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Abstract
Pancreatic ductal adenocarcinoma is one of the most 
aggressive solid tumours of the pancreas, characterised 
by a five-year survival rate less than 8%. Recent reports 
that pancreatic cancer stem cells (PCSCs) contribute to 
the tumorigenesis, progression, and chemoresistance 
of pancreatic cancer have prompted the investigation 
of new therapeutic approaches able to directly target 
PCSCs. In the present paper the non-cancer related 
drugs that have been proposed to target CSCs that 
could potentially combat pancreatic cancer are revi
ewed and evaluated. The role of some pathways and 
deregulated proteins in PCSCs as new therapeutic tar
gets are also discussed with a focus on selected speci
fic inhibitors. Finally, advances in the development of 
nanoparticles for targeting PCSCs and site-specific drug 
delivery are highlighted, and their limitations considered.
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Core tip: Pancreatic cancer is characterised by remar
kable resistance to treatment conferred by pancreatic 
cancer stem cells (PCSCs). Unfortunately, most con
ventional treatments are unable to eradicate tumours. 
Recent research has focused on characterising PCSCs 
to accelerate the development of novel therapeutic stra
tegies. In the present paper, we shed light on promising 
new strategies such as using non-cancer drugs as anti-
cancer therapeutics, targeting of deregulated pathways 
and proteins of PCSCs, and using nanoparticles for 
improved drug delivery.
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INTRODUCTION
Pancreatic cancer comprises many types of cancers, 
of which the most common is an infiltrating neoplasm 
named pancreatic ductal adenocarcinoma (PDAC)[1], 
which derives from the pancreatic ductal tree[2]. PDAC 
is almost always fatal, it is refractory to conventio­
nal treatments, and consequently has a documented 
five-year survival rate as low as 8%. The major driver 
genes participating in the whole process of disease 
development include KRAS, TP53, CDKN2A, and SMAD4. 
With a near 100% KRAS mutation frequency, PDAC 
is considered the most RAS-addicted of all cancers[3]. 
PDAC is also characterised by a dense tumour microen­
vironment, perineural and vascular local growth, and 
early distant metastases. In particular, it typically has 
a tendency to metastasise preferentially to the liver 
where soluble factors and extracellular vesicles deriving 
from the primary tumour contribute to form a supportive 
niche[4]. Patients seldom exhibit symptoms. Therefore, 
early diagnosis of the tumour is very difficult. Indeed, 
the majority of patients are diagnosed when metastatic 
events have occurred or during advanced-stage disease. 
For this reason, primary prevention such as avoiding 
smoking and having a fat-poor diet is important[5]. Curr­
ently, surgery coupled with chemo or radiation therapy 
is the main treatment approach although it doesn’t 
present satisfactory results[6]. Moreover, disease can 
persist or recur with local and distant metastases. Most 
patients subjected to resection of the tumour die from 
metastasis within five years[7]. Despite its low efficacy, 
gemcitabine (a pyrimidine analogue) was the first-choice 
chemotherapeutic strategy in advanced PDAC for many 
years[8]. It is effective in only 23.8% of PDAC cases[9] 
due to dense tumour stroma and scarce diffusion of 
drug and to subsequent development of gemcitabine 
chemoresistance[10].

Recently, understanding of pancreatic carcinogenesis 
has improved and some new therapeutic options have 
been suggested. For example, it has been demonstrated 
that FOLFIRINOX, a chemotherapy regimen made up 
of four drugs (folinic acid, 5-fluorouracil, irinotecan, and 
oxaliplatin), or nab-paclitaxel plus gemcitabine provide a 
survival benefit over gemcitabine alone[11]. However, we 
are still far from a substantially better life expectancy for 
patients since these new therapeutic options increase 
the median survival by only a few months.

A growing body of evidence suggests that the 
drug resistance and metastasis of PDAC are mainly 
influenced by the presence of cancer stem cells (CSCs). 
In the present paper, we aim to summarise the current 
understanding of pancreatic cancer stem cells (PCSCs) 
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and analyse and discuss therapeutic options for targeting 
PCSCs.

PCSCs
PCSCs characteristics 
It has recently been demonstrated that CSCs play 
critical roles in resistance to anticancer treatment and 
are responsible for metastasis in several human mali­
gnancies, including PDAC[12]. CSCs are rare immortal 
tumour cells, which have the ability to self-renew, pro­
duce differentiated progeny, form tumours in mice, and 
form non-adherent spheroids called tumour-spheres in 
vitro[13,14]. CSCs are more resistant than non-CSCs to che­
motherapy and radiotherapy treatments because they 
have higher expression levels of anti-apoptotic proteins, 
ABC transporters, and multidrug resistance genes[15]. 
These cells reside in a niche, a specific hypoxic/necrotic 
microenvironment that includes different cell types (each 
one possessing distinct metabolic properties), such as 
fibroblastic, immune, endothelial, and perivascular cells, 
as well as extracellular matrix components, cytokines, 
and growth factors. In this environment, CSCs protect 
and reprogramme their metabolism and respond to the 
metabolism of surrounding cells, increasing tumour gro­
wth and preserving phenotypic plasticity[14,16]. Induction 
and maintenance of CSC phenotypes are related to 
more than 20 different transcription factors, including 
NF-κB and the hypoxia inducible factors[13,17]. Moreover, 
CSCs adjust their metabolism to their microenvironm­
ent by acquiring intermediate metabolic phenotypes or 
shifting from oxidative phosphorylation (OXPHOS) to gly­
colysis/Warburg effect. CSCs are also characterised by 
a high autophagic flux, which is involved in resistance to 
microenvironment stresses, such as hypoxia, starvation, 
or anticancer treatment[18]. Thus, it has been supposed 
that autophagy plays a significant role in the resistance 
to CSCs related anticancer therapy[19]. 

Pancreatic CSCs, first described in 2007[20], represent 
less than 1% of all pancreatic cancer cells[21] and are 
responsible for PDAC tumour growth (initiation, prog­
ression, and recurrence), maintenance, metastasis, 
and chemoresistance. The origin of PCSCs remains 
unknown. The hypothesized sources are: Tissue stem 
cells or progenitor cells, stem cells derived from bone 
marrow, or dedifferentiated cells that result from gen­
etic mutation[22]. PCSCs can be identified by markers, 
such as CD133, CD24, CD44, ESA/EpCAM (epithelial-spe­
cific antigen), c-Met, ALDH1, DclK1, CXCR4, and Lgr5. 
However, a universal signature is still lacking[13,23,24]. The 
main signalling pathways of PCSCs, which are essen­
tial for self-renewal, are the epithelial to mesenchymal 
transition (EMT) process, and resistance to conventio­
nal therapies include Wnt/β-catenin, Sonic Hedgehog 
(SHH), and Notch. In addition, other biological aspects, 
such as autophagy, forkhead box protein M1 (FoxM1), 
mammalian target of rapamycin (mTOR), Bmi-1, NODAL/
ACTIVIN, NF-κB and PTEN pathways, have been shown 
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to be implicated in PCSC activity. 
Importantly, PCSCs co-exist with other cellular 

and non-cellular components that constitute the tu­
mour microenvironment (including cancer-associated 
fibroblasts, pancreatic stellate cells, and tumour-asso­
ciated macrophages). Understanding the relationship 
between PCSCs and all these components is extrem­
ely important to improve the knowledge of the PCSC 
biology[12]. Recently, it has been demonstrated that 
PCSCs are involved in highly dynamic cross-talk with the 
PDAC parenchymal cells[25] by a symbiotic relationship 
that underlies the initiation and maintenance of early 
PDAC infiltration and metastasis. In particular, the se­
cretome of PCSCs paracrinically inhibits parental cell 
growth and autocrinically stimulates their own growth 
and vascularity, while the secretome of parental cells 
both paracrinically inhibits PCSC growth and autocri­
nically inhibits their own growth. It is clear that to make 
a substantial impact on pancreatic cancer, it is necessary 
to eradicate PCSCs with targeted therapeutics[26]. For 
this reason, a complete molecular characterisation of 
PCSC biology is fundamental. Recently, we have chara­
cterised the proteome[7] and the secretome[27] of Panc1 
CSCs, demonstrating the functional role of fatty acid 
synthesis and mevalonate pathways in PCSC viability 
and identifying secreted proteins involved in cancer 
differentiation, invasion, and metastasis. Through a 
combined proteomics and metabolomics approach we 
also found that Panc1 CSCs, as compared to the par­
ental Panc1 cells, have induced expression of proteins 
and metabolites involved in glycolysis, pyruvate-malate 
cycle, folate cycle, pentose phosphate pathway, and lipid 
metabolism, and reduced expression of proteins and 
metabolites involved in the Krebs cycle, spliceosome, 
and non-homologous end joining pathway[7].

PCSCs chemoresistance 
Chemoresistance is the major obstacle to successful 
cancer treatment. Many drugs are not able to eliminate 
PDAC, which represents the primary reason for tumour 
recurrence and metastasis. PCSCs are very resistant 
and can survive conventional treatments interfering with 
the total eradication of a tumour[16,23]. The mechanisms 
involved in the chemoresistance of CSCs include the 
metabolic inactivation of the drug and efflux of the drug 
from the cells, as well as mutation or deregulation of 
the drug targets[28]. In particular, an altered drug trans­
port activity, as an over-expression of aldehyde dehydro­
genase and proteasome, and a decreased expression of 
the human equilibrative nucleoside transporters (ENTs) 
and human concentrative nucleoside transporters (CNTs), 
play a key role in the chemoresistance of PCSCs[23]. 

As previously reported, PCSCs reside in niches that 
are responsible for the protection of cancer cells, tumour 
growth, and phenotypic plasticity. Critical components 
for the ever-changing tumour microenvironment and for 
construction of CSCs niche are Wnt/RSPO (R-spondin), 
c-Jun N-terminal protein kinase (JNK), Nodal/Activin, 

Notch, or Hedgehog proteins[23]. This specific CSCs mi­
croenvironment has also been proposed to contribute 
to drug resistance.

Chemoresistance is also related to the EMT process, 
which has a fundamental role in invasive and metastatic 
behaviour in PDAC. EMT, in pancreatic cancer cells, is 
controlled by several transcription factors, such as Zeb1, 
which suppresses the adhesion molecule E-cadherin 
by repressing the miR-203 (an inhibitor of stemness) 
and the miR-200 family members (which regulate ex­
pression of stem cell factors)[29]. Accordingly, it has 
been demonstrated that the class Ⅰ HDAC inhibitor 
mocetinostat interferes with Zeb1 function, represses 
EMT, and restores the drug sensitivity of PDAC cells[30]. 
In particular, EMT contributes to enhanced resistance to 
gemcitabine because it leads to an increase in cancer 
cells with reduced expression of nucleoside transpor­
ters (ENT and CNT) that are involved in drug uptake[31]. 
Finally, it has been hypothesised that quiescence prot­
ects PCSCs from chemotherapeutic treatment, which 
usually targets rapidly proliferating cells. 

POTENTIAL THERAPIES TARGETING 
PCSCs 
It is broadly accepted that development of anti-cancer 
drugs to target determinant pathways and proteins 
of PCSCs will improve chemotherapeutic outcomes[15]. 
Eradication of these CSCs should be able to stop tumour 
progression and reduce future tumour insurgences[26,32]. 
Potential strategies to target PCSCs are discussed in the 
next section.

Non-cancer related drugs 
Some non-cancer related drugs that show anticancer 
effects against different human CSCs could also repre­
sent an option in PCSCs (Table 1). They act through 
different mechanisms of action including the inhibition 
of some important PCSCs pathways (Figure 1). 

Antibiotics are among the molecules that exhibit 
extraordinarily diverse biological activities. For exam­
ple, salinomycin, an antibacterial and coccidiostat 
ionophore drug, interferes with the activity of KRAS-
4B, Wnt, and EMT pathways reducing the viability 
of breast CSCs[33]. Interestingly, it has also been de­
monstrated that salinomycin blocks tumour growth 
and the metastatic spread of PDAC in a genetically 
engineered mouse model[34]. In addition, the FDA-
approved antibiotic azithromycin, which binds to the 
50S subunit of the bacterial ribosome, inhibits tumour-
sphere formation in PDAC and other cancers[35]. Also, 
the antibiotic tigecycline, developed in response to the 
antibiotic resistance of some bacteria, reduces the 
sphere formation of CSCs in pancreatic, breast, lung, 
and prostate cancers[29]. In particular, it eliminates the 
therapy-resistant chronic myeloid leukaemia CSCs[36], 
and a phase Ⅰ clinical trial demonstrated the safety of 
its intravenous infusions in patients with acute myeloid 
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leukaemia[37], supporting its transfer to clinical use. 
Moreover, it has been demonstrated that the antibiotic 
nigericin increases E-cadherin expression and inhibits 
the EMT process of CSCs leading to a reduction of 
invasion and metastasis of colorectal cancer[38]. This 
observation suggests that it should be further investiga­
ted to determine whether if it is also effective for 
targeting PCSCs.

Some anti-malarial agents may have the potential 
to target PCSCs. For example, it has been demonstrated 
that chloroquine has significant effects on PCSCs by 

inhibiting CXCR4 and Hedgehog pathways[39]. The same 
can also be said for another anti-malarial compound 
atovaquone, which acts as a potent and selective 
OXPHOS inhibitor, inhibiting the sphere-formation of 
CSCs in breast cancer[40]. 

Also showing promise for targeting PCSCs is apre­
pitant, an FDA-approved antiemetic drug that inhibits 
Wnt signalling, sphere formation, growth, and stemness 
of CSCs in colon cancer[41]. Ketamine, a drug used as 
an anaesthetic and depression, reduces CSCs traits 
and tumour growth in a colorectal cancer model. In 

Table 1  Non-cancer related drugs and their potential effects on pancreatic cancer stem cells

Drug Function Relative pathway/process Ref.
Salinomycin 
Azithromycin 
Nigericin 
Tigecycline

Anti-bacterial 
antibiotic 

Wnt, EMT 
Mitochondria 

EMT 
OXPHOS

     [33]
     [35]
     [38]
     [29]

Chloroquine 
Atovaquone

Anti-malaria
OXPHOS 
OXPHOS

     [39]
[36,40]

Aprepitant Anti-emetic Wnt      [41]
Ketamine Anti-depressant Wnt [42,43]

Aspirin
Anti-pyretic 

Anti-inflammatory
ALDH1, NF-κB [44,45]

Metformin Anti-diabetic mTOR, PI3K/Akt [46-48]
Disulfiram Anti-alcoholism NF-κB [49-53]
Atorvastatin Anti-cholesterol Mevalonate   [7,54]

Wnt: Wingless-type MMTV integration site family; EMT: Epithelial mesenchymal transition; OXPHOS: Oxidative phosphorylation; ALDH1: Aldehyde 
dehydrogenase 1; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; mTOR: Mammalian target of rapamycin; PI3K: Phosphatidylinositol 
3-kinase; Akt: Protein kinase B.

Nigericin Salinomycin/Aprepitan/Ketamine Atorvastatin

EMT Wnt Mevalonate

ALDH1 Chemoresistance
Self-renewal potential

Sphere-formation

Cell proliferation

Aspirin/Disulfiram Metformin Tigecycline/Chloroquine/
Atovaquone

NF-κB PI3K/Akt
OXPHOS

mTOR

Autophagy
Progression and metastasis

Tumorsphere formation

Figure 1  Mechanism of action of different non-cancer related drugs against pancreatic cancer stem cells. EMT: Epithelial mesenchymal transition; ALDH1: 
Aldehyde dehydrogenase 1; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; mTOR: Mammalian target of rapamycin; PI3K: Phosphatidylinositol 
3-kinase; Akt: Protein kinase B; OXPHOS: Oxidative phosphorylation.
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particular, it acts by decreasing Wnt activity[42]. Notably, 
ketamine reportedly inhibits the proliferation of PDAC 
cells[43]. 

Salicylic acid, also known as aspirin, is another 
non-cancer related drug that may be a candidate for 
eliminating PCSCs in the successful treatment of PDAC. 
Indeed, aspirin, commonly used as an antipyretic and 
anti-inflammatory drug, counteracts PCSCs features 
such as ALDH1 activity, NF-κB signalling, self-renewal 
potential, and gemcitabine resistance[44]. A phase Ⅲ trial 
confirmed the beneficial effect of aspirin as an adjuvant 
treatment to prevent disease recurrence and contribute 
to survival after primary therapy in breast, colorectal, 
gastro-oesophageal, and prostate tumours[45]. 

Metformin, a dimethylbiguanide used as an anti­
diabetic drug, is also able to counteract the features 
of PCSCs. It inhibits the mTOR and PI3K/Akt pathways, 
reducing the expression of PCSCs markers in pancre­
atic tissue, as well as the size and number of tumour 
spheres. Moreover, in vivo experiments demonstrated 
that metformin prevents progression and metastasis 
in PDAC[46]. Unfortunately, a phase Ⅱ trial showed that 
metformin does not improve the outcome in patients 
with advanced metastatic PDAC treated with standard 
therapy[47,48]. These findings suggest that future rese­
arch should include studies of more potent biguanides. 

Another non-cancer related drug is disulfiram, a drug 
widely used to control alcoholism, which is involved in 
the inhibition of NF-κB, ERK and proteasome pathways 
in PDAC. It has been demonstrated that disulfiram in 
combination with chemotherapy or chemoradiation, 
is able to target PCSCs[49-52]. Notably, a phase IIb trial 
demonstrated that the addition of disulfiram to chemo­
therapy prolonged survival in patients with newly dia­
gnosed non-small cell lung cancer[53]. 

Moreover, we have recently demonstrated[7] that 
atorvastatin, a drug used to lower blood cholesterol, 
reduces the viability of PCSCs. Accordingly, the anti­
cancer effect of cholesterol-reducing agents has been 
demonstrated against other CSCs. To date, in a clinical 
setting statin intake was significantly associated with 
longer recurrence-free survival in hepatocellular carcin­
oma patients with hepatectomy[54]. 

Taken together, these findings indicate that repur­
posing established compounds to target PCSCs could 
represent a good strategy for combating PDAC. It is 
also economically advantageous and assures rapid 
translation into clinical because these compounds often 
are already approved by the FDA and show minor 
side effects compared to traditional chemotherapeutic 
drugs[29].

Compounds focused on deregulated pathways and 
proteins 
In the last ten years, many agents that target specific 
deranged pathways of pancreatic tumour cells have 
shown promise in preclinical studies. Accordingly, potenti­
al therapies targeting PCSCs could be developed based 

on their deregulated pathways and/or proteins (Table 
2). As stated above, multiple signalling pathways are 
known to be important for stemness, including the 
Wnt/β-catenin, SHH, Notch, and mTOR pathways. Some 
compounds that inhibit the Wnt signalling pathway 
have been reported in the previous section on non-
cancer related drugs (i.e., salinomycin, aprepitant, and 
ketamine). It has been demonstrated that crocetinic 
acid (a carotenoid obtained from saffron) is able to 
target PCSCs by inhibiting the expression of both SHH 
and smoothened proteins, which play a key role in the 
SHH pathways[55]. SHH and smoothened proteins 
lead to the activation of the Gli transcription factor and 
target genes involved in stem cell maintenance. In 
particular, crocetinic acid decreases the number and 
size of the spheroids in a dose-dependent manner and 
supresses the expression of DclK1, a PCSCs surface 
marker[55]. Another natural compound that inhibits the 
SHH pathways is sanguinarine (an isoquinoline alkaloid 
derived from Sanguinaria canadensis). It has been 
recently reported to be an effective agent for the inhi­
bition of PCSCs[56]. It inhibits the self-renewal capacity 
of PCSCs, as well as their migration, invasion, and EMT 
by suppressing the SHH pathway. Recently, PCSCs 
have been efficiently eliminated by targeting the SHH 
pathway using the Gli inhibitor GANT61 in combination 
with rapamycin (an mTOR inhibitor)[57]. 

Another deregulated PCSCs pathway that can be 
targeted is Notch signalling. Its inhibition by γ-secre­
tase inhibitor (RO4929097) as well as by Hes1 shRNA 
reduces the formation of tumour-spheres and the pro­
portion of PCSCs[58]. Notch signalling can reportedly be 
inhibited by using quinomycin A (an antibiotic and also 
classifiable as a non-cancer related drug). Quinomycin A 
suppresses PCSCs by reducing Notch 1-4 receptors and 
by decreasing the expression of their ligands (Jagged1, 
Jagged2, DLL1, DLL3, and DLL4) of the downstream 
protein Hes1 and the γ-secretase complex[59]. Quino­
mycin A also decreases the expression of DclK1, CD44, 
CD24, and EPCAM, retarding the tumour-sphere for­
mation of PCSCs[59]. Clinical trials published several 
decades ago and not related to pancreatic cancer indi­
cated a modest activity of quinomycin A against some 
tumours. 

Inhibition of mTOR signalling has also been propos­
ed as a novel strategy for targeting CSCs. In particular, 
it has been shown that greater suppression of PCSCs 
is obtained by combining gemcitabine with the mTOR 
inhibitor rapamycin[60] or c-Met/RON inhibitor with the 
mTOR inhibitor AZD8055[61].

Changes in the expression of PCSC proteins may 
represent a good starting point to investigate potential 
therapeutic targets. Recently, we indicated that fatty 
acid synthase (FASN) might represent a means of era­
dicating PCSCs[7]. Treatment with cerulenin, a specific 
FASN inhibitor, led to a reduction of Panc1 CSCs viability 
and decreased the formation of spheroids. Accordingly, 
it has been demonstrated that FASN plays a pivotal 
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role in the maintenance of stemness in other CSCs[62]. 
Among the potential PCSCs targets we identified an­
nexin A1 (AnxA1)[7], which is an important player in 
the development and progression of different types of 
cancer, including pancreatic cancer, and plays a role in 
the maintenance of stemness and drug resistance in 
some CSCs[63]. Recent studies have shown that knock­
down of AnxA1 decreases cell invasion and metastatic 
potential in several types of cancer, including PDAC[64].

Another potential therapeutic target that is both 
overexpressed and oversecreted by Panc1 CSCs and 
that should be investigated to reduce the viability of 
PCSCs is myristoylated alanine-rich C-kinase substrate 
(MARCKS)[7,27], a protein involved in cell motility, cell 
shape, cell cycle regulation, secretion, and transmem­
brane transport[65]. It has been demonstrated that a 
peptide (MANS peptide) that inhibits the function of 
MARCKS reduces lung cancer metastasis[66]. 

Another protein overexpressed and oversecreted in 
Panc1 CSCs is galectin-3 (Gal3)[7,27], which activates RAS 
signalling[67]. Many studies reported that Gal3 is impli­
cated in cancer stemness, in particular by activation of 
Notch signalling[68], and that it may therefore represent 
a good therapeutic target[69]. Accordingly, it has been 
shown that down-regulation of Gal3 by an allosteric 
inhibitor, i.e., the polysaccharide RN1 (purified from the 
flower of Panax notoginseng), increases metastatic can­
cer cell apoptosis and decreases pancreatic cancer cell 
growth[70,71]. 

Another potential target of PCSCs we identified was 
pyruvate kinase isozyme M1/M2 (PKM1/PKM2)[7]. Al­
though PKM2 is a key mediator of glycolysis in cancer 
cells, research focused on exploiting metabolic pathways 
for cancer therapy is still scarce. To date, anti-tumour 
effects have been demonstrated in melanoma cells 
following treatment with lapachol (a specific PKM2 inhibi­
tor)[72], and inhibition of stemness has been reported 
in breast CSCs treated with diallyl disulphide which 
targets PKM2 (and also CD44 and AMPK signalling)[73]. 

Recently a new series of small molecule PKM2 inhibitors 
able to inhibit the growth of tumour cells has been 
synthesised[74]. It could be worthwhile to evaluate their 
efficacy also on PCSCs.

Another protein involved in metabolism that is ove­
rexpressed and oversecreted by Panc1 CSCs is lacta­
te dehydrogenase A (LHDA)[7,27]. LDHA is an important 
supporter of glucose metabolism in cancer cells. It 
generates adequate extracellular lactate to provide 
a favourable microenvironment for CSCs growth and 
invasion[75]. Although inhibition of LDHA activity has 
been proposed as an approach to cancer therapy[76], a 
limited number of LDHA inhibitors are reported in the 
literature[77]. However, LDHA is transcriptionally regulated 
by the oncogenic transcription factor FoxM1[78], and so­
me FoxM1 inhibitors (such as thiostrepton, troglitazone, 
and the FDI-6 molecule) have been reported that could 
indirectly lead to a reduction of LDHA[79]. 

Among the upstream regulators of deranged PCSCs 
proteins, we found there is the oestrogen-related re­
ceptor gamma (ERRγ)[7], which promotes metabolic 
reprogramming in CSCs, pluripotency, OXPHOS, and 
the glycolysis pathway[80]. A novel strategy for targeting 
PCSCs could be represented by the inverse agonists 
of ERRγ, which decrease OXPHOS and mitochondrial 
activity and promote apoptosis[81]. Accordingly, it has 
been demonstrated that GSK5182 (an inverse ago­
nist of ERRγ) determines the up-regulation of p21 
and p27, promotes G1 phase arrest, and leads to 
ROS accumulation and pluripotency inhibition in iPS 
cells[82-84]. 

Nanoparticles for improved drug delivery 
Surgery, chemotherapy, and radiotherapy are the 
most common anti-cancer therapeutic approaches; 
however, the non-specific targeting of cancer cells has 
made these approaches often non-effective with the 
consequence that higher doses of drugs need to be 
administered to reach the tumour region[85]. In order to 

Table 2  Deregulated pathways and proteins to target pancreatic cancer stem cells

Deregulated pathways Compound or strategy Ref.

Hedgehog
Crocetinic acid [55]
Sanguinarine [56]

GANT61 [57]

Notch
RO4929097, shRNA [58]

Quinomycin A [59,97,98]

mTOR
Rapamycin [60]
AZD8055 [61]

Deregulated proteins Compound or strategy
FASN Cerulenin   [7]
AnxA1 siRNA [64]
MARCKS MANS peptide [66]
Galectin-3 Polysaccharide RN1 [70]

PKM2
Lapachol [72]

Diallyl disulphide [73]
ERRγ GSK5182 [82,83]

shRNA: Short hairpin RNA; siRNA: Small interfering RNA; FASN: Fatty acid synthase; mTOR: Mammalian target of rapamycin; AnxA1: Annexin A1; 
MARCKS: Myristoylated alanine-rich C-kinase substrate; PKM2: Pyruvate kinase isozyme M2.
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improve the delivery of the drug, nanoparticles (NPs) 
have been developed to specifically and effectively 
target CSCs, reducing cytotoxicity and increasing the 
efficacy of treatments[86]. The different types of NPs 
include polymeric, magnetic, gold, and mesoporous sili­
ca NPs, and they provide a wide range of applications 
such as cancer therapy, tumour destruction through 
heating (hyperthermia), and drug/gene delivery[87,88]. 
In particular, for targeted drug delivery NPs comprise 
materials such as liposomes (100-400 nm), nanosph­
eres (1-100 nm), micelles (10-100 nm), nanocapsules 
(10-1000 nm) and dendrimers (3-20 nm) (Figure 2A). 
These nanocarriers enhance the solubility and formu­
lation of hydrophobic or water-insoluble drugs and con­
trol the drug delivery at the cancer tissue. 

Some NPs have been developed to target pancre­
atic cancer, and liposomal formulations have gained 
regulatory approval[89]. The first clinical trial of NPs 
conducted in PDAC patients was done using a PEGylated 
colloidal gold-rhTNF nanomedicin, termed CYT-6091, 
which demonstrated that NPs greatly reduce the toxici­
ty of chemotherapeutics and may target tumours[88]. In 
particular, some NPs have been developed to specifi­
cally target PCSCs (Figure 2B). PDAC is characterised 
by dense stroma with a high amount of hyaluronic acid 
(HA), which reduces drug delivery and interacts with 
CD44 surface marker regulating the invasion of PDAC 
cells. HA-based nanogel-drug conjugates with enhanced 
anticancer activity have been designed for the target­
ing of CD44-positive and drug-resistant tumours. These 
conjugates are based on membranotropic cholesteryl-
HA (CHA) with various encapsulated drugs, such as 
the non-cancer related drug salinomycin, etoposide 
(a chemotherapeutic agent), or curcumin (a natural 

compound), and all have higher cytotoxicity in CD44-
expressing drug-resistant PDAC cells compared to free 
drugs and to non-modified HA-drug conjugates[90]. Re­
cently, HA-modified poly (dl-lactic-co-glycolic acid)-
poly (ethylene glycol) (HA-PLGA-PEG) NPs have been 
developed for targeted delivery of TTQ (thio-tetrazo­
lyl analogue of a clinical candidate, IC87114) to CD44 
over-expressing cancer cells. In vitro results showed 
that cellular uptake led to higher cytotoxicity and en­
hanced intracellular accumulation of these NPs in high 
expressing CD44 MiaPaCa2 cells[91]. 

Natural product-based compounds can be an attra­
ctive strategy for the treatment of pancreatic cancer 
and could be integrated with NP approaches. For some 
of these, an inhibiting action against PCSCs has already 
been demonstrated (for example resveratrol, quercetin, 
and green tea catechins, and curcumin)[92], and for this 
reason they would deserve to be analysed as nanoparticle 
formulations. Among these natural compounds there are 
withaferin A (a major component of Withania somnifora) 
and carnosol (found in Rosmarinus officinalis, Salvia 
carnosa, and Origanum vulgare). They have suppressive 
effects on the proliferation, migration, and activation 
of c-Met in PCSCs[93]. A recent study investigated the 
role of α-mangostin (derived from the plant mangos­
teen) encapsulated NPs (Mang-NPs) in the inhibition of 
pancreatic carcinogenesis by targeting CSCs in human 
and transgenic mice. The data obtained indicated that 
Mang-NPs suppress PCSCs features (i.e., EMT, cell 
proliferation, cell cycle, pluripotency, self-renewal, and 
apoptosis) and also target CSCs in mice[94]. A similar ap­
proach has been implemented for the investigation of 
the efficacy of anthothecol (an antimalarial compound) 
encapsulated by PLGA NPs (antho-NPs) against PCSCs. 
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Figure 2  The types of nanoparticles. A: Different types of nanoparticles for targeted drug delivery; B: Specific nanoparticles for targeting pancreatic cancer stem 
cells. PCSCs: Pancreatic cancer stem cells.
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Interestingly, it has been demonstrated that antho-NPs 
specifically inhibit PCSCs growth by modulating the SHH 
pathway[95]. 

Although significant progress has been made in the 
development of NPs, they are far from optimal. Indeed, 
there are already problems regarding the low drug 
loading capacity of some NPs. Liposomes are sometimes 
affected by drug diffusion through the liposome bilayer, 
and micellar drugs exhibit in vivo instability[90]. For 
these reasons, polymeric and nanogel drug conjugates, 
characterized by controlled drug release and higher 
drug loading capacity, provide a better strategy. Other 
challenges that must be addressed in the future for 
clinical use of NPs concern inefficient delivery, inher­
ent toxicity, off-target effects, unfavourable biological 
distribution, and lack of clearance from the systemic 
circulation[96]. In conclusion, even if further research 
is needed for the development of efficient NPs, it is 
possible to speculate that the targeted delivery sys­
tem for anti-cancer agents will be translated into clini­
cal practice. It is tempting to imagine that in the near 
future modified NPs might serve as promising nanocar­
riers for site-specific drug delivery by targeting PCSCs 
and that protocol might be further improved for in vivo 
applications.

CONCLUSION 
In conclusion, although further studies are needed, the 
new developments in targeting PCSCs are expected to 
have high impact in the treatment of PDAC in coming 
years. Nevertheless, some questions still need furth­
er investigation. While PCSCs represent an intriguing 
target for therapy, their complete characterisation is 
still needed. The identification of proteomic profiles and 
in particular of the deregulated pathways and proteins 
of PCSCs is fundamental to increasing our knowledge 
about pancreatic cancer and to identify new therapeutic 
approaches to eradicate PDAC stem cells that result in 
recurrence of the disease. Thus, enhanced biological 
knowledge of PCSCs, combined with the development 
of nanoparticle technology, promises to be key for the 
development of new effective treatments of pancreatic 
cancer.
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