Skip to main content
. 2018 Dec 15;10(12):4004–4016.

Table 1.

Comparison of different models of neural networks trained for 100 epochs

Model Name Classification Accuracy Recall Specificity Precision
ResNeXt
    Augmented 89.38% (+4.32%) 0.80 (+0.09) 0.99 (-0.01) 0.99 (=)
    Original 85.06% 0.71 1.00 0.99
    ConvNet 87.50% (+2.53%) 0.84 (-0.03) 0.91 (+0.08) 0.90 (+0.07)
84.97% 0.87 0.83 0.83
    CNN8 85.16% (+0.38%) 0.82 (+0.03) 0.88 (-0.02) 0.88 (-0.01)
84.78% 0.79 0.90 0.89
    ResNet-v2 82.78% (-1.35%) 0.76 (-0.02) 0.9 (=) 0.88 (-0.01)
84.13% 0.78 0.90 0.89
    CNN6 82.00% (+1.50%) 0.82 (+0.12) 0.821 (-0.09) 0.82 (-0.06)
80.50% 0.70 0.9 0.88
    GoogLeNet 81.38% (+1.35%) 0.70 (-0.15) 0.92 (+0.17) 0.90 (+0.13)
80.03% 0.85 0.75 0.77
    AlexNet 80.66% (+1.28%) 0.69 (-0.13) 0.93 (+0.16) 0.90 (+0.13)
79.38% 0.82 0.77 0.78
    CNN2 68.22% (-11.03%) 0.82 (+0.07) 0.55 (-0.29) 0.64 (-0.18)
79.25% 0.75 0.84 0.82
Extended training - number of epochs n - Augmented dataset
    ResNeXt150 90.03% 0.81 0.99 0.99
    ConvNet75 90.00% 0.84 0.96 0.96
    Inception v3200 88.75% 0.78 0.99 0.99
    ConvNet150 87.66% 0.77 0.99 0.98
Object detection algorithm - Augmented dataset
    Combined 96.00% 0.94 0.98 0.98
    MobileNet 89.84% 0.81 0.99 0.99
    Inception-v2 86.41% 0.77 0.96 0.95

Results using Augmented and Original dataset are shown in two lines, (variation in performances shown in parenthesis). ResNeXt and ConvNet were also trained for “n” different number of epochs, indicated as e.g.: ResNeXtn. Inception v3 indicates the attempt of retraining a publicly available network. “Combined” indicates a combination of MobileNet and Inception-v2.