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Abstract

Arterial Spin Labeling (ASL) MRI is increasingly used in research and clinical settings. The 

purpose of this work is to develop a cloud-based tool for ASL data processing, referred to as ASL-

MRICloud, which may be useful to the MRI community. Different from existing ASL toolboxes 

that are based on software installation on user’s local computer, ASL-MRICloud uses a web 

browser for data upload and results download, and the computation is performed on the remote 

server. As such, this tool is independent of user’s operating system, software version, or CPU 

speed. The ASL-MRICloud tool was implemented to be compatible with data acquired by 

scanners from all major MRI manufacturers, is capable of processing several common forms of 

ASL, including pseudo-continuous ASL and pulsed ASL, and can process single-delay and multi-

delay ASL data. The outputs of ASL-MRICloud include absolute and relatively values of cerebral 

blood flow (CBF), arterial transit time (ATT), voxel-wise masks indicating regions with potential 

hyper-perfusion and hypo-perfusion, and an image quality index. The ASL tool is also integrated 

with T1-based brain segmentation and normalization tool in MRICloud to allow generation of 

parametric maps in standard brain space as well as region-of-interest values. The tool was tested 
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on a large dataset containing 309 ASL scans as well as on publically available ASL data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

Arterial Spin Labeling (ASL) MRI is increasingly used in research and clinical settings. The 

purpose of this work is to develop a cloud-based tool for ASL data processing, referred to as ASL-

MRICloud, which may be useful to the MRI community. Different from existing ASL toolboxes 

that are based on software installation on user’s local computer, ASL-MRICloud uses a web 

browser for data upload and results download, and the computation is performed on the remote 

server.
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1. INTRODUCTION

Arterial spin labeling (ASL) MRI is a noninvasive method to quantify hemodynamic 

parameters such as cerebral blood flow (CBF). This technique is increasingly used in studies 

of brain function, physiology, and neurological and psychiatric diseases. All major MRI 

manufacturers now provide ASL MRI as part of their product portfolio. Major multi-site 

studies such as Alzheimer’s Disease Neuroimaging Initiative (ADNI),1 Adolescent Brain 

Cognitive Development (ABCD),2 and UK Biobank study3 have also included ASL MRI in 

their scan protocol.

As acquisition of ASL perfusion data becomes more accessible to the broader imaging 

community, processing of ASL data emerges as a timely issue. ASL is a specialized pulse 

sequence and its signal is determined by a kinetic model that describes the time-dependence 

of arterial spins as they travel to capillary and tissue. Many potential users of ASL such as 

radiologists, neurologists, psychiatrists, and neuroscientists may not have the expertise to 

carry out these sophisticated modeling procedures. Therefore, a turnkey solution for ASL 

data processing is expected to significantly facilitate the wide application of this promising 

technique.

In this work, we developed a cloud-based tool for ASL data processing, termed as ASL-

MRICloud. This tool is based on the infrastructure of MRICloud.org.4,5 Compared with 

other existing ASL toolboxes,6–11 which are based on local computing, ASL-MRICloud is 

based on cloud computing. The cloud-based tool uses computational and storage resources 

on a remote server and the user only needs to upload the raw data to the server using a 
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webpage. ASL processing is ideally suited for cloud computing because analysis of ASL 

data does not require frequency user adjustments or interactive inputs. The main strengths of 

this tool are that it does not depend on local computer operating system, does not require 

installation of any software, places no constraints on the CPU or memory capacity of the 

local computer, and that the developer rather than the user will take the responsibility of 

software upgrade.

The ASL-MRICloud tool was implemented to be compatible with data acquired by scanners 

from all major MRI manufacturers. Given the presence of multiple ASL variants, our tool 

was made to be capable of processing several common forms of ASL scheme, including 

pseudo-continuous ASL (PCASL), pulsed ASL (PASL), and multi-delay ASL. The ASL-

MRICloud tool is also compatible with background suppression schemes as well as multi-

slice and 3D acquisitions, which require slightly different equations in perfusion 

quantification. A quality control index is also provided by the tool. Furthermore, an 

important advantage of our tool is that the processing of ASL data is integrated with a 

sophisticated T1-based multi-atlas brain segmentation tool in the MRICloud platform. 

Consequently, the outcome CBF results are presented in Montreal-Neurologic-Institute 

(MNI) template space with regional values of up to 289 standard brain structures, which can 

readily undergo statistical analysis. This article provides a description of the ASL-

MRICloud tool in terms of its functionalities, main algorithms used in the pipeline, typical 

steps to use it, and representative results, so that users of the tool can find the exact 

algorithms used in the processing and can refer to these technical details in their scientific 

reports.

2. METHODS

2.1 General concept of ASL-MRICloud

The framework of the ASL-MRICloud is illustrated in Figure 1. The proposed ASL-

MRICloud with an option of the T1 multi-atlas brain segmentation is highly computing 

intensive. Instead of performing computational analysis of the ASL data on the user’s local 

computer, the tool places the computational and programming burden on our internal or 

publicly available computation resources such as Computational Anatomy Gateway via 

XSEDE (www.xsede.org) (Figure 1). To start, the user only needs to upload the ASL data 

onto the server using a web browser and click the submit button. Then, a few minutes later, 

quantitative perfusion outcomes will be available for download. The user can then download 

the outcomes and conduct their study-specific statistical analysis. For the software upgrade 

and maintenance, the developers will take the responsibility and free the user from installing 

updates or patches. The deployment of the software is conducted in a version-controlled 

manner. That is, when a new version is released, it will have a specific version number and 

all older versions are still available on the ASL-MRICloud.

2.2 Major steps of using ASL-MRICloud

When the user browses the ASL-MRICloud website, https://braingps.mricloud.org/asl.v4, a 

main page, shown in Figure S1, is displayed. The user is requested to complete the following 

steps:
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Step 1. Upload the ASL file. At present, the required file format is ANALYZE 

(.hdr and .img). This is because this file format does not contain Patient 

Health Information (PHI), thus it is compatible with Health Insurance 

Portability and Accountability Act (HIPAA) regulations.

Step 2. Upload an optional equilibrium magnetization (M0) file. Information of M0 

is necessary for quantitative estimation of CBF in the unit of ml/100g/min. 

If an M0 image was acquired in the experiment, the user should upload the 

file in this step. If the M0 image is already incorporated in the ASL data file 

(usually the first or last volume of the scan), then no additional files are 

needed. If an M0 image was not acquired, the user can skip this step. The 

processing algorithm (described below) will use the ASL data to estimate 

M0.

Step 3. Upload an optional T1 anatomic file. Most research requires the CBF image 

to be registered to high-resolution anatomic space or standard template, e.g. 

MNI, space. Therefore, the tool gives the user an option to upload a high-

resolution T1 data set for registration and normalization purposes.

Step 4. Provide imaging parameters. The user is requested to select or provide 

sequence information that is necessary for CBF quantification. This 

includes the type of ASL sequence (e.g. PCASL or PASL), the order of 

data presentation (control first or label first), image acquisition method (2D 

or 3D), labeling duration, post-labeling delay, background suppression 

timings, as well as assumptions necessary in the kinetic model such as 

blood T1, brain-blood-partition coefficient, and labeling efficiency. Some of 

these imaging parameters are quite technical and may require the user to 

consult with their MR physicist to obtain these values. However, they will 

only need to do this once in the entire analysis because most likely the 

same sequence parameters are used in all data sets in their study.

2.3 Major functionalities of ASL-MRICloud

2.3.1 Quantification of CBF using single-delay ASL—The processing pipeline of 

single-delay ASL is illustrated in Figure 2. The ASL image series is corrected for motion, in 

which all control and label images are aligned to their respective first time point.12 The 

difference images (i.e. control-label) are then calculated. Next, information about M0 is 

determined. If the user has uploaded an M0 image, a voxel-by-voxel M0 map is used. To 

alleviate partial voluming effects in voxels near brain boundary which result in low signal 

intensity, the M0 image is smoothed by a 3×3×3 kernel before being used for voxel-wise 

division. Additionally, in cases when the uploaded M0 image was acquired with a TR of less 

than 5 seconds, the image will be adjusted for T1 recovery before being used as M0 map. If 

an M0 image is not uploaded, a global M0 will be used in CBF quantification. The pipeline 

will estimate the equilibrium magnetization from the control images, after accounting all RF 

pulses present in the pulse sequence and by assuming a tissue T1. However, it should be 

noted that a global M0 may introduce some bias in CBF estimation due to inhomogeneous 

distribution of proton density and T2*.
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The quantification of CBF follows models described in the ASL white paper.13 Specifically, 

voxel-wise CBF value is obtained by

f =
6000 ∙ λ ∙ R1a

2α ∙ Δ M
M0

∙ e
PLD ∙ R1a

1 – e
–τ ∙ R1a

[1]

for PCASL and

f = 6000 ∙ λ
2α ∙ τ ∙ Δ M

M0
∙ e

PLD ∙ R1a [2]

for PASL. In Eqs. [1] and [2], f  is the CBF in mL/100 g/min, λ is the brain/blood partition 

coefficient in mL/g, Δ Mis the difference signal intensity between control and label images, 

R1a = 1/T1a is the longitudinal relaxation rate of artery blood in Hz, α is the labeling 

efficiency, and τ is the labeling duration in seconds, and PLD is the post-labeling delay.

The single-delay ASL data can also be processed in a batch mode, in which up to 10 data 

sets can be uploaded and processed at once.

2.3.2 Quantification of CBF and ATT using multi-delay ASL—The processing 

pipeline of multi-delay ASL is illustrated in Figure 2. Pre-processing steps of motion 

correction and control-label subtraction were similar to that of single-delay ASL. In 

particular, within each PLD, the repetitions are realigned to their first time point. Then, in 

order to realign images from different PLDs, the first repetition of each PLD is registered to 

the first repetition of the first PLD, generating PLD-specific transformation matrix (affine 

transformation). The transformation matrix is then applied to realigned repetitions within 

each PLD, respectively. For M0 determination, if an M0 image is not uploaded, the pipeline 

will use the ASL data to estimate a voxel-by-voxel M0 map. In the case of PCASL, the M0 

map is obtained by fitting the control signals as a function of PLD to a saturation recovery 

equation. In the case of multi-delay PASL which is sometimes acquired using a Look-

Locker acquisition scheme, the control signals is fitted to a slightly different equation to 

account for the Look-Locker acquisition:14,15

Mcontrol PLD = Mss ∙ 1 – e
–R1e f f ∙ PLD

[3]

in which Mss = M0 ∙ 1 – e
–R1 ∙ PLD

1 – cosθ ∙ e
–R1 ∙ PLD  and R1e f f = R1 – ln cosθ

Δ PLD , theta is the excitation flip 

angle, and ΔPLD is the interval between excitation pulses.

For quantification of CBF and ATT from the multi-delay ASL data, the signals are fitted to a 

kinetic model using a nonlinear least-square curve fitting with trust-region-reflective 
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algorithm.16,17 Specifically, for multi-delay PCASL, the signals are fitted to the following 

equations:

Δ M PLD
M0

=  

0, 0 < PLD + τ < τa

2α ∙ f
6000 ∙ λ ∙ R1app

∙ e
–R1a ∙ τa ∙ 1 – e

–R1app ∙ PLD + τ–τa , τa ≤ PLD + τ < τ + τa

2α ∙ f
6000 ∙ λ ∙ R1app

∙ e
–R1a ∙ τa ∙ e

–R1app ∙ PLD–τa – e
–R1app ∙ PLD + τ–τa , PLD + τ ≥ τ + τa

[4]

in which R1app = R1 + f
λ , where R1 is the longitudinal relaxation rate of tissue in Hz, and τa

is the ATT. For multi-delay PASL with look-locker acquisition, the signals are fitted to the 

following equations:

Δ M PLD
M0

=

0, PLD < τa

2α ∙ f
6000 ∙ λ ∙ δR ∙ e

δR ∙ PLD–τa – 1 ∙ e
–R1a ∙ PLD

, τa ≤ PLD < τd

2α ∙ f
6000 ∙ λ ∙ δR ∙ e

δR ∙ PLD–τa – 1 ∙ e
–R1a ∙ τd ∙ e

–R1app, e f f ∙ PLD–τd , PLD ≥ τd

[5]

in which δR = R1a – R1app, e f f ,  R1app, e f f = R1 + f
λ – ln cosθ

Δ PLD , and τd is the duration from 

labeling pulse to the time when the trailing edge of the label reaches the imaging voxel. A 

voxel-by-voxel fitting of the signals to these equations then yields maps of CBF, ATT, and 

τd.

2.3.3 Presentation of ASL results in anatomic and template spaces—If a T1 

data set has been uploaded, the ASL control image will be coregistered to the individual T1 

space using a 12-parameter affine transformation, which is also applied to the parametric 
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maps, e.g. CBF and ATT. Furthermore, all images will be normalized to the MNI space by 

applying an elastic transformation determined by the T1-MRICloud tool.

Finally, since the T1 data set also contain parcellation results of the individual brain, regional 

CBF values up to 289 ROIs will be obtained.

2.3.4 Examination assistance indices—To aid users to conduct further examinations 

of the CBF maps, we provide two additional indices on each data set. One is an ASL image 

quality index (QI), which is a categorical scale that indicates the general SNR of the data 

ranging from 1 (Excellent) to 4 (Poor). To calculate the image QI, voxel-wise standard 

deviations of the ASL difference images were first computed across repetitions, and were 

divided by the square root of repetitions to account for the benefit of averaging. Next, these 

values were averaged across the whole-brain and divided by whole-brain averaged 

difference signals. Finally, the continuous values were converted to a categorical scale (i.e. 1, 

2, 3, or 4) based on predefined thresholds: 0.0 to 0.47 corresponds to 1; 0.47 to 0.73 

corresponds to 2; 0.73 to 1.00 corresponds to 3; 1.00 and above corresponds to 4. It should 

be pointed out that ASL data with higher resolution tend to result in lower voxel-wise SNR 

and thus lower QI. We further validated the QI by comparing it to the manual ratings of an 

expert ASL researcher in a large CBF database consisting of 309 healthy volunteers ranging 

from 20 to 89 years old.18

The second index is a voxel-wise Z-score map that indicates potential hyperperfusion and 

hypoperfusion regions, referred to as perfusion abnormality (Abnorm) map. We first 

established expected CBF and its normal variation by calculating voxel-by-voxel 

distributions of relative CBF in our database of 309 healthy volunteers and obtained voxel-

wise maps of mean and standard deviation. For a new CBF map that the user uploads, we 

can then calculate a map of Z-scores based on the mean and standard deviation of the 

healthy subjects. Due to the limited sample size, we did not further divide our database of 

309 healthy volunteers into age-specific sub-groups. We also did not separate the database 

by genders because a voxel-wise comparison (data not shown) suggested that males and 

females have no systematic difference in relative CBF maps. The Abnorm index was tested 

on ASL data from Moyamoya patients with arterial stenosis.

2.3.5 Experimental data used to test the tool—The single-delay ASL pipeline was 

tested using PCASL data acquired in a previous aging study18,19 and PASL data acquired in 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). For 

the PCASL data, the participants consisted of 309 healthy volunteers aged from 20 to 89 

years old (average age 54±19 years, 114 males, 195 females). The imaging parameters were: 

FOV = 240×240 mm2, matrix = 80×80, multi-slice acquisition with 27 axial slices acquired 

in an ascending fashion, thickness = 5 mm, TR/TE = 4020 ms/14 ms, labeling duration = 

1650 ms, post-labeling delay of the lowest slice = 1525 ms, single-shot echo-planar imaging 

(EPI), 30 pairs of label and control images, and duration = 4 min. For the PASL data, 

baseline scans from ADNI 3 participants were used. This cohort included 29 cognitively 

normal elderly (average age 72±8 years, 8 males, 21 females). ASL data were acquired 

using the Siemens product PICORE sequence.20 The imaging parameters were: FOV = 

256×256 mm2, matrix = 64×64, multi-slice acquisition with 24 axial slices, 4 mm thick 
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slices with a 25% gap between the adjacent slices, TR/TE = 3400/13 ms, TI1/TI2 = 

700/1900 ms. The first volume of the 105 ASL acquisitions was used as the M0 image.21

The multi-delay ASL pipeline was tested using data acquired in five healthy volunteers 

(average age 25±2 years, 2 males).22 The multi-delay PCASL used the following imaging 

parameters: FOV = 180×180 mm2, matrix = 64×64, single-slice acquisition, labeling 

duration = 1500 ms, seven PLDs = 100 ms, 600 ms,1100 ms, 1600 ms, 2100 ms, 2600 ms, 

3100 ms, 4 pairs of label and control images for each PLD, scan duration = 4 min 35 sec. 

The multi-delay PASL Look-Locker technique used a QUASAR labeling scheme,23 with 

following imaging parameters: initial PLD = 40 ms, ΔPLD = 300 ms, non-crushed 

acquisition, 13 PLDs, flip angle = 35°, 24 averages, scan duration = 3 min 12 sec.

The algorithm to identify abnormal perfusion territories was tested using ASL data collected 

from patients with a steno-occlusive disease, Moyamoya disease.24 Seven patients (average 

age 39 ± 10 years, 1 male and 6 females) were studied using the following imaging 

parameters: 2D multi-slice acquisition, labeling duration = 1650 ms, post-labeling delay = 

1525ms, TR/TE = 4260 ms/14 ms, FOV = 240×240×145.5 mm3, voxel size 3×3×5 mm3, 29 

axial slices without gap, 40 pairs of control and label images, scan duration = 5 min 40 sec.

3. RESULTS

3.1 Single-delay ASL

Figure 3 shows CBF maps generated from a representative single-delay PCASL data set. 

The outcomes include absolute (in mL/100 g/min) and relative (with reference to whole-

brain CBF) CBF maps in each of the following spaces: individual ASL space, individual T1 

space, and MNI space. Figure S2 shows region-of-interest (ROI) results. Three levels of 

brain parcellations are provided, which divide the brain into 19, 54, and 289 ROIs, 

respectively. Average CBF of the whole brain (including both gray matter and white matter) 

was 42.2±7.4 mL/100 g/min. For the PASL data from the ADNI 3 elderly participants, 

average CBF of the whole brain was 30.1±8.6 mL/100 g/min, which is consistent with the 

findings in previous ADNI publications.21

Additionally, the motion vectors are also provided in the outcome files. All outcomes of the 

ASL-MRICloud are downloadable through a .zip file.

3.2 Multi-delay ASL

A representative multi-delay PCASL data set is shown in Figure 4. Figure 4a shows 

difference images, i.e. control-label, as a function of PLD. Figure 4b displayed an M0 map 

that was obtained from fitting the control images to a saturation recovery curve. Figure 4c 

shows CBF and ATT maps from the kinetic model fitting. Figure 4d illustrates ROI results 

from a gray matter and a white matter ROI. Average CBF and ATT were 58.4±7.2 mL/100 

g/min and 1250±289 ms, respectively (N=5).

Figure 5 shows a representative data set using multi-delay PASL. Average CBF and ATT 

were 53.1±11.0 mL/100 g/min and 1072±66 ms, respectively.
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3.3 Examination assistance indices

Figure 6a shows four representative CBF images, one for each QI category. It can be seen 

that, as the QI becomes larger, the quality of the CBF images is increasingly degraded. The 

QI can be used as a reference for the user to decide if the data set should be excluded from 

group analysis. We validated the QI by comparing it to manual ratings conducted by an 

experienced ASL researcher. Figure 6b shows a scatter plot between the automatic QI scales 

and the manual ratings. Noting that the ratings are given in integers, we use the size of the 

circle to represent the number of data points that overlapped on certain integer coordinates. 

A strong correlation (r = 0.82) was observed.

Figure 7a shows an example of the Abnorm index map in a patient with Moyamoya disease, 

in whom both hypoperfusion (due to ischemia) and apparent hyperperfusion (due to delayed 

bolus clearance) are present. Figure 7b summarizes the volume ratio of abnormal perfusion 

region to whole brain from seven Moyamoya patients, where data was acquired in a previous 

published study.24

4. DISCUSSION

In this work, we developed ASL-MRICloud, a cloud-based tool for ASL data processing, 

which may be useful to the community in view of the increasing use of ASL in research and 

clinical settings. ASL-MRICloud employs a web interface for uploading data and 

downloading results, provides a fully automated analysis pipeline, and is capable of 

processing both single-delay and multi-delay ASL data.

4.1 Features of ASL-MRICloud

An important feature of the cloud-based analysis methods is that the user does not have to 

install the software on their local computer thus there is no burden on version or operating 

system compatibility. The tool also facilitates the dissemination of shared high-end 

computational resources, and the user does not have to be constrained by CPU and memory 

capacity of their own computer. In addition, the cloud-based analysis methods allow more 

efficient implementation of software updating and bug fixing. Finally, since the 

quantification of CBF is based on recommendations made in the ASL consensus paper, it 

can potentially promote standardization of ASL processing in the community.

Another useful feature associated with ASL-MRICloud is that this tool is closely integrated 

with other toolboxs on MRICloud, most notably the T1-MRICoud tool. The output from the 

T1 tool can thus be directly used by the ASL-MRICloud for registration purposes. The 

benefit of this integration is that CBF maps in the individual space can be automatically 

normalized into the MNI-space and that ROI CBF values will also be available. These 

outcome variables can then be readily used for study-specific statistical analyses.

To our knowledge, our group was among the first to implement cloud-based MRI processing 

tools in the community.5,25,26 Since its conception in 2014, more than 30,000 processing 

jobs have been submitted through MRICloud. For ASL-MRICloud, since this tool was 

launched in 2016, approximately 3,000 jobs from outside our institution have been 
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submitted and processed. Several research studies that used ASL-MRICloud has been 

published in scientific journals.19,27

4.2 Comparison with other ASL processing software

Several other ASL processing programs have been developed. The ASL toolbox is a 

MATLAB-based script tool that is capable of providing CBF quantification, spatial 

normalization, and group analysis.6 In addition, the ASL toolbox also includes outlier 

elimination function, as well as cortex activation detection in functional ASL data.28 This 

tool requires functions from a MATLAB-based software SPM. The user is also required to 

have basic MATLAB programming skills and several steps of the processing require manual 

operation. Another ASL processing package that is based on Linux operating system is 

BASIL,7 one of the toolboxes from the Functional Software Library (FSL) suite. BASIL is 

based on Bayesian inference principles and was primarily developed for multi-delay ASL 

data. The package provides functions for estimation of perfusion and bolus arrival time, 

spatial regularization, and partial volume correction, without relying on a MATLAB 

environment. The use of this tool requires command line inputs and multi-subject processing 

is not feasible on the graphic interface. Another tool, Automatic software for ASL 

processing (ASAP),11 is a MATLAB-based package that wraps scripts into a user-friendly 

interface and is not based on command line. In addition to the above-mentioned toolboxes 

that provide comprehensive processing of ASL MRI data, several algorithms aiming to 

improve specific processing steps have also been proposed, such as Enhancement of 

Automated Blood Flow Estimates (ENABLE) for eliminating poor volumes of ASL signal,
29 and Voxel-Wise Functional Connectomics for functional ASL denoising.9

4.3 Protection of health information

Compared to ASL processing tools that are installed on local computers, ASL-MRICloud 

requires the user to upload their raw MRI data to a cloud server for processing. Thus, it is 

necessary that protected health information (PHI) is removed before uploading. In the 

current implementation, this requirement is met by using ANALYZE format in the file 

uploading. For users who only have DICOM files, we developed a converter software 

(written in C++) that removes the PHI from the DICOM data and save the de-identified data 

in ANALYZE file format.

Some countries prohibit researchers from sending certain medical data to foreign countries. 

Our processing servers are currently located in USA. Such regulations could vary depending 

on countries and the nature of the data (e.g. whether the data were originated from clinical 

data or research data or with or without consent forms). In general, regulations are stricter 

for data originally acquired for clinical purposes. Readers are advised to consult with 

administrators before sending such data to our cloud services.

4.4 Limitations

One limitation of ASL-MRICloud is that it did not build in the flexibility for the user to 

adjust steps in the workflow. For example, some user may prefer some spatial smoothing of 

the data, but this is not feasible in the current implementation. We made this decision based 

on considerations of a tradeoff between flexibility and complexity. Another limitation is that 
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there is an upper limit on the batch size, i.e. 10 data sets, the user can upload each time. This 

restriction was applied in consideration of the uploading size, preventing prolonged 

uploading time or upload abortion due to interrupted internet connection. Even with the 

current batch limit, we sometimes receive reports from our users that the time it takes to 

upload the data was excessive in certain part of the world. Therefore, we feel that a batch 

size of 10 is appropriate for our tool. For studies with large subject number, the user only 

needs to divide the data sets into several batches. A third potential limitation of ASL-

MRICloud is that only the most common forms of ASL schemes were currently 

implemented. Future work will consider the inclusion of other promising ASL sequeunces 

such as velocity selective ASL,30,31 Hadamard time-encoded ASL,32–34 and MR 

fingerprinting ASL. 22,35

5. CONCLUSION

We have developed an online processing tool for ASL MRI data, referred to as ASL-

MRICloud. The tool is web-based and the processing is automatic. Use of the tool does not 

require installation of software on the local computer. We demonstrated that ASL-MRICloud 

can provide quantitative CBF maps in both individual and standard space as well as ROI 

CBF values in major brain structures. ASL-MRICloud may be a useful tool for ASL MRI 

data processing in clinical and research settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General framework of the ASL-MRICloud platform. The user interacts with a web server 

computer to upload their image data and submit the job. The web server computer in turn 

transfers the data to on-site computers inside Johns Hopkins University (JHU) for computing 

and processing (green solid arrow). When necessary, supercomputing resources outside the 

JHU will be used (orange dash arrow), in which the uploaded image data are placed in a 

queue via FTP and transferred to a supercomputing resource via a monitoring server. Once 

the processing is completed, the results are available to the user for download through the 

web server.
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Figure 2. 
Major processing steps implemented in ASL-MRICloud. Both single-delay and multi-delay 

ASL data can be processed with our tool. Red boxes represent processing steps when a T1-

weighted anatomic image is not uploaded. Blue boxes represent the additional processing 

steps when a T1 image is uploaded, which provides parametric maps in the MNI-space.
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Figure 3. 
Representative output images of ASL-MRICloud. CBF maps in multiple spaces are 

generated.

Li et al. Page 16

NMR Biomed. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Multi-delay pseudo-continuous ASL (PCASL) data processing. (a) ASL difference images 

as a function of post-labeling delay (PLD). (b) ASL control images as a function of PLD, 

which is used to estimate M0. (c) Output images of CBF and ATT computed by ASL-

MRICloud. (d) Representative regional signals in the gray (red ROI in M0 map) and white 

matter (blue ROI in M0 map) and the corresponding model fitting curves.
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Figure 5. 
Multi-delay pulsed ASL (PASL) data processing. (a) ASL difference images as a function of 

post-labeling delay (PLD). (b) ASL control images as a function of PLD, which is used to 

estimate M0. (c) Output images of CBF and ATT computed by ASL-MRICloud. (d) 

Representative regional signals in the gray (red ROI in M0 map) and white matter (blue ROI 

in M0 map) and the corresponding model fitting curves.
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Figure 6. 
ASL quality index (QI). (a) Five representative CBF maps with a range of QI. In category 4, 

two CBF maps suffered from either poor labeling efficiency or motion are displayed. (b) The 

correspondence between the automatically determined QI and manual rating by an ASL 

expert (r = 0.82). A total of 309 datasets from healthy volunteers (age 20–89 years old) were 

used in calculating the plot in (b). Because the index is a discrete value and many datasets 

may be overlapping on the plot, the number of datasets for each symbol is indicated by its 

area.
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Figure 7. 
Mask indicating voxels with abnormal perfusion (Abnorm). (a) Representative Abnorm 

mask from a patient with a cerebrovascular disease, Moyamoya disease. The TOF 

angiogram shows diseased vessels (red arrows) and revascularization (green arrow). The 

CBF map under examination is compared to a template database on a voxel-by-voxel basis 

and a z-score map is obtained. Voxels with CBF values outside 99.5% of the normal 

distribution are detected and labeled. (b) A summary of the volume ratio of abnormal voxels 

within the whole brain in seven Moyamoya patients,24 compared to healthy volunteers.
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