULTS

Changes in final leaflet areas and cellular leaflet size-related 
traits along the rachis of tomato compound leaves

For each Wva106 plant grown in the well-watered condition, leaf-
let areas were measured on heteroblastic leaf series along the first 
sympodial unit when all leaves reached their final size (Figs 1 and 
2). Most leaves were composed of seven leaflets, except leaves 1, 
2 and 3 which had fewer leaflets (3–5 leaflets, not shown).

Leaflet areas varied slightly along the rachis of the same 
leaf as shown for leaves 5, 7 and 9 (Fig. 3A–C, respectively). 
Similarly, there were only slight variations in the mean final 
number of epidermal cells and almost no variation of the epi-
dermal cell area distribution among leaflets within the same leaf 
(Fig.  3D–I). Considering the variations of leaflet size-related 
traits with leaf rank, leaflets of leaf 9 were larger than those 

of leaf 5, with higher mean epidermal cell number and smaller 
mean epidermal cell area with a slightly less dispersed distri-
bution (Fig. 3).

For each mature leaflet in the ninth leaf, the distribution of 
the DNA ploidy level in cells was measured by flow cytometry. 
C values varied from 2C to 32C, with very low proportions of 
nuclei in 2C and 32C that were difficult to distinguish from the 
background (Fig. 4). In contrast, in all leaflets, 4C + 8C nuclei 
represented >76 % of all nuclei and 16C nuclei varied between 
7.2 and 10.8 % (Fig. 4). Ploidy level distributions did not show 
any specific trend with the leaflet position (Fig. 4).

Changes in final leaf areas and cellular leaf size-related traits 
along the first sympodial unit

For each Wva106 plant grown in the well-watered condition, 
leaf area, epidermal cell number per leaf and distribution of 
epidermal cell areas within the leaf were measured along the 
first sympodial unit (from leaf 3 until leaf 13), when all leaves 
reached their final size. Final leaf area increased gradually from 
leaf 3 to leaf 9, from 115.9 ± 24.7 to 321.6 ± 12.9 cm2, and 
then decreased slightly until leaf 13 (Fig. 5A). The mean final 
epidermal cell number followed the same trend (Fig. 5B). In 
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contrast, the mean epidermal cell area slightly decreased from 
leaf 3 to leaf 8 where a plateau is reached (Fig. 5C). The epi-
dermal cell area of the lowest leaves was highly variable with 
right-skewed distributions, due to the presence of large epider-
mal cells (Fig. 5C). The distribution of the DNA ploidy level in 
leaf cells showed that C values varied from 2C to 32C in mature 
leaves (Fig. 6) and did not show any specific trend with the leaf 
rank as shown for ranks 4, 6, 8 and 12 along the first sympodial 
unit (Fig. 6). In all leaves, 4C + 8C nuclei represented >74 % 

of all nuclei, whereas 16C nuclei varied between 8.3 and 9.9 %. 
It was still difficult to distinguish the very low proportions of 
nuclei in 2C and 32C from the background.

Altogether these results suggest that changes in leaf size with 
leaf rank along the first sympodial unit of Wva106 plants is 
related (1) to changes in leaflet areas, but not in leaflet numbers 
(except for leaves 1, 2 and 3 which had a reduced number of 
leaflets), with common cellular characteristics for all leaflets of 
a given leaf, i.e. with common epidermal cell area and cellular 
ploidy distributions; and (2) to changes in epidermal cell num-
ber, but not in their size or in the level of endoreduplication.

Changes in final leaf area and cellular size-related traits in the 
tomato compound leaf upon SlCCS52A loss of function

To obtain further insights into the relative contributions of 
cellular processes to the final leaf size, leaf size-related traits 
were measured in a transgenic line specifically affected in the 
cell cycle–endoreduplication transition, namely the SlCSS52A 
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loss-of-function line (referred to as Pro35S:Slccs52AAS; Mathieu-
Rivet et al., 2010) and compared with the wild type (Wva106). 
This line has a slow developmental rate and produces smaller 
plants (not shown but observed in our experiment; see also 
Mathieu-Rivet et al., 2010).

The changes in whole leaf area, area of leaflet 1 and mean 
epidermal cell number in leaflet 1 with leaf rank along the 
first sympodial unit were compared between Wva106 and 
Pro35S:Slccs52AAS lines (Fig. 7A–C). All studied traits increased 

gradually with leaf rank until a maximal value around leaf 9, 
and slightly decreased or remained stable afterwards depend-
ing on the trait (Fig.  7A–C). For the first leaves, values of 
these three traits were lower in the Pro35S:Slccs52AAS line than 
in the wild type. For example, final leaf area of the fourth leaf 
reached 32.8 ± 26.6 cm2 in the Pro35S:Slccs52AAS line whereas 
it was 158.8 ± 17.5 cm2 in the wild type. Final area of leaf-
let 1 was 5.3 ± 5.2 cm2 in the Pro35S:Slccs52AAS line whereas 
it was 21.5  ±  3  cm2 in the wild type. Mean epidermal cell 
number of leaflet 1 was >6-fold less in the Pro35S:Slccs52AAS 
line compared with the wild type (9.2 × 104 ± 2.6 × 104 cells 
vs. 6.2  ×  105 ± 1.1  ×  105 cells per leaflet, respectively). In 
the Pro35S:Slccs52AAS line, the increase with leaf rank of these 
three traits was steeper than in the wild type, so that after leaf 
8, leaf area, area of leaflet 1 and mean epidermal cell num-
ber were higher in the antisense line than in the wild type 
(Fig. 7A–C). When the traits were considered at the scale of 
the whole sympodial unit, the cumulative leaf area of the first 
sympodial unit did not differ between the Pro35S:Slccs52AAS 
line and the wild type (Fig. 7E). Similarly, both the cumula-
tive leaflet 1 areas and the cumulative epidermal cell number 
of leaflet 1 of the first sympodial unit did not differ between 
the Pro35S:Slccs52AAS line and the wild type (Fig. 7F, G).

Epidermal cell area in leaflet 1 (Fig. 7D) decreased markedly 
with the leaf rank in the Pro35S:Slccs52AAS line, while it only 
slightly decreased in the wild type. For leaves 4–7, epidermal 
cell area was higher in the Pro35S:Slccs52AAS line compared with 
the wild type. After leaf 10, epidermal cell area was lower in the 
Pro35S:Slccs52AAS line compared with the wild type. When the 
distribution of epidermal cell areas was considered at the scale 
of the whole sympodial unit, pooling cell area distributions of 
all first leaflets, mean epidermal cell area did not differ mark-
edly between the two genotypes but the distribution was more 
dispersed and right-skewed in the Pro35S:Slccs52AAS line com-
pared with the wild type (Fig. 7H).

As for the wild type, the distribution of the DNA ploidy level 
in leaf cells was measured in the first leaflet of leaves at differ-
ent ranks in the Pro35S:Slccs52AAS line but ploidy level distribu-
tions were too noisy to extract quantitative data and draw robust 
conclusions (not shown).

Altogether, these results show that CCS52A loss of function 
affected the absolute value of the leaf size-related traits studied 
here at each leaf rank. For leaf area, epidermal cell number and 
epidermal cell area, it also affected the trends along the shoot 
and this caused a total compensation when the traits were con-
sidered at the scale of the whole sympodial unit. Here again, 
cellular size-related traits affected by CCS52A loss of function 
at the whole leaf level were similarly affected at the single leaf-
let level of the same leaf as shown for the first leaflet.

Dose response to soil water deficit of final leaf area and cellular 
size-related traits in the tomato compound leaf

Six soil water deficit treatments were imposed on wild-type 
plants and started when leaf 5 was fully emerged, i.e. when all 
leaflets forming leaf 5 were unfolded (Fig. 1). The response of 
leaf size-related traits to soil water content was studied on leaf 9 
which emerged while the different soil water deficit treatments 
started to be compared (Fig. 1). Final leaf 9 area was maximal 
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for the two highest levels of soil water content, i.e. 1.6 and 1.4 g 
H2O g–1 dry soil (Fig. 8A), and it decreased with decreasing val-
ues of soil water content (Fig. 8A). From 1.4 to 0.6 g H2O g–1 

dry soil, final leaf 9 area was decreased from 321.3 ± 17.1 to 
83.9 ± 12.9 cm2. The reduction of final leaf 9 area induced by the 
most severe water deficit treatment (with decreasing soil water 
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content without re-irrigation) (see Fig. 1) was comparable with 
that induced by the 0.6 g H2O g–1 dry soil treatment (Fig. 8A). 
This result is consistent with the time course of soil water deple-
tion (Fig. 1) showing that soil water content did not reach the 
0.6 g H2O g–1 dry soil threshold before 12 d after leaf 9 emer-
gence, suggesting that these two treatments did not really differ 
during a large part of leaf 9 development. Mean epidermal cell 
number in leaf 9 was maximal for the highest level of soil water 
content, i.e. 1.6 g H2O g–1 dry soil (Fig. 8B), and it decreased 
with decreasing values of soil water content from 1.6 to 1.2 g 
H2O g–1 dry soil. It did not decrease any further with lower val-
ues of soil water contents (Fig. 8B). Mean epidermal cell area 
was maximal for the two highest levels of soil water content, i.e. 
1.6 and 1.4 g H2O g–1 dry soil (Fig. 8C), and it decreased with 
decreasing values of soil water content (Fig. 8C). The range of 
epidermal cell area was reduced in leaves of plants grown at the 
lowest soil water contents (Fig.  8C). Considering each leaflet 
independently, the dose responses to soil water contents of all 
these traits were identical to those observed at the whole-leaf 
scale (Supplementary data Fig. S2).

Reducing the soil water content also induced a shift of the 
distribution of the DNA ploidy level in leaf cells towards the 

lowest C values (Fig. 9). The highest proportion of cells was 
found in 8C (44.3 %), 4C (47.4 %) and 2C (72.2 %) for the 
well-watered condition, the moderate water deficit treatment 
and the severe water deficit treatment, respectively (Fig. 9).

Altogether, these results show that the drought stress effect 
on tomato leaf area is related to reductions in cell number, cell 
size and the level of endoreduplication within the leaf. Here 
again, effects reported at the whole-leaf scale are the same as 
those reported considering the different leaflets forming the 
compound leaf.

DISCUSSION

The PHENOPSIS automaton ensured that tomato plants were 
grown in rigorously controlled and comparable conditions

Plant phenotyping platforms with automatic weighing/water-
ing stations have been developed by many groups over the 
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past 20  years, both in the greenhouse, where plant microcli-
mate is not precisely controlled, and in the growth chamber, 
where it is possible to ensure more homogeneous air tempera-
ture, air humidity, light quality and light intensity. In most 
cases, platforms in growth chambers were developed for small 
plants grown in small pots, ensuring high-throughput analyses 
(Granier et al., 2006; Skyricz et al., 2011; Tisné et al., 2011; 
Flood et al., 2016; Pavicic et al., 2017). In contrast, most plat-
forms in the greenhouse have been developed for larger pots 
suited for different crops also at high throughput thanks to less 
space limitation (Sadok et al., 2007; Nagel et al., 2012; Coupel-
Ledru et  al., 2014). The chamber used for the present study 
was equipped since 2004 with the PHENOPSIS automaton 
which allows adjustiment of the soil water content per pot as 
a function of plant transpiration and soil evaporation (Granier 
et al., 2006). The PHENOPSIS automaton has been used until 
now for small pots, but it was adapted here to manage larger 
pots more suitable for tomato plants and avoid the pot size 
effect on whole-plant development and functioning (as shown 
recently in Dambreville et al., 2017). The automaton was used 
to ensure (1) that soil water content was stabilized over time, 
for five treatments among seven, despite the increase in tomato 
plant size (Fig. 1); (2) that two tomato genotypes with different 
developmental rates were grown at the same soil water content 
over their whole period of development; and (3) that different 
intensities of soil water contents were imposed during tomato 
plant development. The number of plants grown together was 
equal to 52 but the throughput of the analysis can be considered 
as relatively high considering the number of leaflets (seven) 
measured on each leaf (ten from leaf 4 to 13) of each plant (52).

Changes in leaf area, leaflet area and cellular size-related traits 
in heteroblastic series support that leaflets are similar and share 
common cellular properties

Leaf size-, shape- and morphology-related traits change 
along plant shoots. Trait changes with leaf rank can be grad-
ual or more abrupt, depending on the trait itself, environmen-
tal conditions and genotypes (Zotz et al., 2011). In all cases, 
leaves can be grouped in successive classes that share common 
phenotypic properties such as the absence or presence of tri-
chomes (Hunter et al., 2003), or a set of common developmen-
tal properties (Lièvre et al., 2016). In simple leaves such as in 
A.  thaliana, tobacco or pea, morphological traits such as leaf 
area that change with leaf rank are accompanied by changes 
in cellular traits. The increase in whole leaf area with leaf rank 
is systematically paralleled by an increase in epidermal cell 
number, whereas epidermal cell area only slightly decreases 
or is unchanged (Granier et al., 2000; Cookson et al., 2007). 
This is exactly what is reported here for the tomato compound 
leaves along the first sympodial unit of the wild-type line. In 
the Wva106 plants in well-watered conditions, the progression 
of heteroblasty for the studied traits, i.e. the relative changes 
in leaf area, epidermal cell number and epidermal cell area 
from one leaf to another, paralleled the progression reported 
for Col-0 plants of A.  thaliana for the same traits (Cookson 
et al., 2007; Lièvre et al., 2016). In addition, we did not find 
any changes in endoreduplication with leaf rank. Considering 

the individual leaflets of a leaf, it was possible to show that the 
seven individual leaflets of a given leaf shared the same cellu-
lar properties in terms of final area, epidermal cell number and 
size, and endoreduplication. This supports the theory that leaf-
lets can be considered as sub-divisions of the leaf they belong 
to (Kaplan, 1975). This is an important result since a single 
leaflet can be used as representative of the whole leaf for leaf 
growth phenotyping studies, at least in tomato, thereby greatly 
simplifying the framework of analyses. The robustness of this 
result was shown here for different leaves of a plant, compar-
ing two genotypes with different leaf development and plants 
growing under drought stresses of different intensities.

Epidermal cell number and size contributions to the plasticity 
of tomato compound leaf area: what about the compensation 
mechanism described in simple leaves?

The quasi-parallel changes in leaf area and epidermal cell 
number along the plant shoot in simple leaves and reported 
here for compound leaves of two different tomato genotypes is 
consistent with the old traditional view that leaf development 
could be driven by cell cycle-associated processes. Cells could 
accumulate by divisions occurring in particular regions of the 
leaf and would drive morphogenesis and determine the final 
shape and size of the leaf by cell expansion (Fleming, 2007). 
Soil water deficit treatments also support this view. The drought 
treatments were applied here during whole leaf development 
and reduced both the number of cells produced by division and 
their subsequent expansion, as shown previously for the simple 
leaves of both A. thaliana and oilseed rape (Baerenfaller et al., 
2012; Dambreville et al., 2017).

Over the past 20 years, this picture of plant organ growth the-
ory was disturbed by the observation of the compensation phe-
nomenon in leaf morphogenesis, i.e. an abnormal increase in 
cell volume triggered by a decrease in cell number. It suggested 
the existence of integration systems linking levels of cell prolif-
eration and cell expansion (Tsukaya, 2002; Ferjani et al., 2007). 
In addition, an opposite type of compensation has also been 
described, i.e. enhanced cell proliferation caused by defective 
cell expansion (Usami et  al., 2009) and has been associated 
with developmental phase changes at the plant scale (Hisanaga 
et al., 2015). Both types of balance between cell number and 
size (compensation and its opposite type) were observed in our 
study in two different contexts: (1) the heteroblastic changes 
in leaf cellular components along the sympodial unit, with the 
increase in cell number accompanied by a decrease in cell size 
and followed by a plateau for both variables; (2) the SlCCS52A 
loss of function, with the decrease in epidermal cell number 
in the basal leaves of the sympodial unit accompanied by an 
increase in epidermal cell area in the same leaves, whereas the 
reciprocal is observed in the highest leaves.

Total ‘balance’ between cell number and size would have led 
to unchanged leaf area along the sympodial unit and/or between 
both genotypes. At the leaf scale, the spatial variability in final 
area along the sympodial unit and/or the genetic variabil-
ity observed when comparing the Pro35S:Slccs52AAS line with 
the wild type both reflect that these balances were partial in 
our study.



Koch et al. — Leaf area plasticity in tomato 1183

Surprisingly, our results highlighted a total compensation 
at the scale of the whole sympodial unit when comparing all 
phenotypic traits between the Pro35S:Slccs52AAS line and the 
wild type. The transgenic line was previously reported to have 
a slow developmental rate at the whole-plant scale and small 
fruits (Mathieu-Rivet et  al., 2010). The slow aerial develop-
mental rate was observed during our experiment (not shown). 
When compared per leaf, the leaf size-related traits phenotype 
was difficult to interpret and depended on leaf rank. For each 
trait, changes from leaf 1 to the upper leaf were steeper in the 
Pro35S:Slccs52AAS line than in the wild type, i.e. leaf area and 
epidermal cell number increased more steeply, while epider-
mal cell area decreased more steeply. Finally, at the scale of 
the sympodial unit, both genotypes reached the same cumula-
tive leaf area, epidermal cell number and epidermal cell area. 
A few studies have suggested that leaf size-related traits at the 
scale of the leaf could be controlled at the whole-plant scale. 
Negative relationships between the number of leaves produced 
by a determinate plant and the number of epidermal cells per 
leaf have been reported in a recombinant inbred line of Aegilops 
tauschii and A. thaliana (Ter Steege et al., 2005; Tisné et al., 
2008). To our knowledge, the data set presented here is the 
first one allowing cumulating traits of the different leaves. It is 
possible that such compensation occurred in other studies, but 
was not revealed because of the absence of measurement of all 
leaves along a shoot.

Additional evidence that no simple direct link exists between the 
endoreduplication-dependent increase in the ploidy level and 
enhanced cell enlargement

Cell size increase in plants is driven by two independent pro-
cesses: cell growth, the increase in total cytoplasmic macro-
molecular mass; and cell expansion, the increase in cell volume 
through vacuolation (Breuer et al., 2010). As expected, highly 
polyploid nuclei (resulting from endoreduplication) are often 
associated with increased cell size via increased cell growth 
(Sugimoto-Shirasu and Roberts, 2003; Lee et  al., 2004). In 
our study, cell size was modified by leaf rank along the first 
sympodial unit, as previously shown for other plants with sim-
ple leaves (Ashby, 1948; Granier and Tardieu, 1998; Cookson 
et al., 2007; Tisné et al., 2011). However, the distribution of 
DNA ploidy cell levels did not change from one leaf rank to 
another along the sympodial unit. In contrast, the systematic 
decrease in cell size caused by moderate and severe drought 
treatments imposed here was accompanied by a shift towards 
a low value of the DNA ploidy cell level, as reported for many 
environmental factors (Scholes and Paige, 2015). Altogether, 
our results provide new evidence that the relationship between 
the level of ploidy and cell enlargement is not direct and that 
the two processes can be uncoupled to some extent (Tsukaya, 
2013, 2014).

Conclusions

Comparing final leaf area, epidermal cell number and epi-
dermal cell size progression along the first sympodial unit of 
two tomato genotypes with different heteroblastic progressions 

highlighted a combination of compensating mechanisms 
between epidermal cell number and size. These compensations 
were associated not only with the development of the individ-
ual leaf itself but also with whole plant development, as previ-
ously suggested for plants with simple leaves (Massonnet et al., 
2011). Endoreduplication distributions did not vary between 
leaves, showing that endoreduplication can be uncoupled from 
cell expansion as for simple leaves (Tsukaya, 2014). However, 
the compensation phenomena between cell number and size 
and the uncoupling of endoreduplication and cell size reported 
in the heteroblasty context were no longer observed when leaf 
area variability was caused by soil water deficits with different 
intensities. In contrast to the gradients reported along the shoot 
for the different traits studied here, the different leaflets along 
the rachis of the same leaf are identical in terms of final area, 
epidermal cell number and size, and distribution of endoredu-
plication, suggesting that they share common properties, can 
be representative of the leaf they belong to and can be used as 
individuals for phenotyping purposes, at least for tomato.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Figure  S1: ploidy 
level distribution as measured by flow cytometry in a young 
tomato leaf used as a standard. Figure S2: soil water content 
dose response of leaflet size-related traits in Wva106 plants 
grown in five different stable soil water contents and one severe 
water deficit treatment.
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