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Precise localization of voltage-gated so-
dium channels (Nav) at nodes of Ranvier
is required for efficient signal transmis-
sion along myelinated axons. By restrict-
ing Nav to gaps in the myelin sheath, the
nodal complex focuses the regeneration of
action potentials to discrete sites and en-
sures faithful signal conduction. Disrup-
tion of nodal proteins plays a key role in
the pathophysiology of demyelinating dis-
orders (Craner et al., 2004) and complex
psychiatric disorders like autism spectrum
disorder and schizophrenia (Davis et al.,
2003; Bi et al., 2012). Despite this, the mech-
anisms of nodal maintenance and reorgani-
zation after destabilization remain unclear.
A molecular understanding of these pro-
cesses may uncover novel therapeutic tar-
gets for the treatment of pathologically
altered nodes of Ranvier.

A number of proteins contribute to the
formation and maintenance of functional
nodes of Ranvier. These include the cell
adhesion molecule neurofascin-186 (NF186)
and the cytoskeletal proteins, ankyrinG
(ankG)and�IVspectrin.AnkGbindsNF186,
�IV spectrin, and Nav, and, collectively, these

interactions play important roles in construct-
ingthenodalcomplexatappropriatelocations
alongtheaxon(Shermanetal.,2005;Dzhashi-
ashvili et al., 2007; Yang et al., 2007; Susuki et
al., 2013). As the node matures, �IV spectrin
anchors the entire nodal complex to the un-
derlying axonal cytoskeleton through associa-
tionwithactin(Berghsetal.,2000)andNF186
associates with components of a glia-secreted
extracellular matrix (Salzer, 2003; Sherman et
al., 2005). These interactions likely contribute
to nodal stability over time (Zhang et al.,
2012).

The intricate molecular interactions
involved in forming and maintaining the
node make it particularly fragile in patho-
logical conditions. To uncover critical
factors in the destabilization and restabi-
lization of nodes, Saifetiarova et al. (2018)
used spectrin-deficient mice in which the
expression of Sptbn4—the gene encoding
�IV spectrin—was disrupted by an inser-
tion element that could be excised with
tamoxifen injections to rescue �IV spec-
trin expression. In spectrin-deficient mice,
ankG, Nav, and NF186 were still recruited
to developing nodes, but they became in-
creasingly destabilized over time and were
sequentially lost, beginning with ankG,
followed by Nav and NF186.

The researchers chose two time points
for inducing �IV spectrin expression: an
“early rescue” time point at 4 months of
age, when spectrin-deficient mice exhibit
a moderate motor phenotype; and a “late
rescue” time point at 7 months of age,

when this phenotype has progressed to
complete paralysis. Although �IV spec-
trin rescue induced successful reorganiza-
tion of nodes in the sciatic nerve at both
time points tested, the timing of rescue
was critical for nodal restoration in spinal
cord axons. A subset of nodes did not re-
integrate nodal proteins upon rescue of
�IV spectrin expression. This failure to
reintegrate was most pronounced in the
spinal cord of late-rescue mice, but even
in the sciatic nerve—where nodal reorga-
nization was comparatively robust—the
intensity of nodal Nav staining was lower
in late-rescue mice than in age-matched
controls. By studying the organization of
key nodal proteins before and after �IV
spectrin expression, Saifetiarova et al.
(2018) uncovered time-dependent and
region-specific differences in the ability of
these proteins to reintegrate at nodes after
destabilization.

Long-term destabilization of nodes
was coupled with a progressive decline in
axonal health, which eventually resulted
in permanent nodal disorganization and
axonal damage. Sciatic nerve axons re-
sisted degeneration better than spinal
cord axons and showed improvements in
conduction after �IV spectrin rescue re-
gardless of age. Still, early rescue mice
demonstrated increased recovery of mo-
tor function and signal conduction com-
pared with late rescue animals, and both
rescue groups had decreased life span, in-
complete motor recovery, and altered
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conductive properties in sciatic nerve ax-
ons when compared to controls.

The findings by Saifetiarova et al.
(2018) are consistent with previous work
showing that CNS and PNS nodes exhibit
different susceptibility to disruption. For
example, CNS nodes disintegrate more
quickly than PNS nodes upon ablation of
NF186 in adult mice (Desmazieres et al.,
2014), and the timing of simultaneous ab-
lation of ankG and NF186 strongly influ-
ences the rate at which Nav is lost from
nodes in spinal cord, but not in sciatic
nerve (Taylor et al., 2018). What could be
driving this differential stability? One pos-
sibility is that NF186 is better stabilized at
PNS nodes by extracellular interactions.
Schwann cell microvilli recruit Nav to
developing nodes (Eshed et al., 2005),
and stimulated emission depletion super-
resolution microscopy of adult mouse sci-
atic nerve revealed the tight periodic
association of proteins in Schwann cell
microvilli and the axonal cytoskeleton
(D’Este et al., 2017). Furthermore, genetic
deletion of both gliomedin and NrCAM—
two extracellular molecules that interact
with Nav through NF186 —leads to the
gradual loss of nodal proteins (Amor et
al., 2014). The selective deletion of
Schwann cell dystroglycan—which may
mediate interactions between Schwann
cell microvilli and the nodal axolemma—
has similar effects (Saito et al., 2003). Per-
haps Schwann cell microvilli play an
important role in the increased stability of
the PNS nodal complex.

Another molecule that may contribute
to axon-specific differences in the stability
of the nodal complex is �II spectrin. Dor-
sal root axons of comparable size to those
in the sciatic nerve (�2.5 �m diameter)
have a higher density of �II spectrin and
similar levels of �IV spectrin when com-
pared to smaller-diameter peripheral ax-
ons. These large-diameter sensory axons
are preferentially degenerated after the
loss of �II spectrin (Huang et al., 2017).
Together, these results indicate that, in
large PNS axons, cytoplasmic �II spectrin
may play a heightened role in resisting de-
generation, a mechanism that could con-
tribute to greater stability of sciatic nerve
nodes and axons when compared with
spinal cord in spectrin-deficient mice.

In addition to its role in the nodal
complex, �IV spectrin participates in a
robust cytoskeletal scaffold that is thought
to maintain the structural integrity of the
axon initial segment (AIS; Leterrier et al.,
2015; Wang et al., 2018). The AIS is in-
volved both in the generation of action
potentials and in the maintenance of

neuronal polarity and axon trafficking
(Hedstrom et al., 2007). Therefore, the
disruption and subsequent reorganiza-
tion of the AIS is another plausible ex-
planation for the axonal degeneration,
functional deficits, and recovery seen in
spectrin-deficient and rescue mice. In fu-
ture studies, further characterization of
the functional effects of spectrin defi-
ciency and rescue could be accomplished
by examining the AIS in central and pe-
ripheral axons.

Recent evidence indicates that node
length plasticity may be an efficient mech-
anism for fine-tuning action potential
conduction speed in the adult brain
(Sampaio-Baptista and Johansen-Berg,
2017). Additionally, high-frequency stim-
ulation results in fast, calpain-dependent
paranodal retraction via spectrin break-
down (Huff et al., 2011). Changes in node
length could require calpain-dependent
cleavage of the spectrin cytoskeleton to
change the location of the paranodal
junction or to insert or delete nodal
membrane. In traumatic and ischemic
injuries, calpain-mediated proteolysis
of �IV-spectrin and ankG also leads to
nodal destabilization (Schafer et al.,
2009). Therefore, to maintain the ca-
pacity for activity-dependent modula-
tion, CNS nodes may remain more
susceptible to spectrin cleavage than
PNS nodes, accelerating their disinte-
gration in pathological conditions.

The electrophysiological and behav-
ioral improvements found by Saifetiarova
et al. (2018) suggest a remarkable capacity
for functional recovery following nodal
disorganization. Most current treatments
for multiple sclerosis patients target the
immune system to decrease inflammation
and prevent additional axonal damage,
while emerging therapies aim to promote
the differentiation and integration of oli-
godendrocytes into damaged CNS circuits
(Trojano and Amato, 2018). Because
nodal disorganization contributes to pa-
thology and may exacerbate axonal de-
generation, therapies aimed at increasing
nodal stability could reduce the severity of
a demyelinating event and expedite recov-
ery during remyelination. Furthermore,
the decreased nodal reorganization and
continued axonal degeneration seen by
Saifetiarova et al. (2018) at late-rescue
time points suggests nodal restoration
and axonal rescue operates within a criti-
cal period. If nodes are allowed to disor-
ganize beyond the critical window for
restoration, remyelinating therapies may
be ineffective in restoring proper conduc-
tion along axons. A greater understanding

of the region-specific molecular pro-
cesses driving nodal deorganization and
reorganization could enhance our abil-
ity to effectively treat demyelinating and
neuropsychiatric diseases.
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