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ABSTRACT Treatment efficacy of Mycobacterium abscessus infections depends on bac-
terial genotype. Here, the relationship between genotype, as determined by sequence
analysis, and antibiotic resistance phenotype was analyzed. The results demonstrate that
M. abscessus genotype characteristics, including erm(41) sequevar and mutations of rrl
and rrs, are predictive of clarithromycin and amikacin resistance.
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Mycobacterium abscessus, the most common rapidly growing mycobacterium
(RGM) isolated from patients with chronic pulmonary infections, accounts for 80%

of RGM isolates (1). Treatment of M. abscessus infections is complicated because of its
innate multidrug resistance that can render even combination antibiotic treatment
ineffective (2). Until recently, clarithromycin (CLA) and azithromycin (AZM) formed the
cornerstone of antimicrobial chemotherapy of pulmonary M. abscessus infections (3).
However, two molecular resistance mechanisms underlying CLA resistance were re-
cently described. First, point mutations at position 2058/2059 of the 23S rRNA (rrl) gene
confer acquired resistance to CLA (4). Second, an intact erm(41) T28 sequevar, charac-
terized by a C to T substitution at position 28, confers inducible CLA resistance (4).
Notably, M. abscessus subsp. massiliense (M. massiliense) usually possesses a truncated,
nonfunctional erm(41) gene due to a 274-bp deletion in the gene. In contrast, the M.
abscessus subsp. abscessus erm(41) C28 sequevar, with a C at position 28 of erm(41),
exhibits intrinsic susceptibility to CLA (5–7). Because of emerging CLA resistance,
amikacin (AMK) has commonly been used as an alternative treatment. However,
mutations of nucleotide 1408 of the rrs gene that have been correlated with AMK
resistance have been observed (7). Consequently, because the effectiveness of thera-
peutic regimens for M. abscessus infections varies with bacterial genotype, this study
was conducted to correlate M. abscessus genotype with antibiotic susceptibility.

A total of 385 isolates were collected from Guangzhou Chest Hospital in southern
China and Shanghai Pulmonary Hospital in eastern China from January 2012 to
December 2014. All isolates were subcultured on Löwenstein-Jensen medium followed
by genomic DNA preparation, as previously reported (8). Isolates were then character-
ized further by using multilocus sequence analysis of various genes, including 16S
rRNA, heat shock protein 65 (hsp65), the �-subunit of bacterial RNA polymerase (rpoB),
and the 16S to 23S rRNA internal transcribed spacer (ITS) sequence. Meanwhile, MICs of
18 of the most common antibiotics used clinically to treat M. abscessus infections were
determined by use of the recommended standard broth microdilution method (9). The
MIC, defined here as the lowest concentration of antibiotic that inhibits visible growth
of mycobacteria, was monitored on days 3, 7, and 14 of incubation. Susceptibility
breakpoints for each antibiotic are shown in Table S1 in the supplemental material.

Citation Zheng H, Liu D, Lu J, Song Y, Wang
S, Zhao Y, Ni X. 2019. Genetic correlation of
antibiotic susceptibility and resistance
genotyping for the Mycobacterium abscessus
group. Antimicrob Agents Chemother 63:
e01523-18. https://doi.org/10.1128/AAC
.01523-18.

Copyright © 2018 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Yanlin Zhao,
zhaoyl@chinacdc.cn, or Xin Ni,
nixin@bch.com.cn.

Received 18 July 2018
Returned for modification 18 September
2018
Accepted 31 October 2018

Accepted manuscript posted online 5
November 2018
Published

MECHANISMS OF RESISTANCE

crossm

January 2019 Volume 63 Issue 1 e01523-18 aac.asm.org 1Antimicrobial Agents and Chemotherapy

21 December 2018

https://doi.org/10.1128/AAC.01523-18
https://doi.org/10.1128/AAC.01523-18
https://doi.org/10.1128/ASMCopyrightv2
mailto:zhaoyl@chinacdc.cn
mailto:nixin@bch.com.cn
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.01523-18&domain=pdf&date_stamp=2018-11-5
https://aac.asm.org


Isolates susceptible to CLA on day 3 but resistant on day 14 were interpreted as
exhibiting “inducible resistance” (6, 10, 11).

For each isolate, erm(41) sequevar and rrl and rrs gene sequences were analyzed and
correlated with CLA and AMK profiles, as described previously (7, 11). Mutations of rrl
and rrs sequences were compared with the published M. abscessus genome sequence
(GenBank accession number NC_010397.1). Erm(41) sequence analysis was performed
with ATCC 19977 (T28 sequevar, GenBank accession number FJ358483.1) and CR5701
(C28 sequevar, GenBank accession number HQ127366.1) as reference strains.

This study characterizes susceptibility profiles for the largest number of antibiotics
to date for these clinical isolates, including resistance rates to macrolides and amin-
oglycosides (Table S1). AMK, CLA, and AZM were the three most effective agents
against both M. abscessus subsp. abscessus (6/218, 2.8%; 14/218, 6.4%; 33/218, 15.1%,
respectively) and M. abscessus subsp. massiliense isolates (7/163, 4.3%; 17/163, 10.4%;
21/163, 12.9%, respectively). Although the M. abscessus subsp. abscessus CLA resistance
rate was higher on day 14 than on day 3 (84.9% versus 6.4%), the corresponding rate
for subsp. massiliense barely changed (11.7% versus 10.4%). Meanwhile, similar overall
trends were observed for AZM resistance (see Table S2 in the supplemental material).
Notably, the acquired CLA resistance rate of 8.1% (31/381) was lower than those
reported in other studies in China (33.95%) (12) and South Korea (15.84%) (13), higher
than those reported in Brazil (5.55%) (14) and the United States (2.51%), and similar to
the rate in France (9.09%) (15). These variations may be the results of differences in
isolates or in patient treatment histories among the various studies.

Few studies reported from China have correlated antibiotic susceptibility with M.
abscessus genotype for such a large number of samples. Here, based on subspecies and
erm(41) sequevar characterizations of all 385 isolates, 218 were identified as M. absces-
sus subsp. abscessus, of which 185 possessed the erm(41) T28 sequevar and 33
possessed the erm(41) C28 sequevar. Another 163 isolates were classified as subsp.
massiliense, and 4 other isolates belonged to M. abscessus subsp. bolletii and were
excluded from further analysis due to their low representation. CLA MIC values are
presented in Table 1 with regard to subspecies, erm(41) sequevar, and time of incuba-
tion. A total of 336 CLA-sensitive and 31 CLA-resistant subsp. abscessus isolates were

TABLE 2 Characterization of M. abscessus clinical isolates with phenotypic resistance to CLA and AMK

Genotype

No. of isolates with rrl mutation:
No. of isolates with rrl
mutation/day 3 resistant (%)

No. of isolates with
induced resistance (%)

No. of isolates with
rrs mutation A1408GA2058C A2058G A2059C Total

erm(41) T28 4 2 1 7 7/31 (22.6) 171/174 (98.3) 3
erm(41) C28 2 1 0 3 3/31 (9.7) 0 (0) 2
M. massiliense 3 5 2 10 10/31 (32.3) 3/174 (1.7) 2

TABLE 1 Incubation time on the MIC values and resistant rate of CLA antibiotic for M. abscessus subtype, erm(41) sequevar

M. abscessus
subtype

No. of
isolates

Incubation
time (days)

No. of isolates at CLA MIC (�g/ml) of:
No. of resistant
isolates (%)0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

T28 185 3 19 31 27 28 32 27 10 4 1 1 5 11 (5.9)
7 5 9 6 8 13 22 24 25 21 17 35 98 (53.0)
14 0 0 0 1 1 0 1 16 19 32 115 182 (98.4)

C28 33 3 10 9 6 2 3 0 0 1 0 0 2 3 (9.1)
7 8 10 7 1 3 0 1 1 0 1 1 3 (9.1)
14 6 7 7 4 3 3 0 0 1 0 2 3 (9.1)

massiliense 163 3 51 43 28 12 4 4 4 5 3 2 7 17 (10.4)
7 43 37 24 17 10 10 5 4 3 2 8 17 (10.4)
14 29 20 17 24 22 27 5 2 1 4 12 19 (11.7)

All subtypes 381 3 80 83 61 42 39 31 14 31 4 3 14 31 (8.1)
7 56 56 37 26 26 32 30 30 24 20 44 118 (11.5)
14 35 27 24 29 26 30 6 5 21 49 129 204 (53.5)
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observed on day 3, whereas 204 CLA-resistant and 171 CLA-sensitive isolates were
observed on day 14. Of CLA-sensitive isolates, most possessed the subsp. massiliense
genotype (n � 139) or the erm(41) C28 (n � 30) sequevar. Notably, 2 CLA-sensitive
isolates possessed erm(41) T28 sequevars, although the mechanism(s) underlying CLA
sensitivity of these erm(41) T28 isolates are unknown.

The relationship between CLA susceptibility and erm(41) sequence results and rrl
mutations with CLA susceptibility was also analyzed on day 3 of CLA exposure by
assessing 194 CLA-sensitive (MIC, �2 �g/ml) and 92 CLA-intermediate (MIC, �4 �g/ml)
subsp. abscessus isolates, all of which lacked rrl 2058/2059 mutations before CLA
exposure. Of these isolates, 59 possessed the erm(41) C28 sequevar and 227 possessed
the erm(41) T28 sequevar. As shown in Table 2, of 14 isolates exhibiting acquired
resistance isolates (MIC, �8 �g/ml), 11 erm(41) T28 and 3 erm(41) C28 isolates were
observed. Of the isolates with acquired resistance, 7 with the erm(41) T28 sequevar and
all 3 with the erm(41) C28 sequevar also possessed an rrl 2058/2059 mutation. Of subsp.
massiliense isolates, 142 were CLA-sensitive isolates, 4 were CLA-intermediate isolates,
and 17 isolates exhibited acquired resistance. Of the latter, 10 possessed an rrl 2058/
2059 mutation, and of these isolates, 5 harbored the A2058C mutation, 3 possessed the
A2058G mutation, and 2 possessed the A2059C mutation. Because the remaining 7
resistant subsp. massiliense isolates exhibited no rrl 2058/2059 mutation, the underlying
resistance mechanism was attributed to a change in 50S ribosomal subunit structure.
Meanwhile, 3 erm(41) C28 isolates showed induced resistance to CLA, which was in
agreement with results in previous studies showing that CLA resistance could be
induced in isolates possessing the erm(41) C28 sequevar through rrl gene mutation
after long-term exposure to high CLA concentrations.

Regarding AMK susceptibility, MIC values, subspecies, and erm(41) sequevar are
shown in Table 3, with MIC values ranging from 0.125 to 128 �g/ml. AMK resistance
rates of isolates with erm(41) T28 and erm(41) C28 sequevar profiles were 2.7% and
3.0%, respectively, with no significant difference between erm(41) sequevars. Mean-
while, 69.2% (9/13) of isolates with MICs of �64 �g/ml possessed an A1408G rrs
mutation; 7 of these isolates resistant to both CLA and AMK harbored rrl and rrs
mutations. Notably, all AMK-resistant isolates were associated with tobramycin MICs of
�8 �g/ml. Therefore, rrs mutations conferred cross-resistance between AMK and to-
bramycin, as previously reported (15).

In conclusion, this study demonstrated an association between CLA drug resistance
rate and M. abscessus genotype, with erm(41) sequevar and rrl and rrs genotypes being
predictive of the resistance to CLA and AMK, respectively. This work should guide
development of more effective treatment for M. abscessus infections.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC
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TABLE 3 Incubation time on MIC values and resistance rate of AMK antibiotic for M. abscessus subtype erm(41) sequevar

M. abscessus
subtype

No. of
isolates

No. of isolates at AMK MIC (�g/ml) of:
No. of resistant
isolates (%)0.125 0.25 0.5 1 2 4 8 16 32 64 128

T28 185 2 3 8 9 7 18 59 63 11 2 3 5 (2.7)
C28 33 0 1 1 5 1 3 5 14 2 1 0 1 (3.0)
massiliense 163 5 2 1 6 4 5 24 73 36 5 2 7 (4.3)
All subtypes 381 7 6 10 20 12 26 88 150 49 8 5 13 (3.4)
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