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Flexible decision-making in dynamic environments requires both retrospective appraisal of reinforced actions and prospective reason-
ing about the consequences of actions. These complementary reinforcement-learning systems can be characterized computationally with
model-free and model-based algorithms, but how these processes interact at a neurobehavioral level in normal and pathological states is
unknown. Here, we developed a translationally analogous multistage decision-making (MSDM) task to independently quantify model-
free and model-based behavioral mechanisms in rats. We provide the first direct evidence that male rats, similar to humans, use both
model-free and model-based learning when making value-based choices in the MSDM task and provide novel analytic approaches for
independently quantifying these reinforcement-learning strategies. Furthermore, we report that ex vivo dopamine tone in the ventral
striatum and orbitofrontal cortex correlate with model-based, but not model-free, strategies, indicating that the biological mechanisms
mediating decision-making in the multistage task are conserved in rats and humans. This new multistage task provides a unique
behavioral platform for conducting systems-level analyses of decision-making in normal and pathological states.
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Introduction
Decision-making is the process by which an individual selects an
action among several alternatives that are expected to yield dif-
ferent outcomes. Alternative actions are evaluated by multiple
learning systems in the brain that compute action values to guide
decisions (Niv, 2009). Action values can be updated by a consid-
eration of past choices and their outcomes and/or by a prediction

of future outcomes. These distinct reinforcement-learning strat-
egies are called model-free and model-based learning, respec-
tively (Sutton and Barto, 1998; Lee et al., 2012). To date, most
laboratory-based tasks of decision-making have been limited in
their ability to delineate and/or simultaneously measure the pre-
cise contributions of model-free and model-based learning to
behavior.

Recently, a multistage decision-making (MSDM) task was de-
veloped to quantify the contributions of model-free and model-
based learning on value-based choices in healthy human subjects
(Gläscher et al., 2010; Daw et al., 2011). This task has been used to
characterize decision-making in individuals with psychiatric dis-
orders (Voon et al., 2015; Culbreth et al., 2016; Sharp et al., 2016).
For example, disruptions in model-based learning have been ob-
served in individuals with addiction (Voon et al., 2015). Al-
though this is believed to be a consequence of the disease state, it
is also possible that disruptions to model-based learning are pres-
ent before drug use in such individuals, which renders them more
vulnerable to developing an addiction. Assessing reinforcement-
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Significance Statement

Decision-making is influenced by both a retrospective “model-free” system and a prospective “model-based” system in humans,
but the biobehavioral mechanisms mediating these learning systems in normal and disease states are unknown. Here, we describe
a translationally analogous multistage decision-making task to provide a behavioral platform for conducting neuroscience studies
of decision-making in rats. We provide the first evidence that choice behavior in rats is influenced by model-free and model-based
systems and demonstrate that model-based, but not model-free, learning is associated with corticostriatal dopamine tone. This
novel behavioral paradigm has the potential to yield critical insights into the mechanisms mediating decision-making alterations
in mental disorders.
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learning processes longitudinally could therefore provide critical
insights into the pathological mechanisms of addiction. How-
ever, this is technically difficult to accomplish in humans.

There is substantial interest in developing behavioral tasks in
rodents that are capable of quantifying model-free and model-
based learning (Akam et al., 2015). One such task combines sen-
sory preconditioning with blocking to quantify model-based
representations of task structure. Rats with a history of cocaine
self-administration fail to show conditioned responding or blocking
to the preconditioned cue in this task (Wied et al., 2013). This result
has been interpreted as a disruption in model-based learning, but it
could also reflect an enhancement of the model-free system that
subsequently suppresses the influence of model-based learning on
behavior. Therefore, tasks that are capable of simultaneously quan-
tifying model-based and model-free learning are needed to under-
stand the decision-making processes that are disrupted in animal
models of human mental illness.

Other researchers have developed operant paradigms that are
similar in structure to the MSDM task used in humans and there-
fore have the potential to simultaneously quantify model-free
and model-based learning (Miller et al., 2017). However, the be-
havior of rats in this task is very different from that observed
in humans. Humans characteristically show a combination of
model-free and model-based strategies when assessed in the
MSDM task, but rats in this task appeared to exclusively use a
model-based strategy. Although this discrepancy may be a result
of overtraining (Miller et al., 2017), it is also possible that the lack
of choice in the second stage of the task removed the need for a
model-based strategy (Akam et al., 2015). Specifically, model-
free agents can exploit correlations between where reward is ob-
tained and the expected value of the first stage action to result in
behavior that is similar to that generated by a model-based agent
(Akam et al., 2015). This is particularly problematic for MSDM
tasks in which there is a strong correlation between second-stage
reinforcement and the expected value of first-stage choice (Miller
et al., 2017).

Here, we describe a new rodent MSDM task derived from the
prototypical human task that can simultaneously and indepen-
dently quantify the contributions of model-free and model-based
learning to behavior. We demonstrate that rats, similar to hu-
mans, use both model-free and model-based learning strategies
when performing on the MSDM task with schedules of reinforce-
ment analogous to that used in humans and report that variation
in corticostriatal dopamine tone is related to individual differ-
ences in model-based learning. These data provide empirical ev-
idence for the translational utility of this new rodent MSDM task
for assessing decision-making in normal and pathological states.

Materials and Methods
Subjects
Male, Long–Evans rats (N � 100) were obtained from Charles River
Laboratories at �6 weeks of age. Rats were pair housed in a climate-
controlled room and maintained on a 12 h light/dark cycle (lights on at
7:00 A.M.; lights off at 7:00 P.M.) with access to water ad libitum. Rats
were given 4 d to acclimate to the vivarium and underwent dietary re-
striction to 90% of their free-feeding weight. Food was provided to rats
after completing their daily behavioral testing. All experimental proce-
dures were performed as approved by the Institutional Animal Care and
Use Committee at Yale University and according to the National Insti-
tutes of Health institutional guidelines and Public Health Service Policy
on humane care and use of laboratory animals.

Behavioral procedures
Operant training. Rats were trained in a single 30 min session to retrieve
sucrose pellets (45 mg of Dustless Precision pellets; BioServ) from the

magazine. A single pellet was dispensed every 30 s or contingently when
rats entered the magazine. Sessions terminated when rats earned 30 re-
wards or 30 min had lapsed, whichever occurred first. The following day,
rats were trained to enter illuminated ports located on the panel opposite
the magazine. Trials began with illumination of the magazine. A response
into the magazine resulted in the illumination of a single port (randomly
determined by the program) and responses into the illuminated port
resulted in the delivery of a single pellet followed by a 5 s intertrial
interval. Entries into any of the 4 non-illuminated ports caused all lights
to extinguish for 10 s, followed by a 5 s intertrial interval. Sessions termi-
nated when rats had completed 100 trials or 60 min had lapsed. If rats
failed to earn at least 85 rewards in a single session, the same operant
training was conducted the following day(s) until this performance cri-
terion was met.

Once rats started choosing the illuminated port reliably, they were
trained to respond to levers. Rats initiated a trial by entering the illumi-
nated magazine. A single lever was extended into the box located on
either side of the magazine and a cue light located above the lever was
illuminated. A single response on the lever caused the lever to retract and
a single port to illuminate. Entries into the illuminated port resulted in
the delivery of a single pellet followed by a 5 s intertrial interval. Re-
sponses into a non-illuminated port caused all lights to extinguish for
10 s, followed by a 5 s intertrial interval. A failure to make a lever response
within 2 min caused all lights to extinguish for 10 s, followed by a 5 s
intertrial interval. Sessions terminated when rats completed 100 trials or
90 min had lapsed, whichever occurred first. If rats failed to earn at least
85 rewards in a single session, then the same operant training was con-
ducted the following day(s) until the training criterion was met.

Deterministic MSDM task. Once rats were reliably entering ports and
responding to the levers, they were trained on a version of the MSDM
task in which choices in the first stage deterministically led to the second
stage state (referred to as the deterministic MSDM; see Fig. 1A). A sche-
matic of a single trial is presented in Figure 1B. Initiated trials resulted in
the extension of two levers and illumination of the cue lights located
above each lever (sA). A response on one lever (e.g., left lever, sA,a1),
resulted in the illumination of two port apertures (e.g., ports 1 and 2, sB),
whereas responses on the other lever (e.g., right lever, sA,a2) resulted in
the illumination of two other port apertures (e.g., port 3 and 4; sC).
Entries into either of the illuminated apertures were probabilistically
reinforced using an alternating block schedule (see Fig. 1A, bottom) to
encourage exploration of choices across both stages. We used this sched-
ule of reinforcement, rather than the Gaussian random walk that was
used in the original MSDM task, because rodents are less sensitive to
stochastic schedules of reinforcement when there is only a minor benefit
for optimal and cognitively taxing decisions.

Each rat was assigned to one specific lever-port configuration (config-
uration 1: left lever ¡ port 1,2, right lever ¡ port 3,4; configuration 2:
left lever ¡ port 3,4, right lever ¡ port 1,2) that was maintained for the
duration of the study. Reinforcement probabilities assigned to each port,
however, were pseudorandomly assigned at the beginning of each ses-
sion. One set of ports (i.e., sB) would be assigned to deliver reward with a
probability of 0.9 and 0, whereas the other set of ports (i.e., sC) would be
assigned to deliver reward with a probability of 0.4 and 0. Sessions ter-
minated when 300 trials had been completed or 90 min had lapsed,
whichever occurred first. Trial-by-trial data was collected and the prob-
ability that rats would choose the first-stage option leading to the best
second-stage option, p(correct � stage 1), and probability to choose the best
second-stage option, p(correct � stage 2), were calculated.

Rats were trained on the deterministic MSDM for three reasons: (1) to
reduce the preexisting biases for spatial operandi that are common to
rodents, (2) to ensure that rats were able to track the reinforcement
probabilities in the second stage, and (3) to confirm that rats understood
how their first-stage choices influenced the availability of second-stage
options (i.e., state transitions). If rats understand the reinforcement
probabilities assigned to the second-stage options and how choices in the
first stage influence the availability of second-stage options, then the
probability that rats choose the first-stage option leading to the second-
stage option with the maximum reward probability should be signifi-
cantly greater than that predicted by chance. Rats were trained on the

296 • J. Neurosci., January 9, 2019 • 39(2):295–306 Groman et al. • Decision-Making in a Rodent Multistage Task



deterministic MSDM until p(correct � stage 1) and p(correct � stage 2) was signif-
icantly greater than chance ( p � 0.56) on 4 of the last 5 sessions com-
pleted. When rats met the performance criterion, they were tested on the
probabilistic MSDM task (n � 35; see Fig. 2A). If rats did not meet this
criterion after completing 35 sessions on the deterministic MSDM (n �
45), then they were moved on to the probabilistic MSDM task regardless.
This rigorous criterion was selected to ensure that rats understood the
state transitions (e.g., how first-stage choices influenced availability of
second-stage options) and the reward mapping assigned to the second-
stage choices. The majority of rats met the performance criterion on at
least 3 of the last 5 d of training on the deterministic MSDM (n � 55) and
only two rats failed to meet the criterion on any of the last 5 d.

Probabilistic MSDM task. After completing training on the determin-
istic MSDM task, behavior was assessed in the probabilistic MSDM task
(see Fig. 2A). In the probabilistic MSDM, initiated trials resulted in the
extension of two levers and illumination of cue lights located above each
lever. A lever response probabilistically led to the illumination of one set
of ports. On a majority of trials (70%), first-stage choices led to the
illumination of the same second-stage state that were deterministically
assigned to that first-stage choice in the deterministic MSDM (referred to
as a common transition). On a limited number of trials (30%), first-stage
choices led to the illumination of the second-stage state most often asso-
ciated with the other first-stage choice (referred to as rare transition).
Second-stage choices were reinforced using the same alternating sched-
ule used in the deterministic MSDM (see Fig. 2A, bottom). The common
transitions that occurred in the probabilistic MSDM were the same state
transitions that always occurred in the deterministic MSDM, so rats had
substantially more experience with common, compared with rare, tran-
sitions. Rats completed 300 trials across five daily sessions on the proba-
bilistic MSDM task.

Trial-by-trial data (�1500 trials/rat) were collected to conduct the
logistic regression analyses and computational modeling of decision-
making (see below). Two rats were excluded from all analyses due to an
extreme bias in the first-stage choice (e.g., rat chose one lever on 95% of
all trials, regardless of previous trial events).

A separate cohort of rats (n � 20) was also assessed on a version of the
probabilistic MSDM using a Gaussian random walk schedule of rein-
forcement (see Fig. 2G) that is similar to that used in humans (Daw et al.,
2011) after rats had been assessed on the alternating schedule (see Fig. 2A,
bottom).

Dopamine measurements. A subset of rats (n � 20) was euthanized via
rapid decapitation 1 d after testing on the probabilistic MSDM task. The
brain was removed, placed immediately in ice-cold saline for 2 min, and
sectioned into 0.5 mm slabs using a rat brain matrix on a cold plate. Then,
1 mm punches were collected from the ventral striatum (VS), orbitofron-
tal cortex (OFC), dorsomedial striatum (DMS), and dorsolateral stria-
tum (DLS) (see Fig. 5A), placed immediately into dry ice, and stored at
�80°C until being assayed. Tissue was processed with high-pressure liq-
uid chromatography (HPLC) electrochemical detection, as described
previously (Jentsch et al., 1997). Pellets were analyzed for protein using
the Pierce BCA protein assay kit and measurements normalized to this
protein measurement. Measurements that were � 3 SDs from the mean
were excluded from the analysis, resulting in the following sample sizes:
OFC: n � 17; VS: n � 19; DMS: n � 19; and DLS: n � 18.

Based on data in humans and animals (Yin et al., 2004; Daw et al.,
2011; Deserno et al., 2015), we hypothesized that dopamine levels in the
VS and the OFC would positively correlate with model-based learning. In
contrast, we hypothesized that dopamine levels in the dorsal striatum
would correlate with model-free learning. Therefore, we restricted our
analysis to dopamine content (in nanograms per milligram of protein) in
each of these regions.

Statistical analyses
Logistic regression. The events that influenced first-stage choices in the
probabilistic MSDM task were analyzed using logistic regression in
MATLAB (The MathWorks version 2018a). These models predicted
whether rats would make the same first-stage choice on the current trial
as they had on the previous trial. Separate models with identical designs
were fitted to each of the 80 rats’ trial-by-trial datasets. The predictors

included in the models were as follows:
Intercept: �1 for all trials. This quantifies the tendency to repeat the

previous first-stage choice regardless of any other trial events.
Correct: �0.5 for first-stage choices most frequently leading to the second-

stage choice associated with the highest probability of reinforcement.
�0.5 for first-stage choices most frequently leading to the second-stage
choice associated with the lowest probability of reinforcement.

Outcome: �0.5 if the previous trial was rewarded.
�0.5 if the previous trial was not rewarded.

Transition: �0.5 if the previous trial included a common transition.
�0.5 if the previous trial included a rare transition.

Transition-by-outcome: �0.5 if the previous trial included a common
transition and was rewarded or if it included a rare transition and was not
rewarded.
�0.5 if the previous trial included a common transition and was not
rewarded or if it included a rare transition and was rewarded.
The “correct” predictor prevents spurious loading on to the

transition-by-outcome interaction predictor that has been reported as
being problematic for alternating schedules of reinforcement such as that
used in the current study (Akam et al., 2015). For choice data collected
using a Gaussian random walk schedule of reinforcement, the correct
predictor is not included in the model because it cannot be determined.

The analysis examining the relationship between the regression
coefficients for outcome and transition-by-outcome was performed
by separating individual rats’ trial-by-trial data in half and fitting each
dataset separately with the logistic regression model. The transition-
by-outcome predictor is dependent upon the outcome predictor and
therefore is not independent, so comparing the outcome regression
coefficient from one half of the data to the transition-by-outcome
coefficient from the other half of the data reduced the underlying
dependency.

Angular coordinate. Previous studies have characterized model-free
and model-based learning using a single parameter derived from a
reinforcement-learning model, which reflects the relative weighting of
these two strategies. To provide a similar, albeit computationally simpler,
index, the angular coordinate (radians, �) between the outcome and the
transition-by-outcome coefficient derived from the logistic regression
model was calculated: � values less than �/4 (0.785) reflect higher model-
free learning, whereas values greater than �/4 reflect higher model-based
learning. For regression coefficients �0, values were set to 0 before cal-
culating �.

Lagged logistic regression. Choice data of rats in the probabilistic
MSDM task was also analyzed using a lagged logistic regression model
that examines how previous events from multiple trials in the past pre-
dicts current the choice on the current trial (Miller et al., 2017) and has
been reported to differentiate between agents that masquerade as model-
based from model-based agents (Akam et al., 2015). Again, separate
legged logistic regression models with identical designs were fitted to
each rat’s individual data. These models predicted whether rats would
repeat the same first-stage choice based on previous trial events (i.e.,
t � 1 to t � 5 in the past). The predictors included in this model are
described below:
Intercept: �1 for all trials.
Common-rewarded (CR): �1 for left first-stage choices that led to a

common transition and resulted in reward.
Rare-rewarded (RR): �1 for left first-stage choices that led to a rare

transition and resulted in reward.
Common-unrewarded (CU): �1 for left first-stage choices that led to a

common transition and did not result in reward.
Rare-unrewarded (RU): �1 for left first-stage choices that led to a rare

transition and did not result in reward.
Positive coefficients correspond to a greater likelihood that the rat will

repeat the same first-stage choice that was made on that trial type in the
past. Negative coefficients, in contrast, correspond to a greater likelihood
that the rat will choose the other first-stage choice. Model-free and
model-based indices were calculated by summing over the regression
coefficients that would distinguish between the two strategies according
to the equations below:
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Model-free index:

�t�1

T
	�CR
t� � �RR
t�� � �t�1

T
	�CU
t� � �RU
t��

Model-based index:

�t�1

T
	�CR
t� � �RU
t�� � �t�1

T
	�RR
t� � �CU
t��

where �X(t) denotes the regression coefficient associated with the pre-
dictor X (X � CR, RR, CU, or RU) for the choice made t � 1:t � 5 trials
in the past.

Reinforcement-learning algorithm. Model-free and model-based rein-
forcement learning was characterized using an algorithm that leveraged
the strength of the model-based algorithm proposed by Daw et al. (2011)
with a model-free algorithm (Barraclough et al., 2004) that we have
found to fit rat choice data better than other algorithms (Groman et al.,
2018). The task consisted of three states (first stage: sA; second stage: sB

and sC) with each state consisting of two actions (a1 and a2).
The model-free algorithm used in this study updated the value of each

visited state-action pair according to the following:

QMF
si,t�1, aj,t�1� � �iQMF
si,t, aj,t� � m
k

where the decay rate (�) determines how quickly the value for the chosen
nose port decays (i.e., � � 0 means the action value is reset every trial)
and differed between the first and second stages (first stage: �1, second
stage: �2). 
k indicates the change in the value that depends on the
outcome from the second stage action on that trial and k indexes whether
a reward was received. If the outcome of the trial was reward, then the
value function was updated by 
1, the reinforcing strength of reward. If
the outcome of the trial was absence of reward the value function was
updated by 
2, the aversive strength of no reward. The value of m was set
to 1 for visited state-action pairs and 0 for state-action pairs that were not
visited.

The model-based algorithm used here was identical to that described
by Daw et al. (2011). Model-based action values (QMB) for first-stage
actions are defined prospectively using Bellman’s equation (Bellman,
1952) by considering the maximal value outcomes that one could obtain
given the state transitions as follows:

QMB
sA,t�1, aj,t�1� � P
sB�sA,t, aj,t�
max

a � �a1, a2�
QMF
sB,t, a�

� P
sC�sA,t, aj,t�
max

a � �a1, a2�
QMF
sC,t, a�

These values are recomputed at each trial from the current estimates of
the transition probabilities and outcomes.

Model-free and model-based estimates for first stage actions are com-
bined as the sum of each value as follows:

Qnet
sA,t�1, aj,t�1� � �MBQMB
sA,t, aj� � �MFQMF
sA,t, aj�

where �MB is the weighting parameter for model-based learning and �MF

is the weighting parameter for model-free learning. At the second stage:

Qnet � QMF

The probability of a choice was determined using the following softmax
function:

P
ai,t � a�si,t� �
1


1 � exp
 � Qnet
si,t, aA,t� � Qnet
si,t, aB,t� � bi��

where bi is a free parameter for each of the three stages that captures
biases that rats might have for actions within a particular stage (where b1,
b2, and b3 correspond to sA, sB, and sC, respectively). Trial-by-trial choice
data of each rat were fit with nine free parameters (�1, �2, 
1, 
2, b1, b2,
b3, �MF, and �MB) selected to maximize the likelihood of each rat’s se-
quence of choices using fmincon in MATLAB. The � parameters were
bounded between 0 and 1 and the � parameters had a lower bound of 0,
but no upper bound. The remaining parameters were unbounded.

Choice data were also fit using other published reinforcement-
learning models (Daw et al., 2011; Culbreth et al., 2016), as well as vari-
ants of the model described above (see Table 1). The model with the
lowest Bayesian information criterion (BIC) was deemed to be the best-
fitting model (see Results).

Experimental design and general statistical analyses. Mean � SEM are
reported throughout the manuscript. The majority of the statistical
analyses were performed in SPSS (IBM, version 22) and MATLAB
(Mathworks). However, logistic regressions were performed in R (R Pro-
gramming) using the glmfit function. Comparisons between data that
were not normally distributed were completed with the nonparametric
Wilcoxon signed rank test. Correlations were calculated using Pearson’s
correlation coefficient if the sample size was �30 and the data were
normally distributed, as determined by the Shapiro-Wilk test. For all
other data that did not meet this criterion, the non-parametric Spear-
man’s rank correlation coefficient (rs) served as the test statistic. Signifi-
cance level was set at p � 0.05.

Results
Decision-making in the deterministic MSDM
Rats were trained initially on a version of the MSDM task in
which choices in the first stage deterministically led to the second
stage state (Fig. 1A,B). In this deterministic MSDM task, one of
the two first-stage options always led to the illumination of one of
the second stage states (sB), whereas the other first-stage option
always led to the illumination of the other second stage state (sC).
Over the course of training, the probability that rats would select
the first-stage option (i.e., levers) associated with the most fre-
quently reinforced second-stage option (Fig. 1C; � � 0.005; p �
0.001), as well as the probability to choose the better second-stage
options (i.e., noseports), increased (Fig. 1D; p(NP � 0.4): � �
0.0049; p � 0.001; p(NP � 0.9): � � 0.012; p � 0.001). These
probabilities were significantly greater than that predicted by
chance in the last five sessions rats completed (Fig. 1E; p(correct �
Stage 1), binomial test p � 0.001; p(correct � Stage 2), binomial
test p � 0.001). Furthermore, rats were more likely to persist with
the same first-stage option if the second-stage choice on the pre-
vious trial was rewarded than if it was unrewarded (Fig. 1F; X 2 �
698; p � 0.001) indicating that second stage outcomes were able
to influence subsequent first-stage choices. Together, these data
demonstrate that rats understood the structure of the determin-
istic MSDM task, which is imperative for interpreting choice
behavior of rats in the MSDM containing stochastic state transi-
tions. The majority of rats met the performance criterion on at
least three of the last five days of training on the deterministic
MSDM (N � 55) and only two rats failed to meet the criterion on
any of the last five days.

Decision-making in the probabilistic MSDM
Decision-making was then assessed on the probabilistic MSDM
task (Fig. 2A). Not surprising, the p(correct � Stage 1) and p(cor-
rect � Stage 2) in the probabilistic MSDM was lower than that in
the deterministic MSDM (Fig. 2B,C), but remained at a level
greater than that predicted by chance (binomial test: p � 0.001).
The reduction in p(correct � Stage 1) in the probabilistic MSDM
was expected because the relationship between Stage 1 choices
and Stage 2 options was no longer deterministic and the structure
of the task encouraged rats to use a strategy that deviated from the
optimal strategy in the deterministic MSDM. Specifically, a
model-based strategy in the probabilistic MSDM could reduce
p(correct � Stage 1). For example, if a rare transition occurs fol-
lowing a correct Stage 1 response and the resultant Stage 2 re-
sponse is unrewarded, then model-based theories predict that
rats should shift their responding away from the correct Stage 1
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action. Conversely, if a rare transition occurs following an incor-
rect Stage 1 action and the Stage 2 response is rewarded, then
model-based theories predict that rats should persist with the
same incorrect Stage 1 action. Accordingly, p(correct � Stage 1)
does not fully characterize performance in the probabilistic
MSDM.

Choice data in the MSDM was then examined by calculating
the probability that rats would repeat the same first-stage choice
according to the outcomes received (rewarded or unrewarded)
and the state transition experienced (common or rare) during the
immediately preceding trial. According to model-free reinforce-
ment learning, the probability of repeating the first-stage choice
should only be influenced by the previous trial outcome, regard-
less of whether the state transition was common or rare (Fig. 2D,
left). In contrast, model-based reinforcement learning posits that
the outcome at the second stage should affect the choice of the
first-stage option differently based on the state transition that was
experienced (Fig. 2D, middle). Notably, evidence in humans
(Daw et al., 2011) suggests that individuals use a mixture of
model-free and model-based strategies in the MSDM (Fig. 2D,
right). The probability that rats persist with the same first-stage
choice according to the previous trial outcome and state transi-
tion is presented in Figure 2, E and F. A similar pattern was
observed for the separate cohort of rats (N � 20) that were tested
on a version of the probabilistic MSDM where second-stage

choices were reinforced according to the probability following a
Gaussian random walk (Fig. 2G–I).

Model-free and model-based learning in the
probabilistic MSDM
To quantify the influence of model-free and model-based strate-
gies, choice data was analyzed using a logistic regression model
(Akam et al., 2015). The main effect of outcome, which provides
a measure of model-free learning, was significantly different from
zero (t(78) � 16.83; p � 0.001; Fig. 3A, orange bars) indicating
that rats were using second stage outcomes to guide their first-
stage choices. The interaction between the previous trial outcome
and state transition, which is a measure of model-based learning,
was also significantly different from zero (t(78) � 11.31; p �
0.001; Fig. 3A, purple bars). The outcome and transition-by-
outcome interaction was also significantly different from zero
when rats were reinforced using the Gaussian random walk (out-
come: t(19) � 7.39; p � 0.001; trans x outcome: t(19) � 4.28; p �
0.001; Fig. 3B). This combination of significant outcome main
effect and transition-by-outcome interaction effect suggests that
rats, similar to humans, used a mixture of model-free and model-
based strategies on the task. Importantly, the regression coefficients
for all predictors, including the model-free and model-based predic-
tors, were not significantly different between rats that met the
performance criterion and those that did not in the deterministic

Figure 1. Decision-making in the deterministic MSDM task. A, Rats were trained on the deterministic MSDM task, in which state transitions were deterministic. B, Schematic of single-trial events.
Rats initiated trials by entering the magazine. Two levers (stage 1) located on either side of the magazine were extended into the operant box and a single lever response resulted in the illumination
of two port apertures (stage 2). Entries into the illuminate apertures resulted in probabilistic delivery of reward. C, Probability of choosing the first-stage option associated with the most frequently
reinforced second-stage choice, that is, p(correct � stage 1), across the 35 d of training. The probability that choices were at chance level is represented by the dashed line. D, Probability of choosing the
second-stage option associated with the most frequently probability of reinforcement in each Stage 2 set across the 35 d of training. The probability that choices were at chance level is represented
by the dashed line. E, Left, p(correct � stage 1) in the last five deterministic MSDM sessions before (i.e., before reversal) and after (i.e., after reversal) rats completed 150 trials. Right, p(correct � stage 2) for
each of the alternating blocks. The probability that choices were at chance level is represented by the dashed line. F, Probability of choosing the same first-stage choice following a rewarded
second-stage choice and following an unrewarded second stage.
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MSDM (Table 1; main effect of group: z � 0.50; p � 0.61) and did
not change across the five probabilistic MSDM sessions (day-by-
predictor interactions z � 1.54; p � 0.1, in all cases). In addition,
the total number of training sessions that rats required to meet
the criterion was not correlated with the regression coefficients
indexing model-based (R 2 � 0.03; p � 0.25) or model-free (R 2 �
0.005; p � 0.65) learning in the probabilistic MSDM suggesting
that the duration of training in the deterministic MSDM did
not influence reinforcement learning strategies in the probabilis-
tic MSDM. Similarly, the p(correct � Stage 1) in the determinis-

tic MSDM was not related to the regression coefficients
indexing model-based (R 2 � 0.002; p � 0.70) or model-free
(R 2 � 0.008; p � 0.61) learning or the p(correct � Stage 1) in
the probabilistic MSDM (R 2 � 0.01; p � 0.32). Therefore, the
duration of training or performance of rats in the determinis-
tic MSDM were not significant predictors of the rat’s perfor-
mance or reinforcement-learning strategy in the probabilistic
MSDM.

For the animals tested with the reinforcement schedule deter-
mined by a Gaussian random work as well as the alternating

Figure 2. Decision-making in the probabilistic MSDM. A, Rats were assessed on the probabilistic MSDM task, which was similar in structure to the reduced MSDM, but state transitions
were probabilistic. B, p(correct � stage 1) in the deterministic MSDM (single point) and in the five probabilistic MSDM sessions that rats completed. C, p(correct � stage 2) in the deterministic MSDM
(single point) and across the five probabilistic MSDM sessions that rats completed. D, Probability of staying with the same first-stage choice based on the previous trial outcome (rewarded
vs unrewarded) and the state transition (common: open bars; rare: gray bars) in hypothetical data for a pure model-free agent, a pure model-based agent, or an agent using a mixture
of both strategies in the probabilistic MSDM task. E, Probability of staying with the same first-stage choice based on the previous trial outcome (rewarded vs unrewarded) and the state
transition (common: blue bars; rare: red bars) in rats (n � 79) during the probabilistic MSDM task reinforced using the alternating schedule. F, Probability of staying with the same
first-stage choice based on the previous trial outcome (rewarded vs unrewarded) and the state transition (common: blue bars; rare: red bars) for individual rats in the probabilistic MSDM
task reinforced using the alternating schedule. G, Gaussian random walk schedule used to reinforce stage-2 choices in the probabilistic MSDM. H, Probability of staying with the same
first-stage choice based on the previous trial outcome (rewarded vs unrewarded) and the state transition (common: blue bars; rare: red bars) in rats (n � 19) using the probabilistic MSDM
task that reinforced stage 2 responses using a Gaussian random walk. I, Probability of staying with the same first-stage choice based on the previous trial outcome (rewarded vs
unrewarded) and the state transition (common: blue bars; rare: red bars) for individual rats in the probabilistic MSDM task that reinforced stage 2 responses using a Gaussian random
walk.
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reinforcement schedule, model-free and model-based coeffi-
cients from the two schedules were highly correlated (outcome
regression coefficient: rs � 0.73; p � 0.001; transition-by-
outcome regression coefficient: rs � 0.50; p � 0.03; Fig. 3C,D),
demonstrating that the model-free and model-based estimates
obtained using the alternating schedule closely match those col-
lected using random-walk schedule.

The influence of model-free and model-based systems on
decision-making is often been described as a balance between
these two RL systems: higher model-free learning would be asso-
ciated with lower model-based learning and vice versa. There-
fore, one might expect there to be a negative relationship between
measures of model-free and model-based learning. However,
no such relationship was observed when the outcome and
transition-by-outcome regression coefficients were compared
(Fig. 3E; r � �0.004 p � 0.98). We then calculated the angular
coordinate (�) as a measure of the relative strengths of these

learning systems for individual rats (Fig. 3F). The average � val-
ues were less then �/4 (0.60 � 0.03; Shapiro-Wilk test, p � 0.04;
Fig. 3G) indicating that rats relied slightly more on model-free
learning in the probabilistic MSDM task. As expected, the � val-
ues captured a pattern of choices that would be predicted based
on theories of model-free (i.e., Low �; Fig. 3H, top) and model-
based (i.e., High �; Fig. 3H, bottom) reinforcement learning.

Model-free agents have been reported to masquerade as
model-based agents in the MSDM paradigm using an alternating
schedule of reinforcement (Akam et al., 2015). To test this possi-
bility, the choice data in the probabilistic MSDM was analyzed
using a lagged logistic regression, which has been reported to
differentiate agents that masquerade as model-based agents from
genuine model-based agents. Figure 4A presents the average co-
efficients obtained using this lagged logistic model. Distributions
of model-free and model-based indices were approximately nor-
mal (Shapiro-Wilk test, p � 0.19; Fig. 4B) and both indices were
correlated with � values derived from the single-trial back logistic
regression model (model-free index: R 2 � 0.20; p � 0.001;
model-based index: R 2 � 0.20; p � 0.001; Fig. 4C) indicating that
our model-based estimates were not an artifact of the alternating
reinforcement schedule.

Choice data for each rat was also fit with a reinforcement-
learning algorithm that leveraged the strength of the model-
based algorithm used by Daw et al. (2011) with a model-free
algorithm with forgetting (Barraclough et al., 2004; Groman et
al., 2016). This hybrid reinforcement-learning model fit the data

Figure 3. Characterizing reinforcement-learning strategies in the deterministic MSDM. A, Regression coefficients for predictors in the logistic regression model from choice behavior
of rats in the probabilistic MSDM reinforced using the alternating schedule. The coefficient for the outcome predictor (orange bar) represents the strength of model-free learning, whereas
the transition-by-outcome interaction predictor (purple bar) represents the strength of model-based learning. B, Regression coefficients for predictors in the logistic regression model
from choice behavior of rats in the probabilistic MSDM reinforced stage-2 responses using a Gaussian random walk. C, Relationship between the regression coefficients for outcome
predictor estimated from the data collected using the alternating schedule and the Gaussian random walk in the same rats. D, Relationship between the regression coefficients for the
transition-by-outcome predictor from the data collected using the alternating schedule or the Gaussian random walk within the same rats. E, Relationship between the outcome and
transition-by-outcome regression coefficients within individual rats. F, Angular coordinate (�, in radians) between the transition-by-outcome and outcome regression coefficients for
three rats. A � value greater than �/4 indicates that the transition-by-outcome weight was higher than that for outcome (e.g., higher model-based learning); a value lower than �/4
indicates that the outcome weight was lower than that for transition-by-outcome (e.g., higher model-free learning). G, Distribution of � values derived from the logistic regression
model. The average � value was less than �/4 (0.60 �/� 0.03), indicating that the magnitude of model-free learning was higher than that of model-based learning in the probabilistic
MSDM task. H, Probability of staying with the same first-stage choice based on previous trial events in rats from the lower (top; n � 20) and upper (bottom; n � 20) quartile of the �
distribution.

Table 1. Regression coefficient (� SEM) from the logistic regression model of
choice behavior in the probabilistic MSDM based on whether rats met the
performance criterion in the deterministic MSDM

Correct Outcome Transition
Transition �
outcome

Rats that met criterion 0.06 � 0.04 0.55 � 0.05 0.15 � 0.04 0.33 � 0.05
Rats that did not meet

criterion
0.04 � 0.04 0.45 � 0.04 0.16 � 0.04 0.35 � 0.03

Groman et al. • Decision-Making in a Rodent Multistage Task J. Neurosci., January 9, 2019 • 39(2):295–306 • 301



better than a number of alternative models (Table 2). Simulated
data (118,500 trials) using the parameters estimated for each rat
recapitulated the same pattern of choice behavior that was ob-
served in the rats (Table 3). The average parameter estimates
obtained with this hybrid model, log likelihood, AIC and BIC
estimates are presented in Table 4 and the distribution of the �MF

and �MB parameter estimates presented in Figure 4D. The �MF

and �MB parameter estimates were not significantly related to
each other (	 � 0.15; p � 0.18; Fig. 4E). The degree to which rats
used model-based over model-free strategies was calculated
[�MB/(�MB � �MF)] to provide a measure similar to that com-
monly reported in human studies (e.g., values closer to 1 reflect
higher model-based learning, whereas values closer to 0 indi-
cate higher model-free learning). The �MB/(�MB � �MF) ratio
in rats was significantly related to the � estimate (R 2 � 0.14;
p � 0.001; Fig. 4F ). Together, these distinct computational
approaches provide converging evidence that decision-making in
rats, similar to humans, is influenced by model-free and model-
based computations.

Relationship between dopamine and RL strategies
Given the behavioral similarities between these rat data presented
here and those previously observed in humans, we sought to
determine whether the relationship between dopamine and
decision-making in the MSDM previously observed in humans
(Deserno et al., 2015) was also present in rats. Individual differ-
ences in the � parameter were positively related to dopamine
levels in the VS (rs � 0.50; p � 0.03; Fig. 5C, gray). Furthermore,
variation in the � parameter was positively related to dopamine
levels in the OFC (rs � 0.53; p � 0.03; Fig. 5C, light yellow), but
not with dopamine levels in the DMS or DLS (all �rs� ��0.37; p �
0.13; Fig. 5D).

We then examined the relationships between dopamine levels
and the independent estimates of model-free and model-based
learning derived from our logistic regression analysis. We found

Figure 4. Computational characterization of reinforcement-learning strategies. A, Regression coefficients from the lagged logistic regression model examining the influence of
previous trial types (t � 1: t � 5) on current choice. Trial types could be CR, RR, CU, or RU. Positive coefficients correspond to a greater likelihood that the animal would repeat the same
first-stage choice that was made on the corresponding trial type in the past. Negative coefficients, in contrast, correspond to a greater likelihood that the rat would choose the opposite
first-stage choice. B, Distribution of the model-free (orange; top) index and model-based (purple; below) index derived from the equations above each histogram. C, Relationship
between the � values derived from the logistic regression and the model-based index calculated from the lagged logistic regression model. D, Distribution of the model-free (�MF) and
model-based (�MB) parameters derived from the hybrid reinforcement-learning model. E, Scatter plot comparing the �MF and �MB parameter estimates obtained using the hybrid
reinforcement-learning algorithm. F, Scatter plot comparing the relationship between the � values derived from the logistic regression and the ratio of the hybrid reinforcement-learning
parameters that quantified model-free and model-based processes [�MB/(�MB � �MF)].

Table 2. Goodness-of-fit measurements for different hybrid reinforcement-
learning algorithms used to analyze choice data collected in the MSDM

Model Free parameters Sum(LL) Sum(AIC) Sum(BIC)

Daw et al. (2011) 
1 , 
2 , �1 , �2 , �, p, � 115916 232939 235818
Culbreth et al. (2016) 
1 , �MF , �MB , �2 , p 117442 235675 237731
Hybrid 1 �1, �2, 
1 , 
2 , � 110135 221060 223116
Hybrid 2 �1, �2, 
1 , 
2 , 
3, 
4 , � 109718 220542 223421
Hybrid 3 �1, �2, 
1 , 
2 , �, b1 , b2 , b3 107644 216553 219842
Hybrid 4 �1, �2, 
1 , 
2 , �, b1 , b2 , b3 , � 107658 216739 220440
Hybrid 5 �1, �2, �1, �2, �MF, �MB, b1, b2, b3 107354 216131 219832

Data presented are the sum of the log likelihoods 	Sum(LL)�, Akaike information criterion 	Sum(AIC)�, and BIC
	Sum(BIC)� for all rats included in the analysis (N�79). Trial-by-trial choice data were fit with two models that have
been described previously (Daw et al., 2011; Culbreth et al., 2016) and with variants of the hybrid model described
in the Materials and Methods. The model with the lowest BIC value (bolded) was deemed to be the best-fitting
model.

Table 3. Probability of staying on the first-stage choice based on previous trial
events derived from rat choice data and simulated data

Rewarded
common

Rewarded
rare

Unrewarded
common

Unrewarded
rare

Rat data 0.78 � 0.009 0.71 � 0.013 0.63 � 0.011 0.67 � 0.012
Simulated data 0.76 0.71 0.65 0.67
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that OFC and VS dopamine levels were both positively related to
the model-based transition-by-outcome coefficient (VS: rs �
0.47; p � 0.04, Fig. 5E; OFC: rs � 0.52; p � 0.03, Fig. 5F). There
was a nonsignificant, but negative, relationship between VS do-
pamine tone and the model-free outcome coefficient (rs� �0.32;
p � 0.18; Fig. 5G), similar to previous findings in humans (De-
serno et al., 2015). However, no clear relationship was observed
between OFC dopamine tone and the model-free outcome coef-
ficient (rs� �0.19; p � 0.47; Fig. 5H). The same pattern of results
was observed when both outcome and transition-by-outcome
were included as independent variables in a multiple linear

regression predicting dopamine content in the OFC (outcome:
� � �0.25; t(14) � �0.89; p � 0.39; transition-by-outcome: � �
0.38; t(14) � 1.58; p � 0.14) and VS (outcome: � � �0.29; t(16) �
�1.40; p � 0.18; transition-by-outcome: � � 0.48; t(14) � 2.12;
p � 0.05).

Dopamine tone in the DLS, but not in the DMS, was nega-
tively related to the model-based transition-by-outcome coeffi-
cient (rs � �0.49; p � 0.04; Fig. 5I,J), but neither was related to
the model-free outcome coefficient (rs � 0.09; p � 0.73; Fig.
5K,L). Overall, these behavioral and neurochemical findings in
rats are remarkably consistent with those observed in humans.

Table 4. Parameter estimates obtained from the hybrid reinforcement-learning model and goodness-of-fit indices


1 
2 
1 
2 b1 b2 b3 �MF �MB LL AIC BIC

25 th 0.55 0.88 0.32 0.09 �0.24 �0.22 �0.15 0.73 0.00 1117 2253 2299
Median 0.74 0.91 0.43 0.14 0.12 �0.03 0.05 1.02 0.24 1388 2795 2842
75 th 0.86 0.93 0.50 0.20 0.50 0.18 0.32 1.87 0.48 1615 3248 3296

Values presented are those from the 25 th, median, and 75 th percentile.

LL, Log likelihood; AIC, Akaike information criterion.

Figure 5. Dopaminergic correlates of model-based learning. A, Tissue was collected from the OFC (yellow), VS (gray), DMS (white), and DLS (black). B, Dopamine content was quantified in each
of the four regions using high-pressure liquid chromatography and normalized to protein content (in nanograms per milligram of tissue). C, Relationship between � values and variation in dopamine
content within the OFC (yellow circles; rs � 0.52; p � 0.03) and VS (gray circles; rs � 0.50; p � 0.02). D, Relationship between � values and variation in dopamine content in the DMS (white circles)
or DLS (black circles). E, Relationship between the transition-by-outcome regression coefficient and dopamine tone in the VS. F, Relationship between the transition-by-outcome regression
coefficient and dopamine tone in the OFC. G, Relationship between the outcome regression coefficient and dopamine tone in the VS. H, Relationship between the outcome regression coefficient and
dopamine tone in the OFC. I, Relationship between the transition-by-outcome regression coefficient and dopamine tone in the DLS. J, Relationship between the transition-by-outcome regression
coefficient and dopamine tone in the DMS. K, Relationship between the outcome regression coefficient and dopamine tone in the DLS. L, Relationship between the outcome regression coefficient
and dopamine tone in the DMS.
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Discussion
How distinct reinforcement-learning systems guide decision-
making is important for understanding the pathophysiology of
mental illness. In the present study, we demonstrated that rats use
both model-free and model-based learning when making value-
based decisions in the MSDM task and that corticostriatal dopa-
mine tone is specifically linked to model-based learning. These
findings mirror recent neurobehavioral results observed in hu-
mans (Daw et al., 2011; Deserno et al., 2015). The behavioral task
introduced in the present study provides a novel tool for assessing
multiple reinforcement-learning strategies in rodents and dem-
onstrates the utility of MSDM task for conducting translational
preclinical studies of decision-making in normal and pathologi-
cal states.

Model-free and model-based decision-making in rodents
Investigation into the neural systems that modulate model-free
and model-based learning necessitates preclinical behavioral par-
adigms that parallel those used in humans. Several other investi-
gators have developed rodent versions of the MSDM task
previously (Akam et al., 2017; Miller et al., 2017). One require-
ment for proper interpretation of choice behavior in the MSDM
task is that animals understand the structure of the task. In hu-
man studies, subjects receive verbal instructions about the struc-
ture of the task and reward probabilities and are given practice
sessions to reveal the transition structure of the task before assess-
ments (Gläscher et al., 2010; Daw et al., 2011). We also trained
rats on a simpler, deterministic version of the MSDM task, which
was similar in design to the probabilistic MSDM task but without
the rare state transitions, to familiarize rats with the transition
structure before assessment on the probabilistic MSDM. A failure
to understand the underlying state transitions could result in
erroneous assignment of behavior in the probabilistic MSDM as
being model-free and/or model-based. Dynamic outcome prob-
abilities on second-stage choices in the deterministic MSDM
influenced subsequent first-stage actions, empirically verify-
ing that rats understood both the state transitions and second-
stage outcomes.

Despite the apparent complexity of the MSDM task, the train-
ing duration was similar to other behavioral paradigms used to
assess decision-making in rats (Simon et al., 2007; Kosheleff et al.,
2012; Groman et al., 2018). Nevertheless, the rigorous criterion
used here for performance in the deterministic MSDM may not
be necessary for future studies because we did not observe differ-
ences in choice behavior of rats in the probabilistic MSDM based
on whether the deterministic MSDM performance criterion was
met or not. Our usage of the deterministic MSDM task also pre-
cluded overtraining rats on multiple sessions of the probabilistic
MSDM task that may engender rats to use a latent-state strategy
that masquerades as a model-based strategy (Akam et al., 2015;
Miller et al., 2017). It is unclear, however, whether training on the
deterministic MSDM might also influence the degree to which
reinforcement-learning strategies are used in the probabilistic
MSDM. We did not observe a relationship between the number
of training sessions that rats completed in the deterministic
MSDM and model-free or model-based behaviors in the proba-
bilistic MSDM, suggesting that the duration of training in the
deterministic MSDM might not influence the reinforcement
learning strategies rats use in the probabilistic MSDM. For these
reasons, we believe that the limited training rats received on the
deterministic MSDM did not alter model-free and model-based
systems. Nevertheless, it is possible that extensive training on the
deterministic MSDM (e.g., �100 training sessions in Miller et al.,

2017) could drive animals to rely more heavily on model-based
computations. Additional studies examining how a broader
range in the number of deterministic MSDM training sessions
affects model-free and model-based behaviors in the probabilis-
tic MSDM could resolve the discrepancies between the current
study and that of Miller et al. (2017).

Humans characteristically show a combination of model-free
and model-based strategies (Daw et al., 2011) and, here, we pro-
vide the first evidence that the behavior of rats is similar to hu-
mans in that they also used both strategies in our probabilistic
MSDM task. Moreover, our behavioral paradigm contains two
second-stage options that match the structure of the prototypical
human MSDM task, unlike previous rodent MSDM tasks (Akam
et al., 2017; Miller et al., 2017). Additionally, we demonstrate that
the model-based estimates derived from behavior using an alter-
native schedule of reinforcement are strongly correlated with
those derived from behavior using a Gaussian random walk
schedule, which has been typically used in the human MSDM
task. Because the structure of our task is analogous to that of the
human MSDM task and results in equivalent patterns of behavior
in rats, we argue that the rat and human MSDM tasks likely index
similar neurobehavioral mechanisms.

Recent studies of model-based behavior in rodents have also
used sensory preconditioning (Wied et al., 2013; Sharpe et al.,
2017). Although these paradigms are high-throughput compared
with the training protocol used in the current study, behavioral
measures acquired with such paradigms cannot simultaneously
reflect both model-free and model-based learning and, as such,
may not index model-based learning in a manner directly com-
parable to those in humans and/or recruit the same neural mech-
anisms as the MSDM task. Reductions in model-based learning
observed in sensory preconditioning paradigms are presumed to
reflect enhancements in model-free learning, but measures of
model-free and model-based processes obtained in the same an-
imal in this study suggest that this assumption might not be valid.
We show that individual differences in model-free and model-
based learning might be independent and caution against the
assumption that low/reduced model-based behaviors reflect
heightened or intact model-free systems. Moreover, the processes
identified using sensory preconditioning paradigms may be
fundamentally different from the model-free and model-
based behavior observed in operant tasks. For these reasons,
we believe that future studies using our rodent MSDM task
will have greater translational utility for understanding the
neural and behavioral mechanisms of model-free and model-
based behaviors in humans.

Role of dopamine in model-based learning
We found that model-based, but not model-free, behaviors in the
rat MSDM task are significantly correlated with dopamine mea-
surements in the OFC and VS. This result is similar to the rela-
tionship between model-based learning and ventral striatal
[18F]DOPA accumulation observed in humans (Deserno et al.,
2015). Therefore, our data are consistent with growing evidence
supporting a role of dopamine in model-based learning (Wun-
derlich et al., 2012; Sharp et al., 2016). Additionally, our data
suggest a circuit-specific role of dopamine in model-based learn-
ing. We show that dopamine tone in brain regions that receive
dense projections from the VTA (i.e., VS and OFC) are related to
model-based learning, but not in brain regions that receive dense
projections from the substantia nigra (i.e., dorsal striatum). In-
deed, model-based BOLD activation has been observed in subre-
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gions of the prefrontal cortex and VS of humans in the MSDM
(Glascher et al., 2010; Daw et al., 2011).

The lack of a relationship between model-free estimates and
striatal dopamine content observed here does not rule out a role
of dopamine in model-free computations. It is likely that the ex
vivo measurements (i.e., HPLC) used here and those obtained
with neuroimaging in humans lack the resolution and sensitivity
needed to detect prediction-error-generated fluctuations in do-
pamine that underlie model-free learning. Future studies that
combine our translational MSDM task with subsecond measures
of dopamine release (i.e., fast-scan cyclic voltammetry) or other
tools (i.e., chemogenetic and optogenetic manipulations) might
provide greater insight into the role of dopamine in model-free,
as well as model-based, processes.

Implications for reinforcement-learning disruptions
in addiction
Substance-dependent humans and animals chronically exposed
to drugs of abuse have difficulties making adaptive, flexible
choices (Jentsch et al., 2002; Ersche et al., 2008; Stalnaker et al.,
2009; Groman et al., 2018), which is hypothesized to result from
a shift in the control of behavior from goal-directed to habit-
ual and, ultimately, compulsive behaviors (Jentsch and Tay-
lor, 1999; Everitt and Robbins, 2005; Dayan, 2009). This
transition of behavioral control is argued to be the conse-
quence of drug-induced disruptions in the neural circuits that
underlie model-based learning, resulting in predominantly
model-free regulation of decision-making processes (Lucan-
tonio et al., 2014). Direct evidence to support this hypothesis,
however, is limited.

Studies in humans have suggested that the reduction in a com-
putationally derived measure of the relative weight of model-free
versus model-based learning (�) is due to disruptions in the
model-based system (Voon et al., 2015). However, measures that
weight the relative influence of these strategies (i.e., � in the cur-
rent study or � in other studies) can conceal independent differ-
ences and/or changes in these reinforcement-learning strategies.
Specifically, changes in the weight in favor of model-free
learning could reflect decrements in model-based control, but
may also reflect an amplification of model-free behaviors. We
found that model-free and model-based strategies were not
related to one and other, indicating that these reinforcement-
learning systems varied independently across animals. These
data highlight the critical importance of independent quanti-
fication of model-free and model-based behavior. Indeed,
analysis of previous functional and neurochemical data using
our approach may detect unique neural substrates for these
reinforcement learning strategies, which have yet to be eluci-
dated. Our analytical approach and novel behavioral paradigm
provide a unique avenue for longitudinal and quantitative anal-
ysis of model-free and model-based learning in rodent models of
addiction and other disorders.

In summary, our translationally analogous MSDM task provides
a novel platform for investigating how multiple reinforcement-
learning systems affect decision-making processes in animal models
of human pathophysiology. We provide converging evidence that
the behavioral and biochemical mechanisms mediating decision-
making in rats during the MSDM are similar to those observed in
humans, highlighting the advantage of developing rodent paradigms
that parallel those used in humans.
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