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In 2017, tuberculosis (TB), caused by Mycobacterium tuberculosis, was responsible for an
estimated 1.6 million deaths (1). The control of this pandemic is threatened because of a

strong increase of multidrug-resistant M. tuberculosis (MDR-TB) (2). This emergence of
difficult-to-treat strains requires the development of safe drugs with new mechanisms of
action. A highly promising drug target is the cytochrome bc1 complex of the mycobacterial
respiratory chain. Several chemically diverse cytochrome bc1 inhibitors with excellent
antituberculous activity were identified in the past 5 years (3–9). One of these inhibitors is
lansoprazole sulfide (LPZS), a close analogue and metabolite of the blockbuster drug
lansoprazole (Prevacid), a gastric proton-pump inhibitor (PPI) (3). Mode-of-action studies
revealed that lansoprazole targets cytochrome bc1 after prodrug conversion to LPZS in the
host cell. Data on LPZS and its parent compound lansoprazole were recently exploited in
a cohort study analyzing the incidence of TB among individuals taking lansoprazole for the
treatment of gastric acid-related diseases (10). Lansoprazole is among the most widely sold
drugs in the world, which enabled the evaluation of primary care patient records derived
from the United Kingdom Practice Research Datalink (CPRD) (10). Intriguingly, this study
demonstrated a statistically significant protective association between lansoprazole use
and newly diagnosed TB disease. This is a surprising observation, since antimycobacterial
activity of lansoprazole requires its conversion to LPZS. LPZS plasma concentrations during
lansoprazole treatment are relatively low and may not exceed the in vitro MIC determined
for M. tuberculosis (11). Nevertheless, the effect observed seems to be specific for lanso-
prazole and the antimycobacterial activity of lansoprazole analogues, since antacid treat-
ment with two other PPIs (omeprazole and pantoprazole) was not protective against TB
infection. Omeprazole and pantoprazole provided excellent controls in this study, since
neither of the drugs possesses antimycobacterial activity due to structural restrictions (3).

These clinical data raise concerns on the susceptibility of clinical M. tuberculosis isolates
to LPZS and other cytochrome bc1 inhibitors. Single-agent therapy and suboptimal dosing
are well-known drivers of antibiotic resistance, as demonstrated for acquired fluoroquin-
olone resistance in M. tuberculosis isolates, which was associated with the receipt of
fluoroquinolones prior to the TB diagnosis (12, 13). Widespread use of lansoprazole may
have already selected for resistant strains, which would in turn hamper future clinical
exploitation of these drugs in the fight against MDR-TB.

For this reason, we investigated cytochrome bc1 inhibitor resistance mutations in M.
tuberculosis complex (MTC) whole-genome data derived from clinical isolates. Resis-
tance in most cytochrome bc1 inhibitors identified so far is caused by single nucleotide
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polymorphisms (SNPs) of qcrB (Rv2196), causing mutations in the ubiquinol oxidation
(QP) site of mycobacterial cytochrome bc1 (3–5, 9).

A total of 13,559 MTC next-generation sequencing data sets were analyzed with the
MTBseq pipeline, i.e., reads were mapped to the H37Rv reference genome (GenBank
identifier [ID], NC_000962.3) with the alignment program BWA, and mappings were
refined and processed with the GATK and SAMtools toolkits (15). The samples were
derived from both prospective and targeted collections of isolates and originated from
countries around the world, with the vast majority of samples collected between 2010
and 2018. The collection contains strains from all lineages of the MTC (Table 1). For
variant detection in mapped reads, we used the MTBseq default minimum thresholds
of at least 4 reads coverage in both forward and reverse orientations, at least 4 reads
calling the allele with at least a Phred score of 20, and 75% allele frequency (https://
github.com/ngs-fzb/MTBseq_source). All data sets reached at least a mean coverage
depth of 50-fold, with at least 95% of the reference genome covered with sufficient
quality to meet variant detection thresholds.

Among all detected variants, we screened for any nonsynonymous SNP in codons
176, 182, 312, 313, 317, 342, and 396 of the qcrB gene (L176X, S182X, W312X, T313A,
A317X, M342X, and A396X, respectively).

Among the 13,559 MTC genomes, there was only one Mycobacterium bovis strain
which contained a T313A mutation causing resistance to Q203, a cytochrome bc1

inhibitor under investigation in clinical trials (9). For the remaining 13,558 MTC ge-
nomes, we detected wild-type sequences for the above-mentioned qcrB codons.

Our observations clearly show that extensive and worldwide use of proton pump
inhibitors in the past decades did not lead to high prevalence of cytochrome bc1

resistance mutations in a representative number of clinical MTC isolates. This indicates
that further clinical development of these promising antibiotics should not be com-
promised by prior lansoprazole treatment of people infected with M. tuberculosis.
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