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ABSTRACT Carbapenem-resistant Acinetobacter baumannii (CRAB) is a perilous nos-
ocomial pathogen causing substantial morbidity and mortality. Current treatment
options for CRAB are limited and suffer from pharmacokinetic limitations, such as
high toxicity and low plasma levels. As a result, CRAB is declared as the top priority
pathogen by the World Health Organization for the investment in new drugs. This
urgent need for new therapies, in combination with faster FDA approval process, ac-
celerated new drug development and placed several drug candidates in the pipe-
line. This article reviews available information about the new drugs and other thera-
peutic options focusing on agents in clinical or late-stage preclinical studies for the
treatment of CRAB, and it evaluates their expected benefits and potential shortcom-
ings.
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Acinetobacter baumannii has evolved as a significant hospital pathogen by its ability
to resist desiccation, disinfectants, and major antimicrobials (1). Today, a substan-

tial proportion of these isolates are carbapenem-resistant A. baumannii (CRAB), i.e.,
extensively drug-resistant (XDR) or pandrug-resistant (PDR) A. baumannii (2). Carbap-
enem resistance rates exceed 90% in some parts of the world (3), and mortality rates
for the most common CRAB infections, i.e., hospital-acquired pneumonia (HAP) and
bloodstream infections (BSI), may approach 60% (4). This is significantly higher than
rates for carbapenem-susceptible A. baumannii infections (5). Current antimicrobials for
CRAB (i.e., polymyxins, tigecycline, and sometimes aminoglycosides) are far from
perfect therapeutic options due to their pharmacokinetic properties and increasing
resistance rates.

In these dire circumstances, the need for new therapeutic options for the treatment
of CRAB infections is indisputable. Since antimicrobial discovery and resistance devel-
opment to the new antimicrobial are nearly simultaneous, drugs with novel mecha-
nisms of action that will overcome current resistance mechanisms are sought after.
Currently, there are a small number of drug candidates and other therapeutic options
that may meet those expectations. This review will focus on such drugs that are in
clinical or late preclinical studies (Table 1). In addition, phage therapy and monoclonal
antibodies for CRAB will be evaluated. The purpose of this review is to describe the
state of anti-CRAB therapies by providing an overall picture of the current pipeline. As
all antimicrobials face the eventual fate of being defeated by the bacteria, possible
resistance mechanisms against new therapies will also be evaluated. This review is
expected to guide the development of new and better drugs and to inspire further
novel therapeutic options against resistant microorganisms.
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LIMITATIONS OF CURRENT THERAPEUTIC OPTIONS

Polymyxins, discovered in the 1950s and abandoned in the 1980s due to their
toxicity profile and availability of cephalosporins and carbapenems, are currently in use
as first-line antimicrobials against CRAB, alone or in combination with other drugs.
Polymyxins generally have potent in vitro activity against A. baumannii strains; however,
they suffer from a lack of clinically relevant susceptibility breakpoints, very narrow
therapeutic spectrum, and serious side effects of nephrotoxicity and neurotoxicity (6).
Resistance emerging during therapy due to colistin-heteroresistant strains and difficulty
in determining heteroresistance are other important issues that may result in unfavor-
able clinical outcomes (7). With an undefined optimal dosing, high toxicity, and
increasing resistance (7–9), polymyxin-based therapies are far from being safe and
effective for the treatment of CRAB infections (Table 2).

Colistin-based combination therapies have been preferred over colistin mono-
therapy given colistin’s suboptimal pharmacokinetics and pharmacodynamics. How-
ever, randomized controlled trials (RCTs) have not yet proven the superiority of
combination therapy over colistin monotherapy. A recent international open-label RCT
comparing colistin plus meropenem versus monotherapy with colistin against serious
carbapenem-resistant Gram-negative infections did not show a statistical difference in
mortality rates between two treatment arms (10). BSI and ventilator-associated pneu-

TABLE 1 New therapeutic options

Drug Preclinical Phase I Phase II Phase III FDA approved

Siderophore cephalosporins
Cefiderocol ✓ ✓ ✓ ✓ -
Others

GSK-3342830 ✓ -a - - -
Fimsbactin plus daptomycin ✓ - - - -
GT-1 ✓ - - - -

Tetracyclines
Eravacycline ✓ ✓ ✓ ✓ ✓
TP-6076 ✓ ✓ - - -

New non-�-lactam–�-lactamase inhibitors paired with
existing �-lactam antibiotics

ETX2514 plus sulbactam ✓ ✓ ✓ - -
WCK 4234 plus meropenem (WCK-5999) ✓ - - - -
LN-1-255 plus meropenem-imipenem ✓ - - - -
VNRX-5113 (partner �-lactam unspecified) ✓ ✓ - - -
WCK 5153 plus sulbactam ✓ - - - -
Zidebactam plus cefepime ✓ ✓ - - -

New �-lactam antibiotics
AIC-499 (partner �-lactam inhibitor unspecified) ✓ ✓ - - -
FSI-1671 plus sulbactam ✓ - - -

Polymyxin B-derived molecules
SPR741 ✓ ✓ - - -
FADDI-287 ✓ - - - -

Aminoglycosides
Apramycin ✓ - - - -

Other drug candidates
LpxC inhibitors ✓ - - - -
RX-P873 ✓ - - - -

Other therapeutic options
Bacteriophage therapy ✓ ✓ ✓ ✓ -
Monoclonal antibodies

C8 ✓ - - - -
AR-401 ✓ - - - -

a-, terminated and under review.
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monia (VAP) constituted 87% of the infections, and CRAB was the primary pathogen
(77%). Three previous RCTs which compared colistin with colistin-rifampin or colistin-
fosfomycin in CRAB infections, including BSI, did not find evidence for the superiority
of combination therapy in mortality (11–13). It should be noted that more than 70% of
those in the Durante-Mangoni et al. study receiving colistin without rifampin actually
received other antibiotics (12). In the study by Aydemir et al. (11), the mortality rate was
in fact lower in the colistin-rifampin arm (8/21 [38.1%]) than in the colistin arm (14/22
[63.6%]), but the difference did not reach statistical significance (P � 0.171). Until the
results of a large well-designed double-blind randomized trial comparing the colistin-
carbapenem combination versus colistin monotherapy (14) are available, it may still be
considered that the question of combination therapy is not definitively answered.

Tigecycline, developed for the treatment of multidrug-resistant (MDR) pathogens
and having potent in vitro activity against A. baumannii, has been in use for the
treatment of CRAB infections since 2006 (15). Though only licensed for complicated
intra-abdominal infections (cIAI), skin and soft tissue infections (cSSSI), and community-
acquired bacterial pneumonia (CABP), it has been widely used for the treatment of
various other infections caused by CRAB (16). Yet, tigecycline suffers from pharmaco-
kinetic issues, such as low plasma levels, limiting its use in BSI. In addition, its use in VAP
was hampered when a phase III RCT showed tigecycline to be inferior to the compar-
ator drug and to have higher mortality rates for VAP patients (17). The results from
several recent studies and a meta-analysis are in line with these discouraging results
(18–20), and these combined with increasing rates of tigecycline resistance among
CRAB disfavor its use.

Minocycline is an older tetracycline with considerable in vitro activity against CRAB.
It is the only agent against CRAB which can be administered by the oral route. High
susceptibility rates (72.1% in the United States and 81.4% in Thailand) were shown in
some studies (21), although resistant strains are not infrequent (22, 23). Lashinsky et al.
recently reviewed seven retrospective studies which evaluated the use of minocycline
alone or in combination with other agents against MDR A. baumannii infections and
found high clinical and microbiological success rates (78.2% and 50% to 89%, respec-
tively) (21). However, one should be cautious while interpreting the results of this
review, since there were only 126 patients, 94 of whom were treated with combination
therapy, and most patients (74.6%) suffered from respiratory tract infections. A new
intravenous formulation of minocycline was placed in the U.S. market in 2015, and a
pharmacokinetic study (Acute Care Unit MINocycline [ACUMIN]) to determine optimal
dosing for the critically ill is ongoing (24). Although high susceptibility rates in some
series and good safety profile are encouraging, minocycline’s role as an anti-CRAB
agent needs further investigation.

TABLE 2 Limitations of current therapeutic options

Issue Colistin Tigecycline Minocycline Amikacin Sulbactam

Pharmacokinetic issues
Narrow therapeutic spectrum ✓
Low or inconsistent drug levels

Plasma ✓ ✓
Lung ✓ ✓
Urine ✓

Toxicity
Nephrotoxicity ✓ ✓
Neurotoxicity ✓

Resistance
High resistance rates ✓ ✓ ✓ ✓
Heteroresistance ✓
Breakthrough ✓ ✓

Only in combination ✓ ✓ ✓
Increased mortality ✓
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Amikacin is another drug used as an anti-CRAB agent because it retains in vitro
activity against some strains. However, its nephrotoxicity and high resistance rates (68%
to 100%) limit its systemic use (3). A large RCT comparing inhaled amikacin as
adjunctive therapy to the standard of care in VAP patients failed to demonstrate its
superiority over the standard of care and a placebo (25).

Sulbactam is a �-lactamase inhibitor with intrinsic activity against A. baumannii. The
efficacy of sulbactam-containing regimens has been explored in several studies, and it
is suggested as an anti-CRAB drug (26); higher doses were found to be effective against
CRAB in some small studies (27). However, as with amikacin, high resistance rates
among CRAB may limit its potential (28).

Various combinations of these drugs have been used for the treatment of CRAB
infections; yet, combination therapies were not found to be superior over monothera-
pies in preventing resistance and improving clinical outcomes, even though the
combination therapies may be better at microbiologic eradication (29–32).

None of the recent combinations of �-lactams and �-lactamase inhibitors, i.e.,
ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, or imipenem-
relebactam, have clinically useful activity against CRAB, and the activity of the new
aminoglycoside plazomicin is limited to a minority of strains, which may partly be explained
by the increasing frequency of ribosomal methyltransferases in A. baumannii (33).

NEW THERAPEUTIC OPTIONS
Siderophore cephalosporins. (i) Cefiderocol. Cefiderocol (S-649266) is a recently

developed novel cephalosporin conjugated with a catechol siderophore on its side
chain. Cefiderocol has a distinctive active uptake mechanism and stability against many
�-lactamase classes, which provide enhanced penetration of bacterial cell and activity
against highly resistant Gram-negative bacteria, including CRAB (34).

In in vitro studies, cefiderocol was shown to be potent against OXA-23, OXA-40, and
OXA-58 as well as NDM- and IMP-producing A. baumannii isolates, with MIC90s ranging
from 1 to 8 �g/ml (35–40). However, it seems to be less active against some strains of
A. baumannii that express OXA-23 and OXA-40 (38, 40, 41).

Characterization of the carbapenemases of CRAB strains from a global surveillance
study with a large collection of CRAB isolates showed that the MIC90 was 1 �g/ml for
OXA producers and GES producers and 4 �g/ml for NDM producers (41). Among 689
CRAB strains, there were 22 strains with MICs of �4 �g/ml (8, 16, 32, and 64 �g/ml).
Twenty-one of these were OXA producers (15 OXA-23 strains and 6 OXA-40 strains), and
one strain was a GES producer (Table 3). Another surveillance study, which tested the
isolates collected 1 year later, showed that the MIC90 and the highest MIC for cefidero-
col were 2 �g/ml and �256 �g/ml, respectively (42). Twenty-two of 558 strains had
MICs of �4 �g/ml. The carbapenemase types of these strains have not yet been
characterized. In two other studies, CRAB strains with cefiderocol MICs of �8 �g/ml
similarly were OXA-23 (7 and 2 strains) and OXA-24 (0 and 1 strain) producers (38, 40).
Although susceptibility breakpoints for cefiderocol have not yet been established, a
recent study defined “resistant” as an MIC of �16 �g/ml and identified 6 resistant CRAB
strains, two of which were OXA-23 producers (43). The cefiderocol MIC90 was 1 �g/ml
in another collection of CRAB strains, and there were 28 strains out of 758 with MICs of
�8 �g/ml (44). Interestingly, in a study from Greece, there were not any CRAB strains
with MICs of �2 �g/ml (45).

For in vivo studies, the efficacy of humanized exposures of cefiderocol was evaluated
in animal infection models. In immunocompetent rats infected with CRAB clinical
isolates, a 2-g equivalent of cefiderocol infused every 8 h (3 h infusion) decreased the
microbiologic load by �3 log10 after 4 days (46). In another study, immunocompro-
mised mice were infected with CRAB, and a �1-log10 reduction in microbiologic load
was observed 24 h after 2 g equivalent of cefiderocol was infused every 8 h (3 h
infusion) (47). In the second study, the �1-log10 reduction was observed only in 2 of 28
strains (19 A. baumannii strains) with MICs of �8 �g/ml, whereas the growth of most
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isolates with MICs of �4 �g/ml could be reduced by �1 log10, suggesting a suscepti-
bility breakpoint for cefiderocol.

In clinical studies, cefiderocol was found to be superior to imipenem-cilastatin for
the treatment of complicated urinary tract infections (cUTI) in a phase III RCT (48). The
primary pathogens were Escherichia coli and Klebsiella pneumoniae, and there were not
any CRAB strains among other pathogens. Two other phase III trials about cefiderocol
are currently recruiting patients. One of them compares cefiderocol with “best available
therapy” for severe infections (cUTI, BSI, HAP/VAP, and sepsis), and the other one
compares the drug with meropenem for health care-associated pneumonia (HCAP),
HAP, and VAP (49, 50). It is expected that both of these studies will enroll considerable
numbers of patients with CRAB infection.

(ii) Other siderophores. GSK-3342830 is another siderophore cephalosporin with
considerable activity against CRAB (51, 52). A collection of 94 A. baumannii clinical
isolates (71.3% carbapenem nonsusceptible) had MIC50/90 values of 0.06/0.5 �g/ml, and
the MIC range was �0.03 to 4 �g/ml. However, phase I trials of GSK-3342830 have been
terminated (53).

Fimsbactin, an A. baumannii-selective siderophore, was coupled to daptomycin by
Ghosh et al., with the hypothesis that coupling of a Gram-negative-targeted sidero-
phore to daptomycin could help transfer daptomycin directly into the cytoplasm,
bypassing the need for outer membrane penetration. The resulting conjugate had
potent in vivo and in vitro activity against 10 reference A. baumannii strains, including
MDR strains (54). For in vivo studies, mice infected with A. baumannii ATCC 17961 were
treated with ciprofloxacin, daptomycin, or fimsbactin conjugate. Saline treatment was
used as a control. All mice in the treatment groups other than fimsbactin conjugate
were dead after day 1, whereas 4 out of 5 mice treated with fimsbactin conjugate

TABLE 3 Studies evaluating cefiderocol against CRABa

Reference no. �-Lactamase(s)
No. of CRAB
isolates

No. of isolates with
MIC >4 or 8 �g/mlb

MIC data (�g/ml)

MIC50 MIC90 Range

35 OXA 101 NA 0.25 1 �0.03 to �64
36 NA 368 38 0.25 8 0.015 to �256
37 NA 173 (NoA)c

24
0.25 1 �0.002 to 8

595 (EU) 0.12 1 0.004 to 64
41 NDM 2 0 NA 4 NA

OXA-23 543 15 0.12 1 �0.02 to 16
OXA-40 124 6 0.12 1 0.04 to 64
OXA-58 13 0 0.12 1 0.06 to 1
GES 7 1 NA NA 0.25 to 8

42 NA 558 22 0.5 2 �0.002 to �256
136 NA 44 0 0.12 1 0.015 to 4
44 NA 758 28 NA 1 �0.004 to 64
39 OXA-23 1 NA NA 0.063 NA

OXA-58 1 NA NA 1 NA
OXA-26, OXA-51-like 1 NA NA 0.5 NA
OXA-51-like 1 NA NA 0.5 NA
OXA-23, OXA-51-like 1 NA NA �0.031 NA
OXA-48 1 NA NA �0.031 NA

45 NA 107 0 0.06 0.5 0.03 to 2
38 OXA-23/-40/-58/-72 85 7 0.12 4 0.03 to 64

NDM-1, IMP-4 2 NA NA NA NA
137 OXA-23 5 0 NA NA 0.03 to 0.5
40 Random strains 104 0 0.125 2 �0.063 to 4

All BL carriers 29 0 0.5 8 0.03 to �32
IMP-1 2 0 NA NA 0.12 to 0.25
OXA-23 12 2 NA NA 0.03 to �32
OXA-24 8 1 NA NA 0.12 to 8
OXA-51/ISAba1 2 0 NA NA 0.5 to 1
OXA-58 5 0 NA NA 0.12 to 4

aNA, not available; BL, �-lactamase.
bMIC was �4 �g/ml for studies 35, 36, 37, and 41, �8 �g/ml for study 42, and �8 �g/ml for studies 38 and 40.
cNoA, North America; EU, Europe.
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survived (54). Further development of fimsbactin-daptomycin is unknown at this stage.
It is worth considering the inactivation of daptomycin in the lungs, which may diminish
the potential utility of this investigational agent for CRAB respiratory tract infections.

GT-1, siderophore cephalosporin developed by Geom Therapeutics, is claimed to
have activity against CRAB both in vitro and in vivo in mice. According to the informa-
tion obtained from the drug developer company’s website, it will enter phase I clinical
studies in 2018 under a contract with the National Institute of Allergy and Infectious
Diseases (55).

Tetracyclines. (i) Eravacycline. In in vitro studies, eravacycline (TP-434), a novel
fluorocycline of the tetracycline family, shows activity against a broad range of patho-
gens, including MDR and XDR Gram-negative, Gram-positive, and anaerobic pathogens.
Eravacycline MICs were found to be 2- to 8-fold lower than tigecycline MICs against
CRAB (28, 56–58) (Table 4). The drug is also active against colistin-resistant and
ceftazidime-avibactam-resistant strains (28, 59). The eravacycline MIC50/90 values for
CRAB were 1 and 2 �g/ml in a large collection of CRAB isolates (60). Similar values were
shown (MIC50/90, 0.5/1 �g/ml) in several other studies where isolates produced OXA-23,
OXA-40, or OXA-58 or had overexpression of OXA-51 (28, 57, 58). The production of
OXA carbapenemases did not change the eravacycline MICs for CRAB, whereas NDM-,
OXA-48-, or VIM-producing strains had MIC90s of 4 to 8 �g/ml (61, 62). Increased
eravacycline MIC values were also associated with increased expression of the efflux
pump AdeABC. Eravacycline MIC and the expression of adeB showed a significant
correlation among 38 A. baumannii isolates (26 CRAB isolates) which did not carry any
of the OXA genes (MIC range, 0.06 to 4 �g/ml) (58). Eravacycline maintained potency
against isolates carrying tetracycline efflux pump genes (59).

TABLE 4 Studies evaluating eravacycline against CRAB

Reference no. �-Lactamase(s)
No. of CRAB
isolates

No. of isolates with
MIC >4 �g/ml

MIC data (�g/ml)

MIC50 MIC90 Range

56 163 0.5 1 0.12–8
59 55 0.5 1 0.031–2
28 OXA-23 231 0.5 1

OXA-40 17 0.25 1
OXA-58 27 0.5 0.5
OXA-51a 9 0.125–0.5
Overall 286b 1 0.5 1 �0.06–8

57 NDM 5 0 0.13–0.25
OXA-23/-40/-51/-58 39 0 0.5 1 �0.06–2
Tigr plus OXA-23c 5 2 4 8 1.0–8.0
Overall 59d 2 0.5 1 �0.06–8

58 OXA-23 58 1
OXA-24 2
KPC 1
adeB expression 38e 0.5 2 0.06–4
Overall 158f 0.5 1 �0.015–8

61 NDM 62
OXA-48 27
VIM 15
Overall 104 0.5 4

138 OXA 8
NDM 4
Total 14 0.25 1 0.031–2

139 193 1 2 0.12–8
62 NDM, OXA-48, VIM 16 0.125 8
60 707 1 2 0.06–8
140 52 0.5 2 �0.016–4
aHyperproduced.
bOne isolate with OXA-23 and OXA-58, 1 isolate with NDM-1.
cTigr, tigecycline resistant.
dForty-nine CRAB isolates and 10 carbapenem-susceptible A. baumannii isolates.
eTwenty-six CRAB isolates and 12 carbapenem-susceptible A. baumannii isolates.
fOne hundred nine CRAB isolates and 49 carbapenem-susceptible A. baumannii isolates.
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The efficacy of eravacycline was shown in several animal studies (63) and in a phase
III clinical trial in the setting of cIAI. The drug was noninferior to ertapenem in patients
with cIAI, but septic patients and patients with high acute physiology and chronic
health evaluation (APACHE) II scores were excluded (64). There were only 3 and 4 CRAB
isolates among 220 and 226 isolates in the eravacycline and ertapenem arms, respec-
tively. In a successive RCT, the drug was found to be noninferior to meropenem for the
treatment of cIAI (65). Five hundred patients were randomized (39.8% complicated
appendicitis and 60.2% other diagnoses, including complicated cholecystitis, intestinal
perforation, and stomach/duodenal perforation), and there were 12 Acinetobacter spp.
among 400 isolates. The U.S. FDA has approved eravacycline for the treatment of cIAI
in adults age 18 years and older. However, eravacycline failed an initial phase III cUTI
trial and was found to be inferior to levofloxacin and subsequently in a second phase
III cUTI study versus ertapenem (66).

(ii) TP-6076. TP-6076 is another fluorocycline antibiotic being developed for
the treatment of MDR pathogens. TP-6076 MICs were very low (MIC range, 0.008 to
0.5 �g/ml) against clinical CRAB isolates producing OXA carbapenemases, including 44
colistin-resistant strains (67) (Table 5). Eravacycline and tigecycline MIC50/90 values were
0.5/1 and 1/2 �g/ml, respectively, for the same isolates (67). The TP-6076 MIC50/90

values were 0.03/0.06 �g/ml when tested against 121 clinical isolates from Greek
hospitals between 2015 and 2017 (68). TP-6076 activity was minimally affected by
recombinant overexpression of several tetracycline efflux pumps, and it was also potent
against clinical CRAB isolates expressing tetA (3 isolates) and tetB (18 isolates) efflux
pump genes, showing a maximum MIC90 of 1 �g/ml (69). However, TP-6076 is a
substrate of the AdeABC efflux pump (69). TP-6076 was shown to be bactericidal in a
mouse CRAB pneumonia model, where a �3-log10 reduction in mean lung CFU was
observed at 24 h (69). The drug is currently being evaluated in phase I trials (70).

New non-�-lactam–�-lactamase inhibitors paired with existing �-lactam
antibiotics. (i) ETX2514. ETX2514 is a broad-spectrum diazabicyclooctanone (DBO)
�-lactamase inhibitor similar to avibactam and relebactam. ETX2514 inhibits penicillin-
binding protein 2 (PBP2) and enhances �-lactam activity (71). It has been developed by
modifying the DBO scaffold to cover a broad range of OXA �-lactamases (72). EXT2514
is being developed in combination with sulbactam. Sulbactam-ETX2514 is a potent
combination against CRAB, whereas combinations with imipenem and meropenem did
not decrease the MICs to susceptible levels (72). Sulbactam-ETX2514 was found to be
active against a large collection of CRAB strains (91% OXA carriers) (MIC50/90, 1/4 �g/ml)
and remained active against 56 colistin-resistant strains with an MIC of 2 �g/ml (73).
Similar MICs of sulbactam-ETX2514 were observed among 84 CRAB isolates, 54% of
which encoded class A in addition to class C and D �-lactamases (60 strains encoded
OXA-23, OXA-40, and OXA-58) (72). It should be noted that the number of isolates with
MICs of �4 �g/ml were 4 among 731 isolates in those studies (Table 6). The frequency
of spontaneous resistance to sulbactam-ETX2514 is low (74).

In vivo studies of sulbactam-ETX2514 showed a dose-dependent reduction in MDR
A. baumannii bacterial counts, and �1-log (72) or �2-log (75) drops in CFU counts were

TABLE 5 Studies evaluating TP6076 against CRAB

Reference no. �-Lactamase(s)
No. of CRAB
isolates

No. of isolates with
MIC >4 �g/ml

MIC data (�g/ml)

MIC50 MIC90 Range

68 121 0.03 0.06 �0.002–0.12
67 Overall 326 0a 0.06 0.125 0.008–0.5

OXA-23 255
OXA-40 23
0XA-58 36
OXA-51b 10
NDM 1

141 41 0 0.008 0.063 002–0.25
aAll isolates had MICs of �0.5 �g/ml.
bOverexpressed.
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achieved when sulbactam concentrations exceeded the combination MIC of 0.5 �g/ml
for 50% of the dosing interval. The strain used in these murine infection models did not
harbor any OXAs other than OXA-72 and OXA-66 (72). A phase I study investigating
ETX2514 in combination with either sulbactam or imipenem-cilastatin is completed,
and the combinations have been found to be generally safe among healthy volunteers
(76, 77). Another phase I study conducted to determine plasma and intrapulmonary
concentrations of ETX2514 and sulbactam in healthy subjects is completed, but the
results are not published yet (78). A further phase I study to evaluate ETX2514-
sulbactam in patients with renal impairment and a phase II study to evaluate the drug
in hospitalized patients with cUTI are ongoing (79, 80).

(ii) WCK 4234. WCK 4234 is another DBO �-lactamase inhibitor being developed in
combination with meropenem as WCK-5999. WCK 4234 is active against several car-
bapenemases from classes A, C, and D, including OXA-23 and OXA-51 (71, 81, 82).

The WCK 4234 MIC50/90 values were 2/8 �g/ml when combined with meropenem at
a dose of 8 �g/ml against a large collection of A. baumannii isolates (83, 84). In this
study, 62.8% of the isolates were carbapenem nonsusceptible, but carbapenem resis-
tance genes were not identified. In another study, the MIC50/90 values of the
meropenem-WCK 4234 combination were 2/4 �g/ml against OXA-23-producing CRAB
strains (82). The same combination was less effective against OXA-40-producing strains
(MIC50/90, 4/8 �g/ml). Similarly, both meropenem and imipenem MICs were reduced to
2 �g/ml or below by WCK 4234 in 9 of 10 OXA-23-producing CRAB isolates, whereas
OXA-40-producing isolates stayed resistant (81). WCK 4234 reduced imipenem but not
meropenem MICs for isolates producing OXA-58 (Table 7). OXA-51 hyperproducers
were also suppressed with WCK 4234-potentiated carbapenems, whereas metallo-�-
lactamase (MBL) producers remained resistant (81).

In summary, WCK 4234 in combination with either meropenem or imipenem is
effective against OXA-23 producers and OXA-51 hyperproducers. OXA-58 can be
inhibited by only imipenem-WCK 4234 combinations, whereas OXA-40 and MBL pro-
ducers remain resistant to imipenem or meropenem potentiated with WCK 4234. The
WCK 4234-meropenem combination showed efficacy against MDR A. baumannii strains
producing OXA-23 and OXA-51 in murine peritonitis and neutropenic lung infection
models (71). No clinical studies have yet been commenced.

(iii) LN-1-255. LN-1-255 is a non-�-lactam–�-lactamase inhibitor from the penicil-
lanic acid sulfone family. It is active against class D �-lactamases in vitro (85, 86). The
inhibition efficiency of LN-1-255 was shown to be superior to those of tazobactam and
avibactam in kinetic assays (85). LN-1-255-carbapenem combinations were tested
against isogenic CRAB strains and clinical isolates producing various OXA carbapen-
emases, i.e., OXA-23, OXA-40, OXA-58, and OXA-143 (85). LN-1-255 showed synergy

TABLE 6 Studies evaluating ETX2514 (4 �g/ml) against CRAB

Reference no. �-Lactamase(s)
No. of CRAB
isolates

No. of isolates with
MIC >4 �g/ml

BL drug in
combination

MIC data (�g/ml)

MIC50 MIC90 Range

72 Variousa 195 IPM 0.5 16 �0.06 to �64
MEM 1 16 �0.06 to �64
CAZ 8 32 �0.06 to �64
SUL 1 4 �0.06 to 32
ATM 32 �64 �0.06 to �64

84 SUL 2 4 0.25 to 16
73 Overall 731 4 SUL 1 4 �0.06 to 32

OXA 668 3 1 4 �0.06 to 32
MBL 1 1 32
GES 6 0 0.5 to 4
ESBLb 5 0 1.0 to 2.0
bla negative 51 0 2 4 0.25 to 4

142 OXA-23, OXA-58 72c SUL 1 2
aOf the strains, 52% encoded class A in addition to class C and D �-lactamases, and 60 strains harbored either OXA-23, OXA-40, or OXA-58.
bESBL, extended-spectrum �-lactamase.
cThe total number of A. baumannii isolates was 72, and more than half of the isolates were MDR.
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with carbapenems and decreased their MICs by 2- to 32-fold, to � 2 �g/ml in trans-
formant A. baumannii strains. Similar results were obtained with the clinical isolates,
although the MICs were slightly higher than those observed in the transformants,
mainly in the clinical isolate carrying OXA-40 (85).

Although OXA-48 does not carry the hydrophobic bridge important for the inhibi-
tion by LN-1-255, it was inhibited by LN-1-255-carbapenem combinations in both
isogenic strains and clinical isolates of Enterobacteriaceae (86).

(iv) VNRX-5113. VNRX-5113 is a �-lactamase inhibitor which is claimed to inhibit
MBL activity in MDR Gram-negative bacilli, including A. baumannii. The partner
�-lactam is currently unspecified. A phase I study, funded by the NIH, was initiated in
2017. The information about the drug is obtained mainly from the drug developer’s
website, and there is not yet further information in the public domain (87).

(v) WCK 5153 and zidebactam. Zidebactam (WCK 5107) and WCK 5153 are DBOs
that also inhibit PBP2 and show a potent �-lactam enhancer effect against Gram-
negative pathogens, including A. baumannii (71, 88). They are also active against
MBL-producing K. pneumoniae strains in vitro (89). WCK 5153 and zidebactam de-
creased the sulbactam MIC from 16 to 2 �g/ml for MDR A. baumannii (OXA-23-
producing ST2 international clone) (88). Combinations with cefepime were not as
effective, although the cefepime MIC was lowered from 64 to 16 �g/ml, suggesting
some enhancer effect (88). Zidebactam, in combination with cefepime (WCK 5222), is
being developed as MDR/XDR therapy mainly against Pseudomonas aeruginosa rather
than CRAB. Yet, cefepime-zidebactam was found to be efficacious in murine peritonitis
and neutropenic lung infection models against MDR A. baumannii strains that express
OXA-23 and OXA-51, among others (71). The drug completed two phase I clinical trials

TABLE 7 Studies evaluating WCK 4234 against CRAB

Reference no. �-Lactamase(s)
No. of CRAB
isolates

No. of isolates with
MIC >4 �g/ml

BL drug in
combination

MIC data (�g/ml)

MIC50 MIC90 Range

81 OXA-23 10 0 IPM 0.25–4
0 0.5–4
1 MEM 0.5–8
0 0.5–4

OXA-40 5 IPM 1.0–32.0
4 0.5–16
6 MEM 1.0–32.0
4 0.5–16

OXA-51-ISAba1 0 IPM 0.5–4
0 0.25–2
0 MEM 0.25–4
0 0.5–4

OXA-58 0 IPM 1.0–4.0
0 0.5–4
1 MEM 0.5–16
1 0.5–16

NDM 5 5 IPM �128
5 �128
5 MEM �128
5 �128
5 IPM �128
5 �128
5 MEM �128
5 �128

82 OXA-23 32 3 MEM 2 4
1 2 4

OXA-24 17 16 MEM 8 16
14 4 8

Overall 55a 4 MEM 4 8
83, 84 639b MEM 2 8
aOne strain carried both OXA-23 and OXA-24, and 1 strain carried OXA-23, OXA-24, and OXA-58.
bOf the isolates, 62.8% were CRAB.
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(90, 91), and another phase I trial to investigate the pharmacokinetics of the drug in
patients with renal impairment is currently recruiting participants (92).

New �-lactam antibiotics. (i) AIC-499. AIC-499 is a new �-lactam antibiotic being
developed in combination with a �-lactamase inhibitor (currently unspecified). It is
claimed to have activity against MDR A. baumannii and MDR P. aeruginosa strains. It is
in phase I trials, but information is not currently registered on a government trial
registry. According to the information obtained from the drug developer company’s
website, a phase I study is conducted in 48 healthy volunteers in a single center at the
Medical University of Vienna, Austria. This single-dose study is planned to be followed
by a multiple-ascending-dose part in 36 volunteers. Clinical trials are being supported
by the Innovative Medicines Initiative (IMI) within the COMBACTE-MAGNET project (93).

(ii) FSI-1671. FSI-1671 is a new class of carbapenems which possesses activity
against A. baumannii. The FSI-1671-sulbactam combination was active (MIC50/90, 0.25/1
�g/ml; MIC range, �0.008 to 4 �g/ml) against 85 clinical A. baumannii isolates, includ-
ing OXA producers, though the number of CRAB isolates is not specified (94). The
combination also showed in vivo efficacy against CRAB-infected mice (95). Further
development of FSI-1671 is unknown at this stage.

Polymyxin B-derived molecules. (i) SPR741. SPR741 (formerly NAB74) is a poly-
myxin B (PMB)-derived antibiotic adjuvant that permeabilizes the Gram-negative mem-
brane. It does not exhibit Gram-negative activity itself and is specifically designed to
minimize nephrotoxicity. Potentiation of rifampin activity with SPR741 against A.
baumannii, including clinical isolates, has been shown in several in vitro studies using
checkerboard or time-kill analyses (96–98). SPR741 at 8 �g/ml was able to potentiate
the activities of rifampin and meropenem, reducing the MICs from 128 to 0.5 �g/ml and
from 4 to 0.016 �g/ml, respectively, against 17 CRAB strains (clinical isolates and
reference strains) (97). Similarly, the rifampin MIC was at least 4-fold reduced in the
presence of SPR741 against 28 reference strains (57% nonsusceptible to carbapenem)
(96). A SPR741-rifampin combination achieved significant lung concentrations and
2-log10 reduction in bacterial burden in murine lung infection models (96, 99). SPR741
was found to be generally well tolerated in phase I clinical trials (100, 101).

(ii) FADDI-287. FADDI-287 is a novel polymyxin analogue with an improved safety
profile. It has greater potency than PMB against CRAB (102). The MIC50/90 values of
FADDI-287 were 0.25/0.5 �g/ml against 210 CRAB isolates (MIC range, 0.25 to 64 �g/
ml), whereas the PMB MIC50/90 values were 1/2 �g/ml (MIC range, 0.25 to 64 �g/ml)
(102). FADDI-287 and PMB inhibited 91.4% and 11.4% of the isolates at an MIC of
�0.5 �g/ml, respectively. FADDI-287 showed promising efficacy and reduced renal
toxicity in mouse thigh and rat lung infection models against A. baumannii (103).

The aminoglycoside apramycin. Apramycin is an aminoglycoside antibiotic used
in veterinary medicine. Its resistance to inactivation by most aminoglycoside-modifying
enzymes makes it an attractive therapeutic option against MDR Gram-negative micro-
organisms. The MIC50/90 values of apramycin were found to be 16/64 �g/ml against
carbapenem and aminoglycoside-resistant 594 A. baumannii isolates from Greek hos-
pitals (MIC range, 2 to 256 �g/ml), and 88.6% of the strains were inhibited at a
concentration of �32 �g/ml, which is the apramycin breakpoint of susceptibility as per
the National Antimicrobial Resistance Monitoring System (104). In a previous study,
similar values were observed (MIC50/90, 8/32 �g/ml; MIC range, 2 to 256 �g/ml) against
104 A. baumannii isolates (89% CRAB isolates) (105). Apramycin efficacy was also tested
in a murine thigh infection model (106). Neutropenic mice were inoculated with three
strains of A. baumannii that had apramycin MICs of 2, 16, and 64 �g/ml and were
treated with apramycin 2 h postinfection. There was at least a 4-log10 reduction in CFU
in all three strains at 24 h postinfection (106). There are no clinical studies as of date.

Other drug candidates. Molecules that play a role in lipid A biosynthesis have been
attractive targets for antibiotic development. The most promising among them is LpxC,
a zinc-dependent deacetylase. Inhibition of LpxC increases the antibiotic susceptibility
of A. baumannii (107), including XDR clinical isolates (108). The MIC50/90 values of a new
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LpxC inhibitor were 0.8/3.2 �g/ml (MIC range, 0.5 to �64 �g/ml) when tested on 25
clinical A. baumannii isolates, including 19 MDR/XDR strains (7 OXA-23 producers and
1 OXA-40 producer) (109). An LpxC inhibitor, ACHN-975, failed human trials due to
inflammation at the infusion site. Nevertheless, this new class of antibiotics may be
promising agents for the treatment of CRAB infections if safety and pharmacokinetic
properties are optimized and their activity and efficacy against CRAB infections are
supported by further studies (110).

Another drug candidate with in vitro activity against CRAB is RX-P873. It binds to a
conserved region in the ribosome and inhibits protein synthesis. The MIC50/90 values of
RX-P873 were 0.5/1 �g/ml (MIC range, 0.12 to 4 �g/ml) against 202 clinical A. bauman-
nii isolates (52.5% carbapenem resistant) (111). No further studies have been reported
on this molecule since 2015, and the latest information from the drug developer
company’s website is from 2014.

Other therapeutic options. (i) Phage therapy. In the era of MDR microorganisms
with strictly limited therapeutic options, bacteriophage therapy attracts many clinicians
in spite of numerous unanswered questions about its use. Phages were discovered a
century ago (112), although the first phages specific to MDR A. baumannii and CRAB
were only characterized in 2010 and 2012 (113, 114). CRAB infections have been treated
with phages successfully in animals (115–121). Data from human infections remain
scarce.

Schooley et al. treated a septic patient with phages (122). This was a 68-year-old
diabetic man who developed gallstone pancreatitis and a pancreatic pseudocyst, from
which PDR A. baumannii strains resistant to meropenem, amikacin, trimethoprim-
sulfamethoxazole, tetracycline, ciprofloxacin, and colistin were isolated. Even though
the patient was treated with combination therapies according to synergy testing
results, MDR A. baumannii strain was repeatedly isolated from multiple sites. The
patient eventually deteriorated and required vasopressors. At this time, the phage
cocktail was administered, initially into the pseudocyst cavity and intra-abdominally
and later intravenously. The patient improved with this therapy and ultimately had a
favorable clinical outcome. Another patient infected with PDR A. baumannii was treated
with bacteriophages by the same group (123). This was a 77-year-old man who
underwent a craniectomy due to assault resulting in subdural and epidural empyema.
PDR A. baumannii was isolated from intraoperative cultures. The patient did not
improve with combination antibiotic therapies and was put on phage therapy. Phages
were administered intravenously for 19 days. Although the craniotomy site and the skin
flap healed well, the patient died on day 20. Phage therapy could not be administered
intrathecally for this patient, which may be one of the reasons for the failure of phage
therapy, another being the severity of his underlying condition.

In another study from Russia, one of the few countries where phage therapy is
widely used (124), Bochkareva et al. presented data on 42 intensive care unit (ICU)
patients treated with phages. Of those patients, 87.5% had MDR A. baumannii, K.
pneumoniae, and P. aeruginosa growth in their endotracheal aspirate, blood, urine, and
feces. They had received repeated doses of a phage cocktail either therapeutically or
prophylactically. The phage cocktail was defined as “therapeutic and prophylactic
product (TPP)” and included two phage strains per each bacterium (A. baumannii, K.
pneumoniae, P. aeruginosa, and Staphylococcus aureus). The efficacy of TTP was deter-
mined 24 h after the final dose of treatment, and anti-phage immunity was detected
after 2 to 3 weeks. It was shown that 54 to 62.5% of patients had “sanitation of the
infected loci.” The authors stated that repeated doses of phages do not eradicate
infection more efficiently than the single dose and suggest that repeated doses have
undesired consequences, such as the development of anti-phage antibodies. A change
in the composition of the phage strains is required for future treatments (125). In
another study from Russia, 14 patients with MDR A. baumannii, K. pneumoniae, P.
aeruginosa, and S. aureus growth in several samples, including endotracheal aspirate,
blood, and urine, had a microbiologic response to a 3-day phage therapy (126).
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These results, though promising, display the hurdles of the bacteriophage treatment
process. Phages are very host specific, and preparation of the phage cocktail in advance
is difficult (127). The dosing route and schedule of phages are not known for different
body site infections. Schooley et al. administered phages through intracystic, intraab-
dominal, and intravenous routes, whereas Russian researchers used gastrointestinal
(oral and intragastric) and endotracheal routes. There are not clearly defined dosing
intervals currently, and unfavorable outcomes of multiple dosing may occur (125). It is
necessary to detect anti-phage antibodies for a customized therapy with repeated
doses. Another handicap of this therapeutic option is resistance as shown by Schooley
et al, where one of the strains developed resistance to the bacteriophage cocktail 8
days after the initiation of therapy (122). This may in part be overcome with the
development of new phages against the new resistant strain, which requires an active
“on-demand” service for the rapid selection of new phage strains (125).

An RCT comparing phage therapy with antibiotics for cUTI in patients undergoing
prostate resection is recruiting patients (128, 129). Finally, phages may have other
promising uses in the fight against drug-resistant bacteria. Ho et al. used anti-CRAB
phage aerosols to decontaminate patient rooms and showed that phage aerosols
reduce CRAB infection rates (130).

(ii) Monoclonal antibodies. Development of monoclonal antibodies (MAbs) for the
treatment of bacterial infections is challenging due to several host- and product-
specific issues. Currently, there are three FDA-approved antibacterial MAb products
(against Bacillus anthracis and Clostridium difficile) and at least nine MAbs (mainly
against S. aureus and P. aeruginosa) that are in clinical trials (131). Monoclonal A.
baumannii antibodies have been used for protection from sepsis and pneumonia and
treatment of wound infections in animal models (132, 133). Nielsen et al. recently
developed an MAb active against XDR A. baumannii. The new MAb, called C8, showed
antibacterial activity alone and in combination with colistin against XDR A. baumannii
in vitro and in mice, and it retained activity after humanization (134). AR-401 is another
fully human MAb claimed to be developed against A. baumannii (135).

CONCLUSION

CRAB is arguably the most troublesome Gram-negative microorganism due to its
great capacity for resistance development. New agents recently approved for drug-
resistant Gram-negative bacilli are effective against KPC producers or carbapenem-
resistant P. aeruginosa but not against CRAB.

Cefiderocol is likely to be the first of the new agents active against CRAB to be
approved for clinical use. Its in vitro effectiveness against large collections of CRAB
strains with a variety of resistance mechanisms provides much hope, as does its
superiority over imipenem-cilastatin for the treatment of cUTI. However, there were
very few A. baumannii strains in this clinical trial, so its real test will be in phase III trials
for patients with serious infections, such as BSI and VAP. Cefiderocol-nonsusceptible
strains of CRAB already exist before its approval, and a key question will be the effects
of selection pressure once cefiderocol is used clinically.

Eravacycline, recently placed on the market, has better in vitro activity against CRAB
than tigecycline. However, existing issues about tigecycline and the failure of eravacy-
cline in phase III trials of cUTI diminish the expectations from this drug. Unfortunately,
no trials to evaluate eravacycline efficacy on BSI and VAP are on the horizon.

Among other drug candidates, ETX2514 combined with sulbactam is in phase II
studies. TP-6076, VNRX-5113, AIC-499, and SPR741 have commenced or completed
phase I studies, though the available information in the public domain is limited for all
of these compounds. Other new �-lactamase inhibitors (i.e., WCK 4234, LN-1-255, WCK
5153, and zidebactam) and apramycin are not yet in clinical studies, but their activity
against CRAB isolates and efficacy in animal infections are promising. For future clinical
trials to be informative and useful, they should include patients with severe infections
from areas with high resistance rates. Such patients are the ones for whom the new
drugs are needed the most.
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