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Molecular recognition of the native HIV-1 MPER
revealed by STED microscopy of single virions
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Antibodies against the Membrane-Proximal External Region (MPER) of the Env gp41 subunit
neutralize HIV-1 with exceptional breadth and potency. Due to the lack of knowledge on the
MPER native structure and accessibility, different and exclusive models have been proposed
for the molecular mechanism of MPER recognition by broadly neutralizing antibodies. Here,
accessibility of antibodies to the native Env MPER on single virions has been addressed
through STED microscopy. STED imaging of fluorescently labeled Fabs reveals a common
pattern of native Env recognition for HIV-1 antibodies targeting MPER or the surface subunit
gp120. In the case of anti-MPER antibodies, the process evolves with extra contribution of
interactions with the viral lipid membrane to binding specificity. Our data provide biophysical
insights into the recognition of the potent and broadly neutralizing MPER epitope on HIV
virions, and as such is of importance for the design of therapeutic interventions.
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he envelope glycoprotein (Env) of the human immuno-

deficiency virus type-1 (HIV-1) embodies a common class

I viral fusion machinery, but also configures diverse anti-
genic surfaces across the different viral clades, strains, and
isolates:2. Quaternary structure adjustments, heavy glycosylation,
and intrinsic genetic variability of Env are thought to allow viral
escape from neutralization by Env-specific antibodies>*. Despite
the effectiveness of these escape mechanisms, discovery in the
1990s of a handful of broadly neutralizing antibodies (bnAbs)
proved the potential of humoral immunity to protect from
HIV-1 infection®*. Recent advances in the isolation of bnAbs
with different specificities, together with their systematic
structure—function analyses, further support the existence of a
number of sites of vulnerability on the native surface subunit
gp120, or on the interface between this and the transmembrane
subunit gp41°-8.

Here, we focus on a distinct site of vulnerability existing on the
transmembrane Env subunit gp41: the membrane proximal
external region (MPER)>’. Two reasons explain the special
interest on solving the mechanisms underlying the molecular
recognition of this Env site, namely, the exceptional degree of
conservation of the MPER epitope sequence, and the fact that its
engagement with the bnAbs 10E8 and 4E10 results in one of the
broadest HIV neutralization levels described so far (98% of
viruses blocked in customary infectivity tests)>°.

The 10E8/4E10 epitope arranges onto a lateral face of the
continuous helix connecting the Env ectodomain with the
transmembrane domain (TMD) at the point where this structural
element emerges from the lipid bilayer®-1! (Fig. 1). However, a
mechanistic understanding of MPER recognition by bnAbs has
been hampered by the limited information available on its native
antigenic structure: a molecular surface that lies in contact with
the viral membrane at the base of the Env complex (Fig. 1). This
structural complexity has proven challenging to reproduce by
model systems amenable to biophysical and biochemical char-
acterization, and precludes crystallization of MPER-containing
Env specimens®12-14, Even for the case of a solubilized Env-
detergent complex used in single-particle cryo-electron micro-
scopy (Cryo-EM) studies!®, it is unclear whether it would cor-
rectly recapitulate native Env MPER conformation in the viral
lipid. Furthermore, in these studies, the Fab 10E8 was used to
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gp120 | vive.

Fig. 1 Model for MPER accessibility within native Env complexes based on
Cryo-EM reconstructions'. Top: Contours derived from detergent-
solubilized Env trimers, without (left) or with TOE8 bound (right), have been
docked into a viral lipid bilayer. A putative transition between these two
states would result in exposure of the MPER helix in native Env (green).
Bottom: cartoons to designate in the previous models the different trimer
components, and positions of the neutralizing epitopes for bnAbs used in
this study PGT145 (V1/V2), VRCO1 and b12 (CD4bs); and 10E8/4E10
(MPER)

Env

enable purification, which does not provide an opportunity to
understand the native MPER epitope unliganded, and the
mechanism of recognition; it only provides a still view post-
binding albeit with sub-nanometer details.

Some authors postulate that, due to steric occlusion, the MPER
helix remains hidden within the native pre-fusion Env complexes
on virions, becoming accessible for binding in the fusion-
activated Env intermediates!®-20, This assumption implies that,
in contrast to epitopes on the solvent-accessible subunit gp120,
the neutralization competent structure of MPER would exist
transiently, and its accessibility be limited to the population of
virions primed for fusion, greatly limiting antibody efficacy.
According to this model, this limitation would be surpassed by a
pre-attachment step to the viral membrane through
antibody-lipid interactions. This pre-insertion step would
increase local antibody concentration around Env, waiting for
MPER to be exposed™16-19:21,

More recently, based on structural information derived from
Cryo-EM reconstructions of MPER-TMD-containing Env-Fab
complexes!®, and the reported demonstration that individual Env
molecules are conformationally dynamic?>23, a model for the
10E8-bound form of the Env trimer has been proposed.
According to that model, gp41 MPER helices are accessible in one
of the possible pre-fusion conformations of the native Env, while
the overall organization of the surface subunit gpl120 remains
unchanged. 10E8 binding would keep these helices in an uplifted
position!?. This model puts forward the possibility that MPER is
transiently, but intrinsically, accessible in the native Env complex
(Fig. 1). However, as mentioned before, the fact that Cryo-EM
experiments were done in detergent-solubilized Env proteins
raised the possibility that the mixed phospholipid-detergent
micelles did not properly mimic the accessibility of the antibody
to native MPER.

Here, we have assessed the accessibility of MPER on intact
HIV-1 particles, i.e., in the context of membrane-anchored native
Env complexes in the extraordinary HIV-1 lipid environment?4,
using super-resolution-stimulated emission depletion (STED)
microscopy. In the past, this optical microscopy technique has
made possible sub-diffraction (~40nm) observations of Env
molecules on individual HIV particles (~120nm in diameter)
using anti-gp120 antibodies as reporters?>~27, and therefore
constitutes a suitable tool to qualitatively and quantitatively
measure anti-Env antibody binding to viruses. The examination
of anti-MPER bnAb binding to intact virions through STED
microscopy ruled out the existence of a membrane-attached, free
antibody population, while providing evidence to support a cor-
relation between the degree of binding to native Env and neu-
tralization. Thus, Env-mediated association with virions appears
to be applicable to all anti-HIV bnAbs tested, independently of
potency, polyreactivity, or the targeted Env subunit. Furthermore,
our data suggest that the strength of interaction with Env and
neutralization potency evolve with extra contribution of
antibody-membrane interactions in the case of the anti-MPER
bnAbs 10E8 and 4E10.

Results

Antibody accessibility to native Env measured by STED. To
analyze MPER accessibility through STED microscopy in the
native Env complex, 10E8 and 4E10 Fabs were conjugated with
the fluorescent probe Abberior STAR RED (also known as
KK114). To that end, we followed a site-directed conjugation
strategy, which resulted in roughly equimolar Fab-to-K114 ratios,
and labeling at a position irrelevant for Fab-epitope binding (see
Methods). The produced Fabl0E8-KK114 and Fab4E10-KK114
conjugates retained the neutralization activity of the unmodified
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Fabs (Supplementary Table 1), confirming no-interference of the
labeling process with functional binding to Env.

Figure 2a displays confocal images of eGFP-labeled NL4-3 viral
particles incubated with KK114-labeled Fab 10E8, the latter
visualized in the confocal, or in the super-resolved STED
microscopy mode (red signals in top and bottom panels,
respectively). The STED image reveals the KK114 signal confined
within restricted areas on the virion surface, following the pattern
described for mature HIV particles incubated with the anti-gp120
antibody 2G122>26. Thus, binding of 2G12 to gp120, revealed by
a secondary fluorescent antibody, and binding of directly labeled
10E8 or 4E10 to MPER, reflected similarly the clustering of native
Env proteins on the virions (Fig. 2b, c).

Next, we assessed the capacity of anti-MPER bnAbs to directly
bind to the viral membrane, i.e. within virion areas devoid of Env
clusters. We compared the staining patterns induced by 2G12,
10E8, and 4E10 antibodies with those of phosphatidylserine (PS)-
binding Annexin V-ATTO 647N using STED microscopy
(Fig. 2b). Metabolically inert virions lose the aminophospholipid
asymmetric distribution existing at the plasma membrane of

producing cells, resulting in exposure of PS at the viral membrane
external leaflet?®2%. Consistent with its binding to the lipid
component of the viral membrane, the super-resolved signal of
the PS-binding protein Annexin V-ATTO 647N distributed over
the complete surface of the virions characterized by eGFP signal
(Fig. 2b). In contrast to Annexin, staining by 2G12 or the anti-
MPER antibodies 10E8/4E10 occupied <20% of the viral area.
Furthermore, similarly to 2G122%, both anti-MPER antibodies
10E8 and 4E10 in association with individual eGFP-labeled
particles distributed predominantly into one single foci (ca. 80%
of the particles), and less frequently into two, or more than two
foci (Fig. 2c). Reflecting the consistency of these estimations,
higher concentrations of Fabs 10E8 or 4E10 yielded a similar
number of Env clusters per virion (Supplementary Fig. 1a). The
foci distribution pattern detected for the KK114 conjugates was
also reproduced by a set of anti-gp120 antibodies, and by anti-
MPER antibodies when revealed by a secondary fluorescent
antibody (Fig. 2d). These observations suggest that anti-MPER
and anti-gp120 antibodies engage with the same type of Env
clusters on the viral particles and argue against a membrane pre-
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Fig. 2 Accessibility of MPER Env site on intact HIV virions visualized by super-resolution STED microscopy. a Signal of T0E8-KK114 (red) bound to HIV-1
virions acquired in confocal (top) or STED modes (bottom). In both images virions are visualized in confocal mode (green, Vpr.eGFP). b STED micrographs
of 2G12 (stained with secondary antibody), 10E8-KK114, 4E10-KK114, and Annexin V-ATTO 647 (STED, red) bound to HIV-1 virions (top) and
corresponding pixel areas (bottom). Results are shown in a box-plot (center line, median; square, mean; box, interquartile range (IQR); whiskers, s.d.) of
STED (2G12, n=756; 10E8, n =1693, 4E10, n =1575; and Annexin V, n = 2136) and confocal (Vpr.eGFP, n =942) signals measured in single virions from
three independent preparations. Pixel size is 20 nm/pixel. The statistical significance was assessed by Kruskal-Wallis one-way analysis of variance.

¢ Representative images of HIV virions incubated with 10E8-KK114 (left) and distribution analysis of Fab STED foci number (right) upon incubation with
2G12 (stained with secondary anti-human Fab-KK114) or directly labeled T0E8 and 4E10 Fab-KK114 conjugates. d Distribution of Fab STED foci detected on
virions. Bound Fabs were revealed in this case by secondary staining (anti-human Fab-KK114). Error bars are s.d. of at least three independent experiments.

Scale bars are 100 nm
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attachment model for anti-MPER antibodies. Interestingly, 2G12
was found to bind a fraction of unprocessed Env monomeric
gpl60 that incorporates into virions®® and, as expected, we
observe a higher degree of 2G12 binding when compared to anti-
MPER antibodies (Supplementary Fig. 1b). Since the same
distribution is detected for all tested bnAbs, our observations
are further consistent with a clustering process mediated by the
Gag-interacting Env tail>>2%, which appears to evolve indepen-
dently of the Env quaternary structure.

Colocalization of antibodies by dual color STED microscopy.
To further determine if anti-MPER antibodies bound to the same
Env clusters as anti-gp120 bnAbs, the colocalization of the anti-
MPER and anti-gp120 bnAbs signals was quantitatively assessed
using dual color STED microscopy®! (Fig. 3). In this approach,
HIV-1 virions were incubated with anti-gp120 antibodies, which
were detected with a secondary anti-human Fab antibody con-
jugated with the Abberior STAR 600 dye. After washing, these
samples were subsequently treated with 10E8-KK114. Then, a
pixel-wise Pearson’s correlation test was run in viral signatures
(Vpr.eGFP positive regions of interest, ROIs) to quantify the
colocalization degree, according to which values of 1, 0, and —1
corresponded to maximal-colocalization, no-colocalization, and
opposing-colocalization, respectively.
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Figure 3a shows a representative image of the dual color STED
microscopy experiment, where colocalization of the STED signals
of VRCO1 (blue) and 10E8 (red) antibodies can be observed in
virus particles (green). To establish the significance of the
correlation obtained, for each single experiment, image analyses
were done as presented before for features on roundish objects®!:
(i) Vpr.eGFP positive areas (i.e. HIV-1 virions) (continuous line
in the Fig. 3b top diagram); (ii) the same area after flipping one of
the STED channels as a control for coincidental colocalization
(i.e., colocalization that may arise from the restricted size of the
analyzed area) (dashed line); and (iii) a random Vpr.eGFP-
negative area (non-virus) (pointed line). Both, flipped and
random controls showed correlation values close to 0, consistent
with no-colocalization, which were significantly lower than those
measured for the VRC01-10E8 sample (Fig. 3b, bottom).

Figure 3c displays colocalization data of three different anti-
gp120 antibodies with 10E8. The broadly neutralizing VRCO1
antibody recognizes the CD4-binding site (CD4bs) on gp120
protomers32, whereas PGT145 bnAb binds specifically to the
V1/V2 loops at the trimer apex>33 and, therefore, is thought to
associate exclusively with properly folded Env (see also Fig. 1). In
contrast to these antibodies, the antibody bl2 was previously
demonstrated to preferentially recognize and fix Env in a relaxed
conformation34.
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Fig. 3 Dual color STED colocalization analysis of anti-gp120 and anti-MPER antibodies bound to Envpy;4.3 in HIV-1 virions. a Representative images of a
colocalization experiment. Vpr.eGFP (green), VRCO1 (STAR 600, blue, secondary labeling), 10E8 (KK114, red, direct labeling). Scale bars are 100 nm.

b Example of colocalization analysis. Pearson’s correlation coefficient for VRCO1 and 10E8-KK114 (n = 201). Flipped: mirror image of one of the channels.
Random: correlation in random ROls negative for Vpr.eGFP. ¢ Pearson’s colocalization coefficients obtained for TOE8-KK114 in combination with STAR 600-
labeled VRCO1 (n = 201), PGT145 (n =120), b12 (n =147), and 10E8 itself (Auto) (n = 89). d Pearson’s colocalization coefficients obtained for 4E10-KK114
(VRCO1, n=156; PGT145, n=103; b12, n=130 and 4E10 itself, n =148). Conditions otherwise as in the previous panel. Results are shown in box-plots
(center line, median; square, mean; box, IQR; whiskers, s.d.). The statistical significance was assessed by Kruskal-Wallis test
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To establish maximal self-correlation values under these
experimental conditions, dual color STED measurements of
10E8 were performed (i.e., colocalization analysis of 10E8-KK114,
also stained with a secondary anti-Fab fluorescent STAR 600
conjugated antibody), which yielded median Pearson’s coefficient
of 0.26 (auto sample). As before, for all combinations tested,
correlation values close to 0 were obtained for the flipped and
random control measurements. In addition, samples incubated
with fluorescently labeled secondary antibody in the absence of
primary anti-gp120 antibody, were used as a negative control for
colocalization with KK114-labeled 10E8 antibodies (negative).
These samples, showing a median Pearson’s value of 0.01, also
confirmed the absence of cross-talk between the dual color
detection channels. Finally, to obtain additional information on
the dynamic range of our measurements, we established
colocalization in a competitive binding experiment (Supplemen-
tary Fig. 2). As expected from the competitive binding of the two
Abs, the pixel-wise correlation coefficient decreased significantly
with respect to self-colocalization (Auto) controls.

As judged from the calculated correlation coefficients, 10E8
colocalized with the three anti-gp120 antibodies, the highest and
lowest values being calculated for VRCO1 and b12, respectively. A
similar outcome was obtained for the 4E10-KK114 fluorescent
conjugate (Fig. 3d). We note that STED does not offer enough
resolution to distinguish whether these antibodies recognize the
same molecule within Env clusters. However, maximal colocali-
zation being attained with two of the most potent anti-gp120
antibodies described, i.e. VRCO1, and the extremely trimer
specific PGT145, strongly supports that anti-MPER antibodies
are recognizing functional Env conformations relevant to HIV-1
infectivity.

Accessibility to MPER established by quantitative imaging.
Even though 10E8 and 4E10 bind to an overlapping epitope, 4E10
is ca. 10-20 times less potent than 10E8 in terms of neutralization
activity, and exhibits broad polyreactivity with lipids and host
proteins®3>3%. The staining pattern of the fluorescently labeled
4E10 Fab bound to virions however reproduced 10E8’s behavior
regarding localization into defined foci, which were also stained
by anti-gp120 antibodies (Figs. 2 and 3). Thus, 4E10’s lower
potency and higher polyreactivity appear not to alter the bnAb-
binding pattern to Env complexes on NL4-3 intact virions.
However, it has been described that in comparison with 10ES,
access of 4E10 to MPER is more hindered in the neutralization
resistant JR-CSF virions®7.

Given its potential to determine the number of single protein
molecules at the nanoscale38-3%, we sought to establish differences
in accessibility of these antibodies to native Env by quantitative
STED imaging. Direct Fab labeling at 1:1 (Fab:probe) molar ratio
and parallel sample preparation and imaging allowed direct
comparison of KK114 intensities associated to individual virions
(i.e. number of detected photons), further supported by the fact
that different Fabs yielded the same photons/molecule values
(Supplementary Fig. 3).

Comparison of independent sample replicates was performed
after signal normalization to that of 10E8-KK114-treated NL4-3
virions. These measurements revealed comparable KK114 emis-
sion associated to NL4-3 virions treated with either 10E8 or 4E10
Fabs (Fig. 4a). To confirm the dependence of the KK114 emission
levels measured on virions on specific Fab binding, we used the
neutralization-deficient variants 10E8-W100bG (10E8-WG) and
4E10-Aloop produced by ablation of the HCDR3 loop tip10:40:41,
Quantitation of number of detected photons revealed a strong
reduction of binding in samples incubated with HCDR3 mutant
conjugates 10E8-WG-KK114 or 4E10-Aloop-KK114, which

displayed antibody emission levels close to the background signal
(Fig. 4a).

Quantitative analyses further supported the dependence of
10E8 and 4E10 binding to viral particles on the neutralization
sensitivity of the Env glycoprotein (Fig. 4b-d and Supplementary
Table 2). We compared binding of the KK114-labeled Fabs
to three types of virions: (i) Env(-) particles lacking Env;
(ii) neutralization-sensitive viruses containing Envy;4 ;; and
(iii) neutralization-resistant, tier-2 viruses pseudotyped with
Envjg_csr- Incubation of Env(-) particles with labeled Fabs
resulted in background-like KK114 emission, thus further
excluding the possibility of direct reactivity with the viral
membrane. Overall, the amount of KK114 signal detected in
association with the NL4-3 virions was higher than that detected
in the JR-CSF samples, consistent with more hindered accessi-
bility to MPER in the neutralization-resistant virions®37. Of note,
the similar values of mean virion trimer number () estimated for
tier-1 (¢, 13.5) and tier-2 (#, 11.8) viruses further suggest that this
parameter does not account for the differences detected in the
amount of Fab bound to viruses*2. Moreover, the 10E8-KK114
signal was also higher than that of 4E10-KK114 in the JR-CSF
virions.

STED microscopy>? further allows the conversion of the intensity
signals associated with virions (i.e, number of detected KK114
photons in eGFP-associated regions) into number of Fabs bound
per viral particle (F/v value). Supplementary Figure 3a displays the
frequencies for the number of photons emitted by 10E8-KK114 and
4E10-KK114 bound to virions. After fitting emission histograms to
a normal multipeak distribution (see Methods section), maxima
separated by ca. the same number of photons (=50 in the example
of Supplementary Fig. 3a) could be observed (Supplementary
Fig. 3b). This value reflected the mean number of photons emitted
by a single Fab bound to a virion in the sample. Furthermore, for
each independent experiment, the value was the same within the
experimental error for every tested fluorescent Fab, confirming a
comparable quantum yield of the KK114 probe irrespectively of the
specimen labeled (Supplementary Fig. 3b). Finally, further con-
firming the number of photons that come from a single labeled Fab,
a single peak distribution with a maximum of ~50 photons was also
measured for both labeled Fabs stuck to the surface devoid of virus
(Supplementary Fig. 3c).

Figure 4c, d compare the F/v frequency distribution deter-
mined for 10E8 and 4E10 in single NL4-3 and JR-CSF virions,
respectively. The most evident difference among the viral isolates
is the slower F/v decay exhibited by the neutralization-sensitive
NL4-3 virions, in comparison with the neutralization-resistant
JR-CSF virions, indicating higher degree of Fab accumulation in
the neutralization-sensitive strain. Again, no major differences
among Fabs were apparent in the NL4-3 sample. In the JR-CSF
sample different F/v decays were observed for the two Fabs. The
steeper slope in 4E10 F/v decay was in consonance with the
majority of JR-CSF particles containing lower amounts of Fab
4E10 than of 10E8. Overall, virions presenting a single Fab
molecule account for steep decays and correlate to lower
neutralization potencies, suggesting that one Fab may not be
enough to neutralize a virus.

Mean F/v values calculated for all particles (ie., including
particles devoid of Fab) reflected comparable overall binding
capacities for Fabs 10E8 and 4E10 in the laboratory-adapted
strain NL4-3 (Supplementary Table 2). Mean F/v values were also
calculated only for particles displaying any KKI114 signal
(positive). These values ranged from ca. 4 to 6 in NL4-3 virions,
upon incubation with 50 or 100 ng uL~! of Fab, respectively. By
comparison, the F/v values measured in the neutralization-
resistant JR-CSF virus were generally reduced in the case of 4E10
(ca. 3.5), while the Fab 10E8 retained to a greater extent its
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Fig. 4 Differential binding of anti-MPER antibodies 10E8 and 4E10 to virions as revealed by quantitative STED microscopy. a Representative images of
virions (Vpr.GFP, green) and antibodies (KK114, red) (top) and measured KK114 intensities (bottom) for 10E8 WT (n = 776), 10E8 WG (n =1375), 4E10
WT (n=644), and 4E10 Aloop (n=1109). Each point in the bottom plot represents the KK114 intensity sum measured in a single viral particle. Negative
samples (n = 795) were measured in the absence of labeled antibody. Data from a single experiment. b 10E8 and 4E10 STED signals measured in Env(-) (n
=223 and 202), Envy4-3 (n=3336 and 3165), and Env g.csr (n =1664 and 1303) HIV-1 virions. For the matter of comparison signals from single virions
from two or more independent experiments have been normalized to T0E8-Envy, 4.3 signal after background subtraction. Histograms displaying f/v
frequencies measured for both antibodies (50 ng uL=") in NL4-3 (¢) and JR-CSF (d) viruses. The statistical significance was assessed by Kruskal-Wallis
one-way analysis of variance. If not noted otherwise, differences were not significant at the 0.05 level. In a and b results are shown in box-plots (center line,
median; square, mean; box, IQR; whiskers, upper and lower inner fences). Scale bars are 100 nm

capacity for binding (4.3 and 5.4 for 50 and 100ngplL~—],
respectively). In conclusion, the amount of Fab detected in
association with the NL4-3 virions was higher than that detected
in the JR-CSF samples, thus following their neutralization-
sensitivity pattern. Moreover, in the case of the tier-2 virions,
higher amounts of 10E8 than of 4E10 were bound to the samples,
again in agreement with a better adaptation of the former
antibody to access the native MPER.

Contribution of 10E8 structural determinants to binding.
Structural, biophysical, and biochemical data®-1L1>4344 guggest
that the bnAb 10E8 employs three elements to facilitate access to
and recognition of the membrane-inserted MPER (Fig. 5a): (1) a
specificity-binding pocket, which is adapted to recognize a MPER
a-helical structure, and forms a hydrophobic cleft where residues
critical for binding Trps;, and Phey;s are buried®1045; (2) a long
heavy chain complementarity determining region 3 (HCDR3)
loop, characterized by a very hydrophobic tip that submerges into
the lipid matrix®-1143; and (3) the membrane-associated paratope
area (MAPA) that can accommodate phospholipid polar head
groups on its surface!011:15:43,

6

To establish the influence of these elements on the antibody’s
capacity to access the native MPER, Env and Fab 10E8 variants
were produced, and antibody binding to JR-CSF virions was
subsequently evaluated through quantitative STED microscopy
(Fig. 5b-d). The dependence of 10E8 recognition on Env residues
Trpe;» and Pheg;3 was first tested using particles that contained
the gp41 subunit mutated in the MPER epitope (Fig. 5b).
Confirming binding specificity, single F673A or double W672A/
F673A mutations of MPER residues severely limited, or totally
inhibited antibody binding to the viral particles. Several 10E8
variants were next generated to evaluate the contribution of
antibody-membrane interactions to Env binding (Fig. 5¢, d and
Supplementary Fig. 4). Fab modifications combined deletions at
the tip of the HCDR3 loop (WG mutant) with substitutions of
solvent-exposed MAPA residues (marked blue in Fig. 5a) by Arg
to augment electrostatic attraction to the negatively charged
membrane surface (3R mutants**). Lipid vesicle flotation assays
displayed in Supplementary Figure 4a illustrate the distinct
degrees of 10E8-membrane interactions induced by these
modifications. Consistent with previous reports!®2l, the WT
version of 10E8 displayed no spontaneous binding to membranes,
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Fig. 5 Dependence of 10E8 binding to native MPER on the functional paratope elements. a Structural model to designate: (1) specificity pocket, (2) HCDR3,
and (3) MAPA regions on 10E8 (EMD entry code 3308’ and PDB 5GHW!10). Side chains of residues Trpe7» and Pheg5 critical for epitope peptide binding
and neutralization are displayed in red onto the bound MPER helix (green ribbon). Fab residues from the HCDR3/MAPA region modulating membrane
interaction and neutralization activity, TrpigopHc, and residues mutated to Arg (in blue: Serso;c, Asnsaic, Sergzic) are displayed in stick representation.
b STED intensity signals of the antibodies (after background subtraction and normalization) in HIV-1 virions pseudotyped with JR-CSF Env-WT (n=939)
and Env versions with single F673A (n=1270) or double W672A/F673A (WFAA) (n = 884) mutations in the MPER. ¢ Binding to Env on intact virions of
anti-MPER bnAbs mutated in the MAPA/HCDRS3 region. The intensity signals for each antibody was normalized to the WT signal after background
subtraction (3R n=1049, WT n=1664, 3R WG n=1437, WG n=1444). d Correlation between potency (ICsq values for neutralization, determined by
cell entry inhibition assay) and mean F/v values determined by quantitative STED in the previous samples. The statistical significance was assessed by
Kruskal-Wallis test. If not noted otherwise, differences were not significant at the 0.05 level. Results are shown in box-plots (center line, median; square,

mean; box, IQR; whiskers, upper and lower inner fences)

a pattern reproduced by the WG loop mutant. Interestingly this
mutant gained capacity for associating with model lipid vesicles
upon inclusion of the 3R mutation (3R/WG mutant, exposing
basic Arg residues on the MAPA). The 3R mutant with an intact
HCDR3, also showed capacity for membrane partitioning. Thus,
membrane interactions appear to be promoted by strengthening
electrostatic interactions through the MAPA, even after suppres-
sing hydrophobicity at the HCDR3 tip.

Figure 5c¢, d, and Supplementary Figure 4b compare binding of
these 10E8 Fab variants to intact JR-CSF virions as measured by
quantitative STED microscopy imaging. The WG mutation of the
hydrophobic HCDR3 tip greatly reduced KK114 intensity
associated with virions (Fig. 5¢), indicating a lower F/v value
for this sample (Supplementary Figure 4b). Partial recovery of
Fab binding was observed for the 3R-WG mutant. The 3R mutant
with intact HCDR3 displayed KK114 intensity levels and F/v
values that were higher than those of the WT Fab. The plot in
Fig. 5d displays the correlation existing between the neutraliza-
tion potency of the mutants (ICs, values) and the F/v values
determined through STED imaging.

Notably, we also observed that, following the pattern described
for the parental antibody, the most potent antibody 10E8 3R did
not interact with membrane zones devoid of glycoprotein or Env
(-) virions, and associated to Env clusters (Supplementary Fig. 5).
We emphasize that the absence of interaction with the bare viral
membrane detected by STED microscopy is not at odds with

previous analyses demonstrating that 10E8 3R and 4E10
antibodies can interact directly with model membranes!¢:40:44:46,
Membrane-association has been customarily established using
lipid compositions that facilitate MAPA-mediated electrostatic
interactions (e.g., the PC-based mixtures containing high levels of
PS in Supplementary Fig. 4a). However, in the light of recent
observations that describe the functional organization of the HIV
membrane?’, it has become evident that the lipid mixtures
favoring spontaneous bnAb partitioning into membranes do not
reflect the more restrictive conditions imposed by the highly
ordered viral membrane. Consistently, Fabs 10E8 3R or 4E10
were unable to interact directly with vesicles made of a virus-like
mixture, which displays lipid packing levels comparable to those
of the viral membrane*’ (Supplementary Figs. 4a and 6, bottom
rows). Overall, these data support that mutations, such as 3R,
which have a positive effect on the neutralization potency and
accessibility to the MPER epitope, enhance membrane interac-
tions of the Fab 10E8 after specific recognition of Env.

Discussion

Induction of bnAbs that inactivate and clear HIV is an important
objective of a preventive HIV vaccine?$4%, In this regard, estab-
lishing Env antigenic structures responsible for the elicitation of
bnAbs is critical for vaccine design and immunotherapy>>0. The
highly conserved MPER constitutes a prime target, since
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antibodies reported to bind this site of vulnerability display broad
coverage and in vivo anti-viral activity’!=>°. However, the
structural context where bnAbs effectively engage the native
MPER remains largely undefined, in great part because of the
difficulties associated with establishing adequate model systems
that mimic the viral membrane-anchored Env complex (Fig. 1).

To circumvent that problem, here we have approached the
question of MPER accessibility on native Env by directly imaging
the interactions of fluorescent antibodies with intact virions using
STED microscopy. This super-resolution microscopy technique
can resolve details within sub-diffraction-sized HIV-1 particles
and detect the signal of a single fluorescent Fab molecule bound
to a virion. Moreover, the fact that our specimens were directly
labeled with KK114 at ca. 1:1, Fab-to-probe molar ratio, has
permitted the quantification of emitted photons per molecule and
the estimation of the number of antibodies bound to a single
virion, further allowing the comparison of the binding potency of
different antibody variants. Overall, STED microscopy revealed
two important sets of data, namely: (i) the occurrence of similar
patterns of native Env recognition for anti-MPER antibodies and
for antibodies against the solvent-exposed surface subunit gp120
(Figs. 2 and 3); and (ii) a correlation between the anti-viral
activity of anti-MPER antibodies and their ability to engage native
Env on virions (Figs. 4 and 5). We propose that these observa-
tions have important implications for the understanding of the
mechanisms that underlie elicitation and anti-viral activity of
antibodies targeting the MPER site of vulnerability.

First, our data are compatible with a model in which MPER,
accessible in the native Env, mediates initial engagement of anti-
MPER bnAbs with virions. Based on the high hydrophobicity of
their HCDR3 element, it had been suggested that anti-MPER
bnAbs attach first to the viral membrane (pre-attachment model),
where they reside as integral membrane proteins until engage-
ment with their MPER epitope. MPER would become only
transiently accessible on the pre-hairpin fusion intermediate of
Env>16-1921 Data displayed in Figs. 2 and 4 indicate that the
anti-MPER bnAbs recognize Env clusters, are absent from
membrane zones devoid of glycoprotein, and do not interact with
Env(-) particles. Moreover, both 10E8 and 4E10 colocalize with
bnAbs targeting the solvent-exposed gp120 subunit (Fig. 3). In
combination, these observations are inconsistent with the exis-
tence of an anti-MPER antibody population bound to the viral
membrane (i.e. disconnected from Env) waiting for MPER to be
accessible in HIV-1 virions.

Second, it appears that the degree of native MPER accessibility
correlates with the anti-viral activity of the antibodies. Thus, fol-
lowing the neutralization sensitivity, higher Fab/virion values were
measured for Envyps; compared to Envjg cse virions (Fig. 4).
Also, in accordance with previously reported experiments washing
antibody-virion mixtures prior to infection®%, the amount of
10E8 bound to tier-2 JR-CSF virions was higher in comparison
with that measured for 4E10. These data suggest that 10E8 is
better adapted than 4E10 to access sterically occluded native
MPER. Supporting different mechanisms of Env recognition,
structural data of Fab-peptide complexes reveal different docking
angles for 10E8 and 4E1010:11:56, In addition, 10E8 establishes a
firm grip along the full MPER helix, including the interaction
between Trpl00byc and TMD residues, Ileggs and Metgg;”
(Fig. 5a). Wrapping of the accessible helical surface by the HCDR3
of the 10E8 appears energetically favored at the membrane
interface by an aromatic collar of antibody and MPER residues!0.
In comparison, X-ray crystallography reveals a smaller surface of
the MPER helix buried into the 4E10-binding pocket, whereas its
HCDRS3 tip makes no contact with the bound peptide®’. None-
theless, which bnAb attribute is responsible for the better adap-
tation of 10ES8, if any, still remains to be fully elucidated.

The existence of an accessible MPER helix within the viral
membrane-anchored native Env complex is further supported by
quantitative imaging, which reveals that an increase in the
potency of 10E8-membrane interactions through MAPA/
HCDR3 translates into enhanced binding to virions and
improved antiviral efficacy (Fig. 5). Altogether, these results
suggest that structural adaptations that sustain anti-MPER
antibody-lipid interactions and increase neutralization potency,
have arisen to enhance affinity toward an MPER helix already
accessible within the membrane-anchored pre-fusion Env
complex.

In the recent years, we have witnessed a rapid development of
super-resolution microscopy and its application to the HIV field
(reviewed in ref. °8). STED is of special interest because it can be
combined with advanced microscopy methods, such as molecular
dynamic measurements by fluorescence correlation spectroscopy
(STED-FCS) or membrane molecular order measurements
using polarity sensitive dyes (STED-GP), as applied for HIV in
refs. 2029, Future work will aim to combine these advanced STED
approaches with live-cell imaging and monitor HIV cell entry and
its neutralization by bnAbs. Thus, measurements of Env, lipid,
and antibody mobility during the different entry steps (CD4
receptor and CXCR4/CCR5 co-receptor binding, Env unfolding
and membrane fusion) will reveal the role of each player in bnAb-
mediated neutralization and the dynamics of the process.
Emphasizing the possible relevance of Env activation in the
process, previous observations by electron microscopy suggest
that 4E10 binding to virions can be accelerated in the presence of
soluble CD4%0. Moreover, the interaction potency of bnAbs and
optimized versions (as the 3R variant presented in this work)
would be measured in situ, further permitting the identification of
the Env structures recognized and the entry steps inhibited by
anti-Env antibodies. These experiments will inform approaches to
design anti-Env vaccines and clarify what elements of anti-Env
antibodies can be subject to optimization when used as templates
for immunotherapeutic agent development®!,

Methods

Plasmid and cells. The pCHIV plasmid expressing all HIV-1 proteins except Nef
and lacking the viral long-terminal repeat sequences was used to produce
replication-incompetent HIV-1yy 4.3 virions. A derivative of this plasmid including
a premature termination of Env was used to produce Env(-) particles®2. HIV-1
expression plasmid pCHIV and its derivative were provided by Barbara Miiller and
Hans-Georg Kriusslich (University Hospital, Heidelberg, Germany). Alternatively,
HIV-1jg.csr pseudoviruses were produced upon transfection of the Env(-) pCHIV
plasmid and the full-length JR-CSF Env clone. Plasmid expressing eGFP.Vpr was
kindly provided by Tom Hope. 293T cells (ATCC CRL-3216) were grown in
Dulbecco’s modified Eagle’s medium (Sigma), supplemented with 10% fetal calf
serum, 100 U mL~! penicillin-streptomycin and 20 mM HEPES pH 7.4. Cells were
maintained at 37 °C, 5% CO,.

Antibodies and dyes. The sequences of 10E8 or 4E10 were cloned in the plasmid
pColaDuet and expressed in Escherichia coli T7-shuffle strain. Recombinant
expression was induced at 18 °C overnight with 0.4 mM isopropyl-p-thiogalacto-
pyranoside when the culture reached an optical density of 0.8. Cells were harvested
and centrifuged at 8000 x g, after which they were resuspended in a buffer con-
taining 50 mM HEPES (pH 7.5), 500 mM NaCl, 35 mM imidazole, DNase (Sigma-
Aldrich, St. Louis, MO), and an EDTA-free protease inhibitor mixture (Roche,
Spain). Cell lysis was performed using an Avestin Emulsiflex C5 homogenizer. Cell
debris was removed by centrifugation, and the supernatant loaded onto a nickel-
nitrilotriacetic acid (Ni-NTA) affinity column (GE Healthcare). Elution was per-
formed with 500 mM imidazole, and the fractions containing the His-tagged
proteins were pooled, concentrated, and dialyzed against 50 mM sodium phosphate
(pH 8.0), 300 mM NaCl, 1 mM DTT, and 0.3 mM EDTA in the presence of pur-
ified protease Tobacco etch virus. Fabs were separated from the TEV and cleaved
peptides containing the His6x tag by an additional step in a Ni-NTA column. The
flow-through fraction containing the antibody was dialyzed overnight at 4 °C
against sodium acetate (pH 5.6) supplemented with 10% glycerol and subsequently
loaded onto a MonoS ion exchange chromatography (IEC) column (GE Health-
care). Elution was carried out with a gradient of potassium chloride and the
fractions containing the purified Fab concentrated and dialyzed against a buffer
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containing 10 mM sodium phosphate (pH 7.5), 150 mM NaCl, and 10% glycerol.
For the preparation of mutant Fabs, the KOD-Plus mutagenesis kit (Toyobo,
Osaka, Japan) was employed following the instructions of the manufacturer. Anti-
MPER Fab labeling was attained by introducing first titratable Cys residues at
positions Cys,;snc and Cysy,sic of the 10E8 and 4E10 sequences, respectively, and
then by modifying those with a sulfhydryl-specific iodacetamide derivative of the
Abberior STAR RED (KK114) probe (Abberior GmbH, Géttingen, Germany).
After purification, fluorescence emission measured after SDS-PAGE and absor-
bance measurements confirmed almost total titration of the single free Cys residues
in the Fabs. Human anti-gp120 monoclonal antibodies 2G12 and b12 were pur-
chased from Polymun Scientific. Fab fragments were generated using the Fab
Micro Preparation kit (Pierce). Anti-human IgG Fab fragments (Jackson Immu-
noResearch) were coupled to the Abberior STAR 600 dye (Abberior GmbH,
Gottingen, Germany) via NHS-ester chemistry according to the dye manufacturer’s
instructions. The heavy chain and light chain of PGT145 and VRCO01 Fabs were
each synthesized by GeneArt (Life Technologies) and subcloned into the pHLsec
mammalian expression vector using restriction enzymes Agel and KpnI®3. The
heavy chain and light chain of each Fab were co-transfected into HEK293F cells in
a 2:1 ratio (90 ug of DNA total per 200 mL culture) using the FectoPRO trans-
fection reagent (Polyplus Transfections) (1:1 ratio of DNA:FectoPRO) at a cell
density of 0.8 x 106 cells mL 1. Cultures were incubated in a Multitron Pro shaker
(Infors HT) at 37 °C, 125 rpm, 70% humidity, and 8% CO,. One week later,

cells were harvested at 6000xg for 30 min and resulting supernatants were filtered
with a 0.22 um filtration device (EMD Millipore). Supernatants were loaded onto a
pre-equilibrated KappaSelect affinity column (GE Healthcare) at a flow rate of

4 mL min—!. The column was washed with 1 x PBS (~3 column volumes) and Fab
fragments were eluted with 100 mM glycine pH 2.2 while fractionating. Eluted
fractions were neutralized immediately with 10% (v/v) 1 M Tris-HCI, pH 9.0 and
were pooled and concentrated to run on a Superdex 200 Increase gel filtration
column (GE Healthcare) in 1 x PBS to obtain purified samples. Peaks were pooled
for downstream experiments. Sample purity was confirmed by SDS-PAGE.

Virus particle preparation and purification. Virus particles were prepared as
previously described?®. Briefly, 293T cells were transfected using polyethylenimine;
tissue culture supernatants were harvested 48 h after transfection, cleared by fil-
tration through a 0.45 um nitrocellulose filter, and particles were purified by
ultracentrifugation through 20% (w/v) sucrose cushion at 70,000 x g (avg.) for 2h
at 4 °C. Particles were resuspended in ice-cold 20 mM HEPES/PBS pH 7.4, snap
frozen and stored in aliquots at —80 °C. All ultracentrifugation steps were per-
formed in a SW 41 Ti rotor.

Microscopy sample preparation. Purified virus particles were adhered to poly-L-
lysine (Sigma)-coated glass coverslips for 15 min. Coverslips were blocked using 2%
fatty acid free bovine serum albumin (BSA) (Sigma)/PBS for 15 min. Abberior
STAR RED (KK114) conjugated anti-MPER Fabs (20-100 ng pL~!) were incubated
for 1h in blocking buffer. Annexin V was incubated in 10 mM CaCl,/HBS.
Immunostained particles were washed and mounted in PBS, followed by STED
analysis. All steps were carried out at room temperature. For colocalization
experiments, before adding labeled anti-MPER Fabs (100 ng uL~1), unlabeled anti-
Env Fabs (1h, 100 ng uL~! in blocking buffer) and anti-human Abberior STAR
600 conjugated Fab fragments (1 h, 1:100 in blocking buffer) were incubated. Three
very gentle 5-min PBS washing steps were performed before and after adding the
secondary Fabs. Control experiments without anti-Env primary antibodies show no
Abberior STAR 600 signal, indicating that washing steps successfully removed free
anti-human secondary Fabs from the sample.

STED microscopy measurements. Imaging was performed on a STED micro-
scope based on a modified Abberior Instrument RESOLFT QUAD-P super-reso-
lution microscope (Abberior Instruments GmbH) installed in a biosafety level 3
environment. The microscope was equipped with three pulsed excitation lasers
(485, 594, and 640 nm; LDH-D-C-485P and LDH-D-C-640P, Picoquant, Berlin,
Germany, and LightUp594, Abberior Instruments) with 80 ps pulse width and a
pulsed STED laser (Katana HP, Onefive GmbH, Switzerland) operating at 775 nm,
800 ps pulse width and 80 MHz repetition rate. Shuttering and power adjustment
of the STED laser were controlled with an acousto-optical modulator (MT110-
B50A1.5-IRHK, AAA/Photon Lines Ltd, Banbury, UK). Doughnut shaped focal
intensity distribution of STED laser was achieved by easy3D STED spatial light
modulator module (Abberior Instruments). STED and excitation laser beams were
spatially superimposed and the fluorescence light was separated using appropriate
dichroic filters (ZT740SPRDC, AHF Analysentechnik, Tiibingen, Germany). An
on-board FPGA card (Abberior Instruments) was used for time alignment control
between the laser pulses. Positioning and scanning of laser foci was realized using
the QUAD beam scanner unit of the Abberior system for lateral directions, and an
objective lens positioning system (MIPOS 100PL, Piezosystem Jena, Jena, Ger-
many) for the axial direction. The fluorescence excitation and collection was
performed using a x100/1.40 NA UPlanSApo oil immersion objective (Olympus
Industrial, Southend-on-Sea, UK). The fluorescence signal was descanned, passed
through an adjustable pinhole (Thorlabs Limited, Ely, UK) and detected by a single
photon counting avalanche photo diode (SPCM-AQRH-13, Excelitas Techologies)

with appropriate fluorescence filters (AHF Analysentechnik). Detected fluorescent
signal was time-gated to remove the fluorescent signal from undepleted fluor-
ophores when operating in STED mode. All acquisition operations were controlled
by Imspector software (Abberior Instruments). In dual color STED microscopy
measurements both signals were recorded line by line in STED microscopy mode,
whereas eGFP.Vpr signal was imaged in confocal mode to determine the location
of HIV-1 virus particles. The lateral spatial resolution was below 60 nm FWHM in
both STED acquisition channels. Following parameters were used during image
acquisition: pinhole size — 1 airy unit, pixel dwell time - 50 ps, field of view

-10 um x 10 pm, and pixel size - 20 nm.

Image analysis. Image analysis was performed using Python scripting language
and custom written functions based on the program developed for ref. 3. Indi-
vidual viral particles were identified from the Vpr.eGFP channel using an intensity
maximum finding algorithm on a Gaussian smoothed image (o = 2.0). Detection of
maxima was kept consistent throughout using a noise tolerance parameter of 10. A
circular region (diameter, 20 pixels; 400 nm) was then superimposed on each
detected location, and all of the regions were saved for subsequent analysis. For
every detected region, a random location was also generated to sample areas where
Vpr.eGFP staining and thus HIV-1 virions were not likely to be present. This was
achieved by randomly translating each of the detected regions to a different point
within a 90-pixel radius of the original location but constrained so as not to pick an
existing region, which might contain another fragment of Vpr.eGFP fluorescence.
This method was effective at finding random regions that were close to virions but
not overlapping and so ensured accurate comparisons between virion-containing
and non-virion regions. These randomly perturbed regions were saved and used for
subsequent comparisons as with the original set.

Correlation analysis was performed on the raw pixel data in each of the
previously detected regions (Fig. 3). The intensity contained within each region was
first integrated, in the Vpr.eGFP confocal and in the STED channel under
comparison, to form datapoints (g;, r;, respectively), and then Pearson’s correlation
coefficient was calculated from all the measurements (I) in each cell.

25:1 (gi - P’g) ('i - !47)
S (g 1) S - w)’

p= (1)

where y, and y, are equal to the mean intensity of all the summed regions in the
sample. Since not all the virions present both or even one type of antibody, to
ensure that the colocalization values were not underestimated, only virions
presenting a minimum of one focus in both STED channels (i.e., virions positive
for both antibodies) were selected for the analysis. It must be noted that no
cooperativity between any of the tested anti-gp120 antibodies and 10E8 was
observed, since we detected the expected frequency of double positive, i.e. the
product of the frequency of positive virions for each type of bnAb.

To determine the number of fluorescent Fab molecules bound to each
individual virus (F/v value), the number of emitted photons per Fab-KK114
molecule was estimated first. For that, frequency histograms of KK114 photons
detected in virions (i.e. Vpr.eGFP positive areas) positive for KK114 signal
(Supplementary Fig. 1a) were fit to a multi-peak Gaussian distribution. The peak
maximum values calculated from these fittings were divided by the corresponding
natural numbers and averaged to obtain the photons/molecule value
(Supplementary Fig. 1b), which were the same within the experimental error for
samples prepared and measured in parallel. The result was confirmed by measuring
Fab-KK114 molecules bound to the coverslip. To calculate the F/v value, photons
detected in Vpr.eGFP areas were divided by the photons/molecule value. To
calculate the area occupied by the antibodies, the threshold is calculated by
applying a Renyi entropy algorithm® for each patch region. Then it is denoised
with a 3 x 3 median filter and eroded by one pixel.

Cell entry inhibition. HIV-1 pseudoviruses were first produced by transfection of
human kidney HEK293T cells (ATTC CRL-3216) with the full-length env clones
HXB2 or JR-CSF (kindly provided by Jamie K. Scott and Naveed Gulzar, Simon
Fraser University, Burnaby, Canada) using calcium phosphate. The cells were co-
transfected with vectors pWXLP-GFP and pCMV8.91, encoding a green fluor-
escent protein and an env-deficient HIV-1 genome, respectively (generously pro-
vided by Patricia Villace, CSIC, Madrid, Spain). After 24 h, the medium was
replaced with Optimem-GlutaMAX II (Invitrogen) without serum. Three days after
transfection, the pseudovirus particles were harvested, passed through 0.45 pum
pore sterile filters (Millex HV; Millipore NV, Brussels, Belgium), and finally con-
centrated by ultracentrifugation in a sucrose gradient. Neutralization was deter-
mined using TZM-bl target cells (AIDS Research and Reference Reagent Program,
Division of AIDS, NIAID, NIH, contributed by J. Kappes) as described pre-
viously®®. Samples were set up in duplicate in 96-well plates and incubated for 1.5 h
at 37 °C with a 10-15% tissue culture infectious dose of pseudovirus. After
antibody-pseudovirus coincubation, 11,000 target cells were added in the presence
of 30 uygmL~! DEAE-dextran (Sigma-Aldrich). Neutralization levels after 72 h
were inferred from the reduction in the number of GFP-positive cells as deter-
mined by flow cytometry using a BD-FACSCalibur flow cytometer (Becton
Dickinson).
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Statistical analysis. All statistical analyses were performed using SPSS. Com-
parison between multiple groups were done using the nonparametric
Kruskal-Wallis test, which does not assume a normal distribution. An adjusted p <
0.05 was considered significant.

Code availability. The image analysis code DOI is 10.5281/zenodo.1465920.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon request.
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