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Abstract: In a recent paper we presented an innovative method of liquid biopsy, for the detection of circulating tumor 
cells (CTC) in the peripheral blood. Using microfluidics, CTC are individually encapsulated in water-in-oil droplets and 
selected by their increased rate of extracellular acidification (ECAR). During the analysis, empty or debris-containing 
droplets are discarded manually by screening images of positive droplets, increasing the operator-dependency and 
time-consumption of the assay. In this work, we addressed the limitations of the current method integrating com-
puter vision techniques in the analysis. We implemented an automatic classification of droplets using convolutional 
neural networks, correctly classifying more than 96% of droplets. A second limitation of the technique is that ECAR 
is computed using an average droplet volume, without considering small variations in extracellular volume which 
can occur due to the normal variability in the size of the droplets or cells. Here, with the use of neural networks 
for object detection, we segmented the images of droplets and cells to measure their relative volumes, correcting 
over- or under-estimation of ECAR, which was present up to 20%. Finally, we evaluated whether droplet images 
contained additional information. We preliminarily gave a proof-of-concept demonstration showing that white blood 
cells expression of CD45 can be predicted with 82.9% accuracy, based on bright-field cell images alone. Then, we 
applied the method to classify acid droplets as coming from metastatic breast cancer patients or healthy donors, 
obtaining an accuracy of 90.2%. 
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Introduction

As of today, the choice of a cancer treatment is 
usually based on histopathological and molec-
ular features of the primary tumor, obtained 
analyzing bioptic specimens. Core biopsy is an 
invasive surgical procedure, it is rarely repeat-
able, and sometimes has limitations on access-
ing tumors in delicate or hard-to-reach organs 
(e.g.: brain, lung). Tumor cells shed from prima-
ry tumors or metastatic sites in the peripheral 
blood (called circulating tumor cells (CTC)) can 
be sampled by a “liquid biopsy” with a minimal-
ly invasive venous puncture. This minimal inva-
sivity enables clinical applications otherwise 
impossible with core biopsy, such as serial 

monitoring of the disease status and frequent 
re-assessment of the mutational profile of can-
cer cells. There have been several studies prov-
ing the prognostic value of the number of CTC in 
metastatic breast [1, 2], colorectal [3] and pros-
tate cancer [4], which eventually led to FDA 
approval of CellSearch® as an in-vitro diagnos-
tic device. More recently, CTC isolation and 
molecular characterization proved to be able to 
drive therapy selection in metastatic prostate 
cancer [5]. The actual trend in oncology is 
focused on the personalization of targeted ther-
apies to tailor the best treatment for the indi-
vidual patient; isolated CTC are currently seen 
as an excellent biological sample for the molec-
ular characterization of the disease, the study 
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of tumor heterogeneity and the monitoring of 
disease evolution. Although there is enough 
evidence supporting CTC value in cancer care, 
their clinical utility, especially in terms of sur-
vival benefit, has yet to be strongly demonstrat-
ed, thus preventing their widespread use in 
clinical practice. This is mainly due to limita-
tions of current devices for CTC detection: the 
extreme rarity of CTC (one in a billion blood 
cells) constitutes a big technological challenge, 
and devices for sensitive and pure CTC isola-
tion are needed. 

We recently published a method for the detec-
tion of CTC based on the abnormal tumor 
metabolism, as an alternative to current size-
based and immunolabeling-based methods [6]. 
The abnormal metabolism is a widespread 
characteristic of tumors, and it is part of a 
recent list of the hallmarks of cancer [7]. Our 
method exploits the increased extracellular 
acidification rate (ECAR) of cancer cells with 
respect to white blood cells. The measurement 
of ECAR is performed at the single-cell level, 
using a droplet screening system similar to the 
one published by Mazutis et al. [8]: cells from a 
blood sample are individually encapsulated in 
pico-liter drops containing culture medium and 
a pH-responsive fluorescent dye. After a short 
incubation, droplets are re-injected in a micro-
fluidic device, and the pH of each drop is mea-
sured optically, looking for the droplets with 
lower pH. Currently, this workflow has the fol-
lowing limitations:

1) During a typical sample analysis, we observe 
“false positives” in a range of 1-100 per million 
droplets, which have been identified by means 

of a triggered camera as empty droplets and 
droplets containing debris (Figure 1). To filter 
them out, a human operator must typically run 
through the acquired pictures, discarding these 
false positives. This affects the overall process, 
adding a time-consuming and operator-depen-
dent image-screening step.

2) The droplets usually have a negligible varia-
tion in size, thanks to microfluidics generating a 
monodisperse droplet population. However, a 
significant variation in droplet volume might 
occur, though rarely. On the other hand, cells 
often display significant variations in size. The 
variation in the size of both droplets and cells 
affect the total extracellular volume, leading to 
a decrease in the accuracy of ECAR calculation, 
which is instead based on an average extracel-
lular volume. 

3) Pictures are acquired for each droplet with 
increased ECAR, but no further analysis is per-
formed on the image of the cell, potentially 
missing significant information.

These problems belong to the class of image 
classification (1), object detection, and seg-
mentation (2-3). Machine learning methods 
have been recently used to solve similar prob-
lems. Among all machine learning methods, 
neural networks, and more specifically convolu-
tional neural networks (CNN) recently showed 
unprecedented performances in tasks such as 
human-grade image classification [9], object 
detection and segmentation in complex images 
[10, 11].

In this work, we describe how we applied CNN 
to meet the following objectives: 

Figure 1. Overview of different types of droplets. Representative images for each class of events, including (A) empty 
drops (false positive); (B) Debris-containing drops (false positive); (C) Cell-containing drops (true positive).
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Classify automatically the content of droplets; 
Correct automatically the measurement of pH 
taking into account both droplet and cellular 
volume; Segment cellular image, on which we 
performed exploratory data mining using unsu-
pervised machine learning methods.

Materials and methods

Image acquisition

Pictures (8-bit, 1216 × 250) were acquired dur-
ing the metabolic assay described in a pre- 
vious work [6] with an USB 3.0 monochromatic 
CMOS camera (PointGrey Grasshopper) syn-
chronized with a monochromatic LED (Roithner 
LaserTechnik). Light was captured by a 40 × 
objective (Olympus). Events with lower pH, 
according to a user-defined threshold, activate 
the trigger. To ensure real-time operation, we 
used an embedded Linux Real-Time controller 
(NI CompactRIO) with an on-board field-pro-
grammable gate array (FPGA) delivering TTL-
trigger to both the camera and the LED. The 
controller was operated by customized soft-
ware (NI LabVIEW). Collection of blood samples 
was approved by the institutional review board 
with n. IRB-12-2014.

Pre-processing

The main sources of image variability were the 
spatial positioning of the microfluidic channel, 
and the variations in brightness and contrast  

of the picture. Furthermore, pictures acquired 
by the system were composed of multiple drop-
lets in the channel, with the droplet of interest 
next to the laser beam used to excite droplet 
fluorescence and measure pH. This constitut- 
ed an issue for the training of the neural net-
works, in fact, a first training on an unprocessed 
data set led to overfitting and failure of the 
model on the test set. We pre-processed the 
datasets performing normalization, contrast-
enhancement, using homonymous functions  
in ImageJ, and cropping the images on the 
droplet of interest. To crop the image, a horizon-
tal projection of the image was used to find  
the coordinates of the microfluidic channel, 
while a vertical projection was used to find the 
position of the laser beam. The projection  
was analyzed to find the maxima and minima 
values, corresponding to the light slit in the  
vertical projection and the borders of the micro-
fluidic channel in the horizontal projection 
(Figure 2). Once the coordinates of the capillary 
walls and the laser beam were found, it was 
possible to create a box around the drop of 
interest, highlighted by the red square in Figure 
2. The distance between the laser beam and 
the drop was consistently the same, because 
flows were steady and the trigger actioned by a 
nanosecond-delay FPGA controller, so it was 
sufficient to manually set the value of the rect-
angle and to apply it to every image in a single 
experiment batch. For image processing not 

Figure 2. Picture of a droplet flowing in the microfluidic channel. The white laser slit is visible next to the drop of 
interest, which is surrounded by a red square, indicating the crop applied to the droplet. Below the image, the verti-
cal projection of intensity is shown, which has a peak corresponding to the laser beam. At the right, the horizontal 
projection of the same image is shown. The two minima values corresponding to the walls of the capillary.
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related to the classification task we used NIH 
ImageJ [12]. 

Convolutional neural networks

We decided to classify the images in two class-
es: “Empty/Debris”, if the droplet was empty  
or containing junk and “Cell”, if the droplet  
contained one or more cells. In a first atte- 
mpt, we tried to re-train a publicly-available  
pre-trained model. Then, we tried to train a 
series of neural networks from the start. La- 
stly, we compared two object-detection net-
works to detect the presence of cells inside the 
image.

Python script where we could set all the vari-
ables to control the learning process. We set 
the learning rate to 1e-3, and the dimension of 
the images to 50 × 50 pixels.

In order to perform image segmentation and 
subsequent analysis, we trained two different 
object detection networks: MobileNet [19] and 
Inception-v2 [20]. We manually labelled 500 
images, taken randomly from the training set, 
using a program called LabelImg. The two mod-
els were trained on the same dataset for 
approximately the same amount of time. The 
training-set consisted in 90% of labelled imag-
es, while the remaining 10% was used as a 

Table 1. Comparison of different models of neural networks trained for 
100 epochs

Model Name Classification  
Accuracy Recall Specificity Precision

ResNeXt 
    Augmented 89.38% (+4.32%) 0.80 (+0.09) 0.99 (-0.01) 0.99 (=)
    Original 85.06% 0.71 1.00 0.99
    ConvNet 87.50% (+2.53%) 0.84 (-0.03) 0.91 (+0.08) 0.90 (+0.07)

84.97% 0.87 0.83 0.83
    CNN8 85.16% (+0.38%) 0.82 (+0.03) 0.88 (-0.02) 0.88 (-0.01)

84.78% 0.79 0.90 0.89
    ResNet-v2 82.78% (-1.35%) 0.76 (-0.02) 0.9 (=) 0.88 (-0.01)

84.13% 0.78 0.90 0.89
    CNN6 82.00% (+1.50%) 0.82 (+0.12) 0.821 (-0.09) 0.82 (-0.06)

80.50% 0.70 0.9 0.88
    GoogLeNet 81.38% (+1.35%) 0.70 (-0.15) 0.92 (+0.17) 0.90 (+0.13)

80.03% 0.85 0.75 0.77
    AlexNet 80.66% (+1.28%) 0.69 (-0.13) 0.93 (+0.16) 0.90 (+0.13)

79.38% 0.82 0.77 0.78
    CNN2 68.22% (-11.03%) 0.82 (+0.07) 0.55 (-0.29) 0.64 (-0.18)

79.25% 0.75 0.84 0.82
Extended training - number of epochs n - Augmented dataset
    ResNeXt150 90.03% 0.81 0.99 0.99 
    ConvNet75 90.00% 0.84 0.96 0.96 
    Inception v3200 88.75% 0.78 0.99 0.99
    ConvNet150 87.66% 0.77 0.99 0.98 
Object detection algorithm - Augmented dataset
    Combined 96.00% 0.94 0.98 0.98
    MobileNet 89.84% 0.81 0.99 0.99
    Inception-v2 86.41% 0.77 0.96 0.95
Results using Augmented and Original dataset are shown in two lines, (variation in perfor-
mances shown in parenthesis). ResNeXt and ConvNet were also trained for “n” different 
number of epochs, indicated as e.g.: ResNeXtn. Inception v3 indicates the attempt of 
retraining a publicly available network. “Combined” indicates a combination of MobileNet 
and Inception-v2.

The publicly-available mo- 
del used was GoogLeNet 
Inception v3, trained for 
the ImageNet Large Vi- 
sual Recognition Chal- 
lenge of 2012 [13]. The 
framework used to re-
train the model was 
Google TensorFlow. The 
implementation was ma- 
de using Tflearn, a high-
level/abstraction layer for 
TensorFlow. Tflearn offers 
a series of ready-to-use 
models, which had been 
modified to accept the 
greyscale images of the 
dataset.

The networks implement-
ed from the start were 
Alexnet [14], GoogLeNet 
(Inception-v1) [15], Incep- 
tion-ResNet-v2 [16], Res- 
NeXt [17], ConvNet [18] 
and three other different 
custom CNNs. These cus-
tom networks consisted 
in a series of convolution-
al layers followed by a 
pooling layer and a fully 
connected layer on top. 
The first had 2 convolu-
tional layers (CNN2), the 
second had 6 (CNN6), 
and the last one had 8 
(CNN8). 

The training of the mod-
els was controlled by a 
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validation-set. In addition to the image seg- 
mentation, we evaluated the performance of 
the object-detection algorithm in classifying 
droplets as “Empty/Debris” and “Cell”, compar-
ing it with previously trained networks.

Datasets

The “training set” was composed by 10698 pic-
tures taken from 65 different acquisitions, 
composed of 1575 pictures from MDA-MB-231 
cancer cell-line, 1485 from healthy controls, 
and 7638 from metastatic breast cancer 
patients. The “validation set” was set as 5% of 
the “training set”. The “test set” was a com-
pletely different set of images, taken from  
13 separate acquisitions of metastatic breast 
cancer samples, manually labeled, and not 
used in the training set. The “test set” was 
composed using a series of 3200 images, half 
of which were empty/debris and half containing 
cells.

Data augmentation

In order to increment the number of images of 
the dataset and try to reduce the problem of 
the overfitting, we applied a data-augmentation 
process to obtain an “augmented” training set. 
We used Python libraries and built-in TensorFlow 
functions to flip both vertically and horizontally 
images, and perform random transformations, 
like modifying contrast, blur, and rotations. The 
“augmented” training set was eventually com-
posed of 42792 images.

Increasing the accuracy of metabolism mea-
surement 

To provide a more accurate measurement of 
proton production by the cell, we evaluated the 
possibility of automatically determine the extra-
cellular volume of droplets. Object segmenta-
tion, provided by object-detection algorithm, 
enabled easy cropping and measurement of 

the picture area by ImageJ. The square root of 
such area corresponded to the diameter of the 
drop/cell. Using the diameter, we computed the 
object volume assuming sphericity. Extracellular 
volume was then computed as the difference 
between the droplet volume and the cellular 
volume. With the extracellular volume and pH 
value we could compute the number of protons 
in solution. 

Characterization of white blood cells

Blood samples were obtained from blood 
donors with informed consent. 1 mL of whole 
blood was processed by lysing red blood cells 
and staining for CD45-BV421 (BD-Biosciences). 
White blood cells (WBC) were re-suspended in 
50 uL of Joklik’s EMEM, 0.1% Bovin Serum 
Albumin and 4 uM SNARF-5F, emulsified and 
re-injected for droplet analysis and image col-
lection according to the method described in 
[6]. Flow cytometry data were collected using 
BD FACS Canto™.

Characterization of droplets content

The pictures of cells segmented with the object-
detection algorithm were collected and normal-
ized, dividing the gray value of each pixel by the 
mean gray value of the respective image.

We used NIH ImageJ to perform the following 
measurements on each cell picture: area, 
perimeter, gray values (mean, modal, median, 
min, max, standard deviation), centroid, center 
of mass, fit ellipse (major and minor axis, angle), 
integrated density, skewness and kurtosis. We 
performed texture analysis with gray-level co-
occurrence matrix using the GLCM plugin for 
ImageJ, obtaining the following parameters: 
angular second moment, contrast, correlation, 
inverse difference moment, entropy.

For data analysis we used Orange, an open-
source data visualization, machine learning, 
and data mining toolkit [21]. Orange is based 
on open-source Python libraries for scientific 
computing such as NumPy [22], SciPy [23], and 
Scikit-learn [24]. Classification accuracy is  
an average of 10-fold cross-validation. Naïve 
Bayes, logistic regression, and multilayer per-
ceptron algorithms were employed for the clas-
sification of cell images, as described in the 
Orange Canvas documentation, with default 
settings.

Table 2. Confusion matrix of results obtained 
with ResNeXt model

Predicted Class
Cell Empty/debris Total

Actual Cell 1129 471 1600
Class Empty/debris 7 1593 1600

Total 1136 2064 3200
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Results

Classification of droplets content

We made a first attempt of classification by re-
training Inception v3 model, in order to test the 
approach with the lesser degree of customiza-
tion. The model displayed a classification accu-
racy of 88.75% with 200 epochs of training.

Successively, we tried training eight different 
networks from the start in the attempt to 
improve classification accuracy. We trained all 
models for 100 epochs with an initial learning 
rate of 1e-3, using the non-augmented 
dataset. 

ResNeXt showed the best accuracy (85.06%), 
but showed a trend towards the classification 
of droplets as “Empty/Debris”: only 0.4% of 
truly empty/debris drops were misclassified, 
while a significant number of cell-containing 
droplets (29.4%) was misclassified, as shown in 
Table 1. Data augmentation increased consid-
erably the accuracy of ResNeXt and other net-
works, up to 89.38% (Table 2). A third training 
was done on networks yielding the best results, 
ResNeXt and Convnet, using a different aug-
mented dataset, in which all the images were 
flipped on both the horizontal and the vertical 
axes, while we applied the other augmenta-

tions at random before training the networks. 
This increased by four times the size of the 
training set. After extending the training dura-
tion to 150 epochs, ResNeXt reached an over-
all accuracy of 90.03%, while Convnet raised to 
87.66%. Misclassified cell-containing droplets 
were reduced to 19%. An interesting observa-
tion was that the trend of the validation loss of 
the Convnet model at around 50k iterations 
was slightly lower than the loss of ResNeXt. So 
we decided to try “early stopping” Convnet 
training to avoid overfitting. We implemented it 
setting the training epochs to 75 instead of 
150, leaving all other parameters unchanged. 
The model performed slightly better, reaching 
an accuracy of 90.00%. Since CTC are rare 
events, usually found in a number of 1-10 per 
mL of blood, the loss of around 19% of cell-
containing droplets due to misclassification 
was not acceptable. In the attempt of reducing 
such loss, we tried an alternative approach, 
using two object-detection algorithms, Mobile- 
Net and Inception-v2. The models were trained 
to identify the presence of cells and droplets in 
an image (Figure 3). If at least one cell was 
detected with a percentage of certainty above 
50%, then the image was classified as cell-con-
taining. These methods gave results compara-
ble to ResNeXt. By examining the confusion 
matrix, we noticed that the images misclassi-
fied by the two models belonged to different 
acquisitions, so we hypothesized that combin-
ing the two networks could improve the sensi-
tivity. The combination of the two models, in 
fact, gave significantly better results, with the 
recall increased from 0.80 to 0.94 and the 
overall accuracy raised to 96%. The most 
important achievement was the strong re- 
duction of misclassified cell-containing drops 

Figure 3. Object detection. Representative pictures of droplets (blue squares) and cells (red squares) detected and 
segmented with the object-detection neural network. 

Table 3. Confusion matrix of results obtained 
with MobileNet + Inception-v2 model

Predicted Class
Cell Empty/debris Total

Actual Cell 1511 89 1600
Class Empty/debris 36 1564 1600

Total 1547 1653 3200
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down to 5.5%. Results given 
by combined networks are 
shown in Table 3.

Increasing accuracy of me-
tabolism measurement

As explained in the introduc-
tion, the estimation of single-
cell ECAR is obtained by mea-
suring the pH of the whole 
droplet. This does not take 
into account small variations 
in volumes due to different 
size of droplets or cells. The 
segmentation of droplets and 
cells with object-detection 
networks enabled the mea-
surement of their volumes, 
thus allowing for correction  
of the ECAR estimation. As  
a quantitative example, we 
report the cassse of three 
droplets with nearly identical  
pH (6.75 ± 0.02), coming from 
three different experiments 
(Figure 3). 

In Table 4 we report the vol-
umes of the droplets dis-
played in Figure 3, their total 
volume, and their extracellu-
lar volume, normalized with 
respect to the average vol-
umes, respectively. 

Table 4 shows that between 
these three droplets, the 
extracellular volume can vary 
up from -21% to +14% of the 
average, leading to a propor-
tional over- or under-estima-
tion of ECAR if based only on 
pH measurement. The combi-
nation of the two measure-
ments (pH and extracellular 
volume), instead, can signifi-
cantly increase the accuracy 
of the assay.

Content characterization-
proof of concept on white 
blood cells

We used the segmented im- 
ages of cells obtained with 

Table 4. Variations in the extracellular volume as computed for the 
three representative droplets examined

Total drop 
volume (pL)

Variations wrt 
average

Extracellular 
volume

Variations wrt 
average

Drop 1 52.0 -16% 48.7 -21%
Drop 2 60.1 -2% 57.4 -7%
Drop 3 72.3 +17% 70.6 +14%
Average 61.7 58.9

Figure 4. Flow cytometry. Top: dot-plot of a typical healthy blood lysate ob-
tained with flow cytometry, in which P1 population (WBC), P2 (lymphocytes) 
in green, and NOT(P2) (granulocytes and monocytes) in blue, are visible. Mid-
dle: histogram of fluorescence intensity corresponding to CD45 expression 
for the descripted populations. Bottom: relative density of cell populations 
with high- and low-CD45 expression in a healthy sample. 
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the object-detection algorithm to further char-
acterize the content of droplets. A proper  
characterization was complicated by the fact 
that the images of the cells, acquired in bright-
field microscopy, were often out-of-focus, as 
cells freely float inside the droplets, which in 
turn are pushed through the channel in setting 
similar to flow cytometry. For these reasons, 
images are slightly blurred even with optimal 
light intensity and exposure time. We tested  
the hypothesis that it was possible to discrimi-
nate between different cellular types using  
the collected images, by ideating a proof of 
concept experiment, in which we used WBC 
from the blood of a healthy donor. We stained 
cells for CD45 and subsequently collected pic-

tion accuracy to 82.9%. The multilayer percep-
tron was composed by three layers of 20, 10 
and 2 nodes and iterated for 200 times. Results 
were subject to 10-folds cross-validation.

The analysis of frequency distributions showed 
that the variables related to the gray levels 
were identical between the two groups, while 
variables related to the cell size and texture 
were different. Specifically, CD45-high cells 
had lower area and inverse difference moment, 
and minor variations in the distributions of con-
trast, correlation, entropy and angular second 
moment. 

Droplet content characterization-exploratory 
analysis on metastatic breast cancer patients 
vs healthy donors

Finally, we used the same method to analyze 
droplet content of metastatic breast cancer 
patients and healthy donors. We selected 
CD45-negative cells, in droplets with pH lower 
than 7.0. We performed a preliminary normal-
ization of images, because the pictures were 
coming from different acquisitions in different 
days. Normalization was implemented by divid-

Figure 5. PCA analysis of WBC images. Dot plots showing principal compo-
nents (PC1, PC2) obtained performing PCA on white blood cell images. In 
red, cells with CD45-low expression. In blue, cells with CD45-high expres-
sion. Background is coloured according to class density. 

tures of CD45-high and CD45-
low populations, correspond-
ing to neutrophils and ly- 
mpho-monocyte, respectively 
(Figure 4).

We performed a Principal 
Component Analysis (PCA) 
with 2 components, covering 
approximately two thirds of 
variance, on the parameters 
obtained with image analysis. 
Results showed that the two 
populations (CD45-high and 
-low) trended towards the for-
mation of two separate clus-
ters (Figure 5).

Supervised analysis using 
naïve Bayes and logistic re- 
gression yielded 77.0% and 
77.7% classification accuracy, 
respectively (Table 5). The 
employment of a neural net-
work, a multi-layer perceptron 
algorithm capable of learning 
both linear and non-linear 
models, increased classifica-

Table 5. Comparison of different models in 
the classification of CD45 expression using 
pictures of cells

Method Classification  
Accuracy

Area under 
ROC curve

Neural Network 82.9% 0.871
Naïve Bayes 77.0% 0.826
Logistic Regression 77.7% 0.812
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Figure 6. PCA analysis of cancer cells and WBC. Dot plots showing principal components of cells from metastatic cancer patients (blue) or healthy controls (red). 
Top-right graph shows the whole dataset. Images from cancer patients are much more than false positives from healthy donors, thus to generate a more balanced 
visualization we obtained five equal-size datasets by sampling the same number of images from cancer patients or healthy controls. The other graphs show these 
five balanced datasets. Background is colored according to class density. 
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ing the gray value of each pixel by the average 
gray value of each image. The dataset of pic-
tures was unbalanced because there were 
about 5-folds more cells coming from patients 
than cells coming from healthy controls, so we 
created 5 balanced batches, in which the size 
of the two classes were equal. For each batch, 
we performed a PCA analysis and plotted the 
principal components with the best cluster sep-
aration (Figure 6). In this setting the classifica-
tion task using naïve Bayes, logistic regres- 
sion and the multilayer perceptron yielded a 
classification accuracy (averaged between 
5-subsets) of 83.6%, 81.4%, and 90.2%, with 
an area under curve of 0.907, 0.859, and 
0.947, respectively (Table 6). The analysis of 
frequency distributions showed that the vari-
ables related to the gray levels were identical 
between the two groups, while variables relat-
ed to cell size and texture were different. 

Specifically, in cells from metastatic patients, 
angular second moment was higher, contrast 
was higher and with increased variance, while 
entropy was lower, and area was lower on aver-
age but with higher variance (Figure 7). Average 
areas corresponded to diameters of 11.18 ± 
6.45 micrometers in patients versus 12.18 ± 
6.18 micrometers in healthy controls. 

Discussion

In this study we implemented an accurate au- 
tomatic classification of droplet content by 
combining multiple machine learning approach-
es. CTC are rare events, thus achieving a mis-
classification rate as low as possible is an 
important objective. Even if the achieved mis-
classification of cell-containing events (5%) is 
acceptable, it might be worth exploring the pos-
sibility of decreasing even further such percent-
age by creating a third category of “noisy” or 
“doubtful” pictures, containing the droplets in 

which the object-detection algorithm detects a 
cell with suboptimal probability. Such “doubt-
ful” pictures could be then manually checked 
by an operator, or used to re-train the algo-
rithms. It is important to note that some pic-
tures of the database are noisy and difficult to 
classify even by an experienced operator. Such 
pictures are present in a proportion compara-
ble to the 5% of misclassified pictures.

By analyzing cell images, we successfully clas-
sified different populations of white blood cells, 
and specifically cells having high- or low-CD45 
expression. It is worth noticing that CD45 is 
only partially able to divide WBC into morpho-
logically homogeneous categories: CD45-low 
cells are mostly granulocytes, but to a less- 
er extent also lymphocytes, while CD45-high 
cells are mostly lymphocytes, but also some 
monocytes. Granulocytes are somewhat mor-
phologically homogeneous, while lymphocytes 
and monocytes differ significantly. The overall 
value of classification accuracy shows that dis-
tinction between granulocytes and lympho-
monocytes by bright-field images is possible. 
However, in this specific case, the performance 
of image-based classification might be under-
estimated by the heterogeneous composi- 
tion of WBC population grouped by the same 
CD45 expression. A better result might be 
obtained by employing forward and side scatter 
to fully separate WBC population and train the 
algorithm on more homogeneous populations, 
but such optimization of performance was out 
of the aim of the presented proof-of-concept. 
The concept of detecting biological characteris-
tics by applying machine learning algorithm to 
label-free images of cells has been already 
proven by other groups [25-27]. However, no 
reports were published on the discrimination 
between CTC and WBC. We found that CD45-
negative, hyper-metabolic cells coming from 
patients could be discriminated from the same 
cells found in healthy controls, with around 
90% accuracy. This suggests that such cells 
are phenotypically different from WBC which 
are normally found in peripheral blood, compat-
ibly with being CTC or rare CD45-negative WBC 
with unusual phenotype. These cells might be 
potential biomarkers, and proper studies 
should evaluate their prognostic or diagnostic 
meaning. These data are collected on cells in 
suspension, analyzed with a droplet-screening 
apparatus similar to the one described in 

Table 6. Comparison of different models in 
the classification of cells as coming from 
cancer patients or healthy donors based on 
the pictures of cells

Method Classification  
Accuracy

Area under 
ROC curve

Neural Network 90.2% 0.947
Naïve Bayes 83.6% 0.907
Logistic Regression 81.4% 0.859
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reported papers [6, 8], but the concept can  
be further exploited in other conditions, such 
as enriched cells collected on a plate or imag- 
ed through an image flow cytometer like 
ImageStream (Merck). With respect to the drop-
let screening pipeline, implementing this im- 
age analysis step to sort out false-positives 
generated by the analysis significantly in- 
creased the specificity, speed and operator-
independency of the assay, and could poten-
tially be applied to any other application involv-
ing droplet microfluidics.
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