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Abstract

Microglia, the resident immune cells in the CNS, play multiple roles during development. In the embryonic cerebral
wall, microglia modulate the functions of neural stem/progenitor cells through their distribution in regions
undergoing cell proliferation and/or differentiation. Previous studies using CX3CR1-GFP transgenic mice dem-
onstrated that microglia extensively survey these regions. To simultaneously visualize microglia and neural-
lineage cells that interact with each other, we applied the in utero electroporation (IUE) technique, which has been
widely used for gene-transfer in neurodevelopmental studies, to CX3CR1-GFP mice (males and females).
However, we unexpectedly faced a technical problem: although microglia are normally distributed homoge-
neously throughout the mid-embryonic cortical wall with only limited luminal entry, the intraventricular presence
of exogenously derived plasmid DNAs induced microglia to accumulate along the apical surface of the cortex and
aggregate in the choroid plexus. This effect was independent of capillary needle puncture of the brain wall or
application of electrical pulses. The microglial response occurred at plasmid DNA concentrations lower than those
routinely used for IUE, and was mediated by activation of Toll-like receptor 9 (TLR9), an innate immune sensor that
recognizes unmethylated cytosine-phosphate guanosine motifs abundant in microbial DNA. Administration of
plasmid DNA together with oligonucleotide 2088, the antagonist of TLR9, partially restored the dispersed
intramural localization of microglia and significantly decreased luminal accumulation of these cells. Thus, via
TLR9, intraventricular plasmid DNA administration causes aberrant distribution of embryonic microglia, suggest-
ing that the behavior of microglia in brain primordia subjected to IUE should be carefully interpreted.
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Significance Statement

Microglia have been recently shown to play multiple roles in the embryonic brain. In the trials for labeling
neural-lineage cells using IUE technique in CX3CR1-GFP mice, in which microglia express GFP, to achieve
dual live-imaging of these cell types, we unexpectedly found that intra-ventricular administration of plasmid
DNA caused microglial aberrant accumulation along the luminal surface of the cerebral wall and in the
choroid plexus. Notably, coadministration of TLR9 antagonist into the ventricle together with plasmid DNA
significantly improved microglial localization in the mid-embryonic (E14) cortex, suggesting that massive
microglial accumulation induced by plasmid DNA is primarily mediated by TLR9 activation. Our findings
have implications for the application of IUE to investigate embryonic microglia.
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Introduction
Microglia, the resident macrophages of the CNS, are

distributed throughout both adult and embryonic brain
(Perry et al., 1985; Ashwell, 1991; Nimmerjahn et al., 2005;
Monier et al., 2007; Swinnen et al., 2013). Embryonic
microglia play multiple roles in development of neural-
lineage cells, e.g., phagocytotically eliminating Tbr2� in-
termediate progenitors (Cunningham et al., 2013; Barger
et al., 2018), regulating the differentiation status of neural
progenitor cells in the subventricular zone (SVZ) and ven-
tricular zone (VZ; Arnò et al., 2014; Hattori and Miyata,
2018), and modulating cortical interneuron positioning
(Squarzoni et al., 2014; Thion and Garel, 2017). Live-
imaging studies of microglia using transgenic mice such
as CX3CR1-GFP mice (Jung et al., 2000) have shown that
microglia dynamically change their distribution during
cortical development (Swinnen et al., 2013) and exten-
sively survey proliferative zones in response to CXCL12
during the mid-embryonic period (Hattori and Miyata,
2018).

To further investigate how microglia and neural-lineage
cells interact and/or collaborate (i.e., where, when, and for
how long microglia contact undifferentiated and/or inter-
mediate neural progenitors and whether these cell types
mutually influence their development), it is necessary to
simultaneously live-monitor microglia and neural lineage
cells and observe them under genetic manipulation. For
labeling and genetic modification of neural lineage cells of
embryonic mammalian brains, the in utero electroporation
(IUE) technique has been widely used (Fukuchi-Shimogori
and Grove, 2001; Saito and Nakatsuji, 2001; Tabata and
Nakajima, 2001). Because this technique is easily com-
bined with the use of transgenic mice developed for
visualization of certain cell types or subcellular structures
(Okamoto et al., 2013; Shinoda et al., 2018), we predicted
that it would be useful for monitoring microglia in
CX3CR1-GFP mice. In pilot trials of this dual imaging
approach (i.e., visualization of both microglia and non-
microglia), however, we unexpectedly found that conven-
tional IUE of the embryonic mouse cerebral wall markedly
altered microglial distribution in the cortex. A recent study
reported that IUE caused activation of embryonic micro-

glia, and thus induced cell death, in the developing hypo-
thalamus (Rosin and Kurrasch, 2018), but the underlying
biological mechanisms remained unknown. In this study,
we investigated the causes of abnormal microglial distri-
bution and point to a potential molecular mechanism for
this phenomenon.

Materials and Methods
Mice

CX3CR1-GFP mice (Jung et al., 2000; IMSR, Catalog
#JAX:005582; RRID:IMSR_JAX:005582) were purchased
from Jackson Laboratories. ICR mice were purchased
from Japan SLC. Mice were housed under specific
pathogen-free conditions at Nagoya University. All proto-
cols for animal experiments were approved by the Insti-
tutional Animal Care and Use Committee of Nagoya
University. To obtain CX3CR1-GFP� embryos (heterozy-
gous), male homozygous CX3CR1-GFP mice were mated
with female ICR wild-type mice.

Plasmid DNA and LPS injection into the lateral
ventricle

Plasmid DNA (pEFX2-Lyn-mCherry) purified using the
QIAGEN Plasmid Maxi kit (catalog #12163, QIAGEN) or
the EndoFree Plasmid Maxi kit (catalog #12362, QIAGEN)
was dissolved in Tris-EDTA (10 mM Tris-HCl, 1 mM EDTA,
pH 8.0) at a concentration of 5 �g/�l. The plasmid stock
was diluted in saline solution to a concentration of 0.5
�g/�l. To monitor injection, Fast Green (0.1%) was added
to the plasmid DNA solution at a ratio of 1:10. One micro-
liter of plasmid DNA solution was injected into the lateral
ventricle of the right hemisphere of embryonic day (E)12
mouse brain. The final concentration of plasmid DNA
ranged 0.03–0.5 �g/�l, as indicated. After 2 d, the num-
ber and distribution pattern of microglia were quantified in
the lateral part of the cerebral wall and choroid plexus
(right hemisphere; Fig. 1B). LPS (Sigma-Aldrich) was di-
luted in saline solution to obtain a concentration of 2.5 ng,
250 pg, 25 pg, or 2.5 pg/�l and administered 1 �l of the
solution into the lateral ventricle of E12 mouse brain.
Regarding the amount of bacterial endotoxin contained in
plasmid DNA solution, we referred to the manufacturer’s
website (https://www.qiagen.com/us/resources/
technologies/plasmid-resource-center/removal%20of%
20bacterial%20endotoxins/).

In utero electroporation
IUE was performed as described previously (Okamoto

et al., 2013; Shinoda et al., 2018). After pregnant ICR mice
were anesthetized by intraperitoneal injection of pento-
barbital sodium (Somnopentyl; Kyoritsu Seiyaku), 1 �l of
plasmid DNA solution was injected into the lateral ventri-
cle of E12 mouse embryos. Briefly, the head of the em-
bryo inside the uterus was placed between the disks of a
forceps-type electrode (3 mm disk electrodes for E12;
CUY650P3, NEPA GENE), and electric pulses (32 V) were
applied four times, resulting in gene transfection into the
cerebral wall.
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Administration of TLR9 antagonist together with
plasmid DNA

Previous studies tested various oligonucleotides
(ODNs) for their stimulatory or inhibitory activities for Toll-
like receptor 9 (TLR9; Krieg et al., 1995; Stunz et al.,
2002). Based on the finding that ODN 2088 is one of the
most effective inhibitors, we applied it in our experiments
as TLR9 antagonist. The ODN 2088 (5’-TCC TGG CGG
GGA AGT-3’) was purchased from Invivogen. The drug
was suspended in endotoxin-free water and dissolved in
plasmid DNA solution at a mass ratio of plasmid DNA/
ODN 2088 1:1. Plasmid DNA and ODN 2088 were injected
into the lateral ventricles of E12 embryos. After 2 d (E14),
the brains were perfused with 4% PFA and subjected to
immunohistochemistry.

Immunohistochemistry
Immunohistochemistry was performed as described

previously (Okamoto et al., 2013). Brains were fixed in 4%

PFA, immersed in 20% sucrose, and frozen-sections (16
�m thick) were cut. Sections were treated with the follow-
ing primary antibodies: rat anti-GFP (1:500, Nacalai
Tesque, catalog #04404-84; RRID:AB_10013361) and
rabbit anti-RFP (1:500, MBL, catalog #PM005; RRID:
AB_591279). After washes, sections were treated with
secondary antibodies conjugated to AlexaFluor 488 (1:
400; Invitrogen, catalog #A-11006; RRID:AB_141373) or
AlexaFluor 546 (1:400; Invitrogen, catalog #A-11010;
RRID:AB_143156) and imaged on a BX60 fluorescence
microscope (Olympus) or FV1000 confocal microscope
(Olympus). The cerebral wall was divided into six bins (40
�m) and numbered in an inside-out fashion (bins 1–6). We
counted the number of microglia of which somas were
within the VZ (including ones along the apical surface) but
excluded microglia whose somata were completely in the
ventricular lumen although they partly attached to the
apical surface.

Figure 1. IUE disturbs microglial distribution in the developing cerebral cortex. A, Experimental design of IUE. Plasmid DNA
(pEFX2-Lyn-mCherry) was injected into the right lateral ventricle of an E12 CX3CR1-GFP mouse, and then electrical pulses were
applied. After 2 d (E14), the brain was fixed and subjected to immunohistochemical analysis. B, Illustration showing the approximate
region of pallium, choroid plexus, and ventricular lumen for immunohistochemical analyses. C, Representative immunostaining to
detect GFP (CX3CR1) and RFP (Lyn-mCherry) in pallium, choroid plexus, and ventricular lumen of control and IUE brains. Broken lines
show the apical surface of the pallium in the top and bottom, and the choroid plexus in the middle. Yellow arrowheads indicate
microglia accumulated near the apical surface of the pallium, on the choroid plexus and in the ventricular lumen. Scale bar, 100 �m.
D, Bin definition for immunohistochemical analyses is shown. Each section in the cerebral wall was numbered from the ventricle side
(bins 1–6, 40 �m each). E–G, Graphs depicting numbers of microglia in each bin (40 �m � 300 �m square; E), the total number within
240 �m from the apical surface of the pallium (F), and the number of meningeal microglia (G). H, Density of microglia adhered to the
choroid plexus in control versus IUE brains. For statistical analyses, n � 10 samples obtained from five embryos (2 sections, each)
were quantified. One or two littermates per dam were subjected to a series of tests. Data represent mean � SD. ���p � 0.001,
��p � 0.01, �p � 0.05, or n.s., not significant; Mann–Whitney U test.
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Cell sorting
Freshly isolated pallial walls derived from E14 male and

female CX3CR1-GFP mice were treated with trypsin
(0.05%, 3 min at 37°C). Dissociated pallial cells were
filtered through a 40 �m strainer (Corning) to eliminate all
remaining cell clumps, and then resuspended in DMEM
containing 5% fetal bovine serum (Invitrogen), 5% horse
serum (Invitrogen), and penicillin/streptomycin (50 U/ml,
each; Meiji Seika Pharma). CX3CR1-GFP� cells were
sorted through a 100-�m nozzle by FACS Aria II (BD
Biosciences). The drop delay was optimized using BD
Biosciences Accudrop beads (BD Biosciences).

Real-time PCR
First-strand cDNA was synthesized from �100 ng total

RNA was reverse-transcribed into cDNA using Super-
Script III reverse transcriptase (ThermoFisher Scientific) in
the presence of RNase inhibitor (Thermo Fisher Scientific).
Real-time PCR was performed with SYBR Green Real
Time PCR Master (Toyobo) using Thermal Cycler Dice
Real Time System TP800 (TaKaRa). To amplify specific
transcripts, samples were heated at 95°C for 15 min and
subsequently underwent a melting curve analysis from
60°C to 95°C. The threshold cycle number (Ct) of the
target was calculated and expressed relative to that of
GAPDH, and then ��Ct values of the target were calcu-
lated and presented as relative fold induction. Primers
were: 5=-AGC CTC CGA GAC AAC TAC CT-3= (sense) and
5=-TTG GTC AGG GCC TTT AGC TG-3= (antisense) for
TLR9; 5’-TCC CTG CAT AGA GGT AGT TCC TA-3’
(sense) and 5’-TTC AAG GGG TTG AAG CTC AGA-3’
(antisense) for TLR4; and 5’-GTT GTC TCC TGC GAC TTC
A-3’ (sense) and 5’-GGT GGT CCA GGG TTT CTT A-3’
(antisense) for GAPDH.

Live imaging in cortical slice culture
To obtain cortical slices covered with intact meninges,

whole forebrains isolated from E14 male and female
CX3CR1-GFP mice that had been electroporated at E12
were embedded in 2% agarose gel, and then sliced coro-
nally (350 �m) using a vibratome. The slices were cultured
in collagen gel as previously described (Miyata et al.,
2004). Time-lapse imaging was performed on a CV1000
confocal microscope (Olympus). Chambers for on-stage
culture were filled with 40% O2.

Statistical analysis
Quantitative data are presented as mean � SD from

representative experiments. Statistical differences be-
tween groups were analyzed by Mann–Whitney U test for
two-group comparisons or Steel–Dwass test for multiple
comparisons using R software. p � 0.05 was considered
significant. p values in every figure are separately listed in
tables (Tables 1–7). Individual values were plotted as open
circles in bar graphs. The number of samples examined in
each analysis is shown in the figure legends.

Results
IUE disturbs microglial distribution in the developing
cerebral cortex

To simultaneously visualize microglia and neural-
lineage cells, we performed IUE on E12 CX3CR1-GFP
mice (Jung et al., 2000). Briefly, plasmid DNA (pEFX2-Lyn-
mCherry) was injected into the lateral ventricle of the right
hemisphere of E12 mouse brain using a glass capillary
needle, followed by electrical pulses across the embryo’s
head (Fig. 1A). Surprisingly, immunohistochemical in-
spections 2 d later revealed that the distribution patterns
of CX3CR1� microglia in the pallium and choroid plexus
were abnormal (Fig. 1B,C). Normally at E14, microglia are
distributed diffusely throughout the pallium along the ra-
dial (ventricle-to-pia) axis, and are found in the VZ, SVZ,
and intermediate zone (IZ; Perry et al., 1985; Ashwell,
1991; Monier et al., 2007; Cunningham et al., 2013; Swin-
nen et al., 2013). In brains subjected to IUE (hereafter, IUE
brains), however, microglia were extremely scarce in both
the SVZ and IZ (bins 2–4) and aberrantly accumulated
along the apical surface (within 40 �m from the apical
surface: bin 1; Fig. 1C–E; Table 1), with the total number
of microglia in the pallium and meningeal microglia com-
parable between control (non-IUE) and IUE brains (Fig.
1F,G). IUE brains also exhibited densely accumulated
microglia in the choroid plexus and the ventricle, whereas
no such massive luminal infiltrations were observed in
non-IUE controls (Fig. 1C,H). IUE caused the same type of
aberrant microglial distribution in wild-type (ICR, non-
CX3CR1-GFP transgenic) mice (data not shown). These
results indicate that, in our hands, the standard IUE tech-
nique disturbed the localization of microglia in a manner
suggestive of an attraction from the IZ or SVZ toward the
ventricular lumen.

Plasmid DNA injection into the ventricle, without
electrical pulses, results in abnormal microglial
distribution

To determine which of the steps involved in IUE (1,
puncturing the cerebral wall with a glass capillary needle;
2, injection of plasmid vector DNA into the lateral ventri-
cle; 3, electrical pulses) causes microglial aberrant accu-
mulation, we compared the distribution of microglia
between embryos subjected to each of these procedures
separately. When the cerebral wall was only punctured
with a glass capillary needle, but no solution was injected,
microglia were still distributed homogenously throughout
the cortex, as in control (nontreated) brains (Fig. 2A–D;

Table 1. Statistics for Figure 1

Graph Data structure Type of test p
Fig. 1E Nonparametric Mann–Whitney U test Bin 1: 1.1 � 10	5

Bin 2: 0.0022
Bin 3: 0.0307
Bin 4: 0.0014
Bin 5: 0.4281
Bin 6: 0.0495

Fig. 1F Nonparametric Mann–Whitney U test 0.6835
Fig. 1G Nonparametric Mann–Whitney U test 0.1021
Fig. 1H Nonparametric Mann–Whitney U test 1.1 � 10	5
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Table 2). By contrast, brains that were intraventricularly
injected with plasmid DNA (pEFX2-Lyn-mCherry) but not
subjected to electrical pulses exhibited massive microglial
accumulation near the ventricle in the VZ and their infil-
tration in the choroid plexus. On the other hand, electrical
pulses alone did not result in aberrant microglial distribu-
tion. In another control group injected with Tris-EDTA
solution (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) alone,

microglia showed normal distribution pattern in the cere-
bral wall and did not aggregate in the choroid plexus (Fig.
2A–D). These results strongly suggest that the presence
of exogenously sourced plasmid DNAs in embryonic
mouse ventricle caused abnormal microglial distribution.

Timing and sensitivity of microglial response to
intraventricularly injected plasmid DNAs

Next, we sought to determine the sensitivity of intramu-
ral microglia to intraventricular plasmid DNAs. To com-
pare the threshold amount of DNA required to provoke
microglial responses with the amounts of DNA used in
standard IUE protocols (0.5–1.0 �g per unilateral ventric-
ular space; Okamoto et al., 2013; Shinoda et al., 2018), we
injected solutions containing various amounts of pEFX2-
Lyn-mCherry (0.25, 0.13, 0.06, and 0.03 �g) into the
lateral ventricles of E12 embryos. After 2 d (E14), micro-
glial accumulation near the ventricle was still observed in
brains injected with 0.25, 0.13, or 0.06 �g plasmid DNA
(Fig. 3A,B; Table 3), with no increase of the total number
of pallial microglia (Fig. 3C). We also found dose-
dependent accumulation of microglia in the choroid
plexus (Fig. 3D). By contrast, in brains injected with 0.03
�g plasmid DNA, microglia were observed in a normal
pattern (widely distributed from the VZ to IZ) with no
accumulation in the choroid plexus. These results showed
that amounts of plasmid DNA much smaller than those
conventionally used for IUE can cause microglia to infil-
trate toward and in the ventricular lumen.

To determine how quickly microglia infiltrate into the
DNA-injected lumen, we analyzed E14 brains soon (4 h)
after administration of plasmid DNA solution (0.5 �g plas-
mid DNA), and found that the distribution of microglia was
already abnormal. Specifically, microglia had departed
from their original locations (the IZ, SVZ, and upper VZ)
toward the apical surface (Fig. 4A,B; Table 4), although
they had not yet accumulated in the choroid plexus (Fig.
4A,C). The total number of pallial microglia was compa-
rable between plasmid DNA-treated and control brains
(Fig. 4D). These results suggest that intramural microglia
can immediately sense plasmid DNAs injected into the
ventricle, leading to a change in their regional distribution.

Intraventricular administration of TLR9 antagonist
decreases microglial infiltration induced by plasmid
DNA injection

Macrophages, including microglia, express TLRs, pro-
totype pattern-recognition receptors (PRRs) that recog-
nize pathogen-associated molecular patterns (PAMPs)
from microorganisms and thus initiate innate immune re-
sponses after viral or bacterial infection (Akira and
Takeda, 2004; Takeuchi and Akira, 2010; O’Neill et al.,
2013; Vijay, 2018). Among these receptors, TLR9 recog-
nizes unmethylated CpG motifs, which are characteristic
of bacterial and viral DNAs (Krieg et al., 1995; Hemmi
et al., 2000; Bauer et al., 2001; Kumagai et al., 2008).
TLR9 is expressed in microglia in the postnatal and adult
brain (Doi et al., 2009; Butchi et al., 2011; Christensen
et al., 2014; Matsuda et al., 2015; Cho and Hsieh, 2016;
Scholtzova et al., 2017). Within cells, TLR9 primarily re-
sides in the intracellular compartment (i.e., late-endo-

Figure 2. Plasmid DNA injection into the ventricle, without
electrical pulses, results in abnormal microglial distribution.
A, Representative immunostaining for CX3CR1-GFP in the pal-
lium and choroid plexus of mouse brains subjected to puncture
with a glass capillary needle, injection of plasmid DNA (shown as
pDNA) into the lateral ventricle, electrical pulses, or injection of
Tris-EDTA solution (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) alone
without plasmid DNA. Yellow arrowheads indicate microglia ac-
cumulated near the apical surface of the cerebral wall or adhered
to the choroid plexus. Broken lines show the apical surface of the
pallium in the top and the choroid plexus in the bottom. Scale
bar, 100 �m. B, C, Graphs depicting the number of microglia
positioned in each 40 �m bin (B) and the total number of these
cells within 240 �m from the apical surface (C) in brains that were
subjected to each procedure. D, Density of microglia adhered to
the choroid plexus. For statistical analyses, n � 10 samples
obtained from five embryos (2 sections, each) were quantified.
One or two littermates per dam were subjected to a series of
tests. Data represent mean � SD. ���p � 0.001,
��p � 0.01, �p � 0.05, or n.s., not significant; Steel–Dwass test.
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some/lysosome) and binds to CpG motifs after
internalization of microbial DNA (Takeshita et al., 2001;
Ahmad-Nejad et al., 2002; Barton et al., 2006; Chockal-
ingam et al., 2009). Hence, we investigated whether plas-
mid DNA (usually produced in Escherichia coli) might
evoke innate immune responses in microglia via TLR9.

To determine whether embryonic microglia express
TLR9, we performed real-time quantitative PCR on
CX3CR1-GFP� microglia and CX3CR1-GFP- cells (most
of which are of the neural lineage) isolated by cell sorting
from the cortical wall of E14 CX3CR1-GFP mice.
CX3CR1� microglia expressed 529-fold higher level of
TLR9 compared with CX3CR1	 cells (p � 0.0286, Mann–
Whitney U test; Fig. 5A).

Next, to investigate whether microglial accumulation
caused by plasmid DNA administration was mediated by
TLR9, we coinjected ODN 2088, an inhibitory oligonucle-
otide that acts as a TLR9 antagonist (Stunz et al., 2002),
into the mouse ventricle along with plasmid DNA (0.5 �g;
Fig. 5B). ODN 2088 treatment partially restored the num-
ber of microglia localized in the SVZ/IZ and significantly
reduced their accumulation along the apical surface, al-
though it did not entirely rescue abnormal distribution [the
number of microglia in bin 1 was still higher than control
(nontreated) or only ODN 2088-treated brains; Fig. 5C,D;
Table 5]. In addition, microglial infiltration in the choroid
plexus was significantly reduced in ODN 2088-treated
brains but still greater than control groups (Fig. 5E). On

the other hand, the total number of microglia in the cortex
was comparable between brains injected with plasmid
DNA alone and those coinjected with plasmid DNA and
ODN 2088 (Fig. 5F). Together, these results suggest that
microglia expressing TLR9 may sense intraventricularly
injected plasmid DNA and subsequently accumulate near
the apical surface in the VZ and in the choroid plexus.
Furthermore, we confirmed that performing IUE with Lyn-
mCherry vector in the presence of ODN 2088 enabled us
to prepare fresh slice cultures in which CX3CR1-GFP�

microglia were almost normally distributed and neural-
lineage cells were labeled red (Fig. 5G; Movies 1 and 2).

Endotoxins, if contained in plasmid DNA solution,
trigger microglial aberrant accumulation

Although ODN 2088 treatment partially improved mi-
croglial distribution in the embryonic brain, microglia still
accumulated near the apical surface of the cerebral wall.
We postulated that the presence of bacterial endotoxin,
lipopolysaccharide (LPS), in plasmid preparations might
influence embryonic microglia. Because CX3CR1� micro-
glia derived from E14 cerebral wall expressed TLR4, a
receptor for LPS (Akira and Takeda, 2004), much higher
(290-fold higher level) than CX3CR1	 neural lineage cells
(p � 0.0286, Mann–Whitney U test; Fig. 6A), we wanted to
test whether LPS might elicit microglial activation in a
separate manner from TLR9 signaling, and also determine

Table 2. Statistics for Figure 2

Graph Data structure Type of test p
Fig. 2B, bin 1 Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9990;

Cont vs pDNA injection, p � 0.0011;
Cont vs Electrical shock only, p � 0.9973;
Cont vs TE buffer injection, p � 0.9871

Fig. 2B, bin 2 Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9781;
Cont vs pDNA injection, p � 0.0369;
Cont vs Electrical shock only, p � 0.9937;
Cont vs TE buffer injection, p � 0.9996

Fig. 2B, bin 3 Nonparametric Steel–Dwass Cont vs Puncture only, p � 1.0000;
Cont vs pDNA injection, p � 0.0055;
Cont vs Electrical shock only, p � 0.9976;
Cont vs TE buffer injection, p � 0.9976

Fig. 2B, bin 4 Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9992;
Cont vs pDNA injection, p � 0.0154;
Cont vs Electrical shock only, p � 0.9964;
Cont vs TE buffer injection, p � 0.9996

Fig. 2B, bin 5 Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9473;
Cont vs pDNA injection, p � 0.1056;
Cont vs Electrical shock only, p � 0.9976;
Cont vs TE buffer injection, p � 1.0000

Fig. 2B, bin 6 Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9998;
Cont vs pDNA injection, p � 0.3261;
Cont vs Electrical shock only, p � 0.9962;
Cont vs TE buffer injection, p � 1.0000

Fig. 2C Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9994;
Cont vs pDNA injection, p � 1.0000;
Cont vs Electrical shock only, p � 0.9969;
Cont vs TE buffer injection, p � 0.9981

Fig. 2D Nonparametric Steel–Dwass Cont vs Puncture only, p � 0.9989;
Cont vs pDNA injection, p � 0.0015;
Cont vs Electrical shock only, p � 0.9994;
Cont vs TE buffer injection, p � 0.9913
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how much LPS would be required to cause microglial
abnormal localization.

Our routine preparations of plasmid (QIAGEN Plasmid
Maxi Kit) for IUE yields relatively pure DNA with low levels
of endotoxin [9.3 endotoxin unit (EU)/�g plasmid DNA;
typically, 1 ng LPS corresponds to 1–10 EU, e.g., 0.47–
4.7 ng LPS is estimated to be contained per 0.5 �g
plasmid DNA]. When LPS alone diluted in saline was
injected into the lateral ventricles of E12 embryos, immu-
nohistochemistry after 2 d (at E14) demonstrated that, in
brains treated with 2.5 ng, 250 pg, and 25 pg LPS,
microglia were abnormally distributed (Fig. 6B–D;
Table 6), which was coupled with an increase of the total
number of pallial microglia in 2.5 ng LPS-treated cases

(Fig. 6E). On the other hand, microglia showed normal
localization in brains exposed to 2.5 pg LPS. This indi-
cates that much lower levels of LPS than that contained in

Movie 1. Live-imaging of microglia in plasmid DNA-treated
brains. Live imaging of microglia in a cortical slice derived from
a CX3CR1-GFP mouse brain transfected with Lyn-mCherry.
Time-lapse imaging covers a period of 10 h (1 image/10 min).
Green, CX3CR1-GFP; magenta, Lyn-mCherry. Scale bar, 100
�m. [View online]

Movie 2. Live-imaging of microglia in plasmid DNA and ODN
2088 coinjected brains. Live imaging of microglia in a cortical
slice derived from a CX3CR1-GFP mouse brain transfected Lyn-
mCherry with coadministration of ODN 2088. Time-lapse imag-
ing covers a period of 10 h (1 image/10 min). Green, CX3CR1-
GFP; magenta, Lyn-mCherry. Scale bar, 100 �m. [View online]
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Figure 3. Sensitivity of microglial response to intraventricu-
larly injected plasmid DNAs. A, CX3CR1-GFP immunostaining
showing microglial accumulation in brains injected with the indi-
cated amount of plasmid DNA (0.25, 0.13, 0.06, and 0.03 �g).
Yellow arrowheads indicate microglia accumulated near the api-
cal surface of the pallium and on the choroid plexus. Scale bar,
100 �m. B, C, Graphs depicting the number of microglia posi-
tioned in each 40 �m bin (B) and the total number of these cells
within 240 �m from the apical surface (C) in brains that were
injected with plasmid DNA. D, Density of microglia adhered to
the choroid plexus. For statistical analyses, n � 10 samples
obtained from five embryos (2 sections, each) were quantified.
One or two littermates per dam were subjected to a series of
tests. Data represent mean � SD. ���p � 0.001, ��p � 0.01, �p
� 0.05, or n.s., not significant; Steel–Dwass test.
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plasmid DNA solution to be used for IUE may substantially
trigger microglial response.

We tested plasmid DNAs purified using a commercially-
sourced endotoxin-free (�0.1 EU/�g plasmid DNA) pro-
tocol according to manufacturer’s instructions (QIAGEN
EndoFree Plasmid Maxi Kit). Similar to ones purified with
the QIAGEN Plasmid Maxi Kit, the endotoxin-free DNAs
(0.5, 0.25 �g) caused microglial aberrant distribution with-
out an increase of the total number (Fig. 7A–D; Table 7),
but endotoxin-free plasmid DNA did not evoke microglial
responses at 0.13 �g, which was 
0.03 �g, a dose for
DNAs obtained with the QIAGEN Plasmid Maxi Kit which
would have contained more endotoxin (Fig. 3). Of note,
improvements in the localization of pallial microglia were
much more clearly seen when ODN 2088 was coadmin-
istrated with endotoxin-free plasmid DNAs (0.5 �g) than
used with endotoxin-containing ones (Fig. 7E–H; Table 7;
Fig. 7-1), with a minor microglial infiltration in the choroid
plexus (Fig. 7I; Fig. 7-2).

Together, these results strongly suggest that although
endotoxin can also disturb microglial distribution, plasmid
DNA itself is the major inducer of abnormal distribution of
the mid-embryonic (E14) cortical microglia through their
activation of TLR9.

Discussion
Here, we showed that injection of plasmid DNA into the

lateral ventricle for IUE induced microglia to accumulate

near the luminal surface and aggregate in the choroid
plexus, even if electrical pulses were not applied. Notably,
this aberrant distribution was triggered through recogni-
tion of plasmid DNA by TLR9 expressed in microglia (Fig.
8). Consistent with this, coinjection of a TLR9 antagonist
into the ventricle along with plasmid DNA significantly
restored the normal, dispersed localization pattern of mi-
croglia.

Given that plasmid DNA injection changed the intramu-
ral distribution of microglia without changing the total
number of microglia per cerebral wall, it is most likely that
the observed disappearance of microglia from the IZ and
SVZ and their accumulation along the ventricular surface
were due to ventricle-directed migration. However, our
results do not exclude the possibility that peripheral mac-
rophages infiltrated the embryonic brain, as was very
recently shown to occur in response to IUE (Rosin and
Kurrasch, 2018). Peripheral macrophage infiltration might
underlie the microglial accumulation in the choroid plexus
observed in this study. Nevertheless, it is unclear how
deeply plasmid DNAs diffuse into the brain wall. We spec-
ulate that intra-VZ microglia primarily receive the DNAs
and then release certain factors (i.e., cytokines and/or
chemokines) that attract other microglia in the IZ or SVZ.
Indeed, Rosin and Kurrasch (2018) showed that inflam-
matory cytokines and chemokines [such as tumor necro-
sis factor alpha (TNF-�), interleukin-1� (IL-1�), IL-6,

Table 3. Statistics for Figure 3

Graph Data structure Type of test p
Fig. 3B, bin 1 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.0013;

Cont vs 0.13 �g, p � 0.0013;
Cont vs 0.06 �g, p � 0.0028;
Cont vs 0.03 �g, p � 0.8787

Fig. 3B, bin 2 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.0693;
Cont vs 0.13 �g, p � 0.0453;
Cont vs 0.06 �g, p � 0.9317;
Cont vs 0.03 �g, p � 0.9990

Fig. 3B, bin 3 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.1044;
Cont vs 0.13 �g, p � 0.2141;
Cont vs 0.06 �g, p � 0.8898;
Cont vs 0.03 �g, p � 0.8352

Fig. 3B, bin 4 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.0098;
Cont vs 0.13 �g, p � 0.0196;
Cont vs 0.06 �g, p � 0.3581;
Cont vs 0.03 �g, p � 0.9985

Fig. 3B, bin 5 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.8286;
Cont vs 0.13 �g, p � 0.7255;
Cont vs 0.06 �g, p � 0.8286;
Cont vs 0.03 �g, p � 1.0000

Fig. 3B, bin 6 Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.4412;
Cont vs 0.13 �g, p � 0.4412;
Cont vs 0.06 �g, p � 0.9667;
Cont vs 0.03 �g, p � 0.9999

Fig. 3C Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.6147;
Cont vs 0.13 �g, p � 0.9493;
Cont vs 0.06 �g, p � 0.7574;
Cont vs 0.03 �g, p � 0.9162

Fig. 3D Nonparametric Steel–Dwass Cont vs 0.25 �g, p � 0.0015;
Cont vs 0.13 �g, p � 0.0015;
Cont vs 0.06 �g, p � 0.0015;
Cont vs 0.03 �g, p � 0.1825
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Figure 4. Microglia immediately sense plasmid DNAs injected
into the ventricle. A, Representative immunostaining of CX3CR1-
GFP in E14 brain fixed soon (4 h) after administration of 0.5 �g
plasmid DNA. Yellow arrowheads show microglia accumulated
near the apical surface of the pallium and on the choroid plexus.
Scale bar, 100 �m. B, Graph showing the number of pallial micro-
glia positioned in each 40 �m bin in control and plasmid-injected
brains. C, Graph comparing density of microglia adhered to cho-
roid plexus. D, The total number of pallial microglia within 240 �m
from the apical surface. For statistical analyses, n � 10 samples
obtained from five embryos (2 sections, each) were quantified.
Two or three littermates per dam were subjected to a series of
tests. Data represent mean � SD. ���p � 0.001, ��p � 0.01, �p �
0.05, or n.s., not significant; Mann–Whitney U test.

Table 4 Statistics for Figure 4

Graph Data structure Type of test p
Fig. 4B Nonparametric Mann–Whitney U bin 1: 1.1 � 10	5

bin 2: 0.0074
bin 3: 0.1023
bin 4: 0.0058
bin 5: 0.0837
bin 6: 0.0275

Fig. 4C Nonparametric Mann–Whitney U 0.9869
Fig. 4D Nonparametric Mann–Whitney U 0.2789

Table 5 Statistics for Figure 5

Graph Data structure Type of test p
Fig. 5D, bin 1 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.8335;

Cont vs pDNA, p � 5.6 � 10	6;
pDNA vs. pDNA � ODN 2088, p � 2.4 � 10	4;
Cont vs pDNA � ODN 2088, p � 2.1 � 10	5

Fig. 5D, bin 2 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.6401;
Cont vs pDNA, p � 1.3 � 10	5;
pDNA vs. pDNA � ODN 2088, p � 0.0627;
Cont vs pDNA � ODN 2088, p � 0.0163

Fig. 5D, bin 3 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.9781;
Cont vs pDNA, p � 8.2 � 10	5;
pDNA vs. pDNA � ODN 2088, p � 4.7 � 10	4;
Cont vs pDNA � ODN 2088, p � 0.5691

Fig. 5D, bin 4 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.9746;
Cont vs pDNA, p � 0.0102;
pDNA vs. pDNA � ODN 2088, p � 0.1967;
Cont vs pDNA � ODN 2088, p � 0.3568

Fig. 5D, bin 5 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.9276;
Cont vs pDNA, p � 0.0610;
pDNA vs. pDNA � ODN 2088, p � 0.7661;
Cont vs pDNA � ODN 2088, p � 0.5053

Fig. 5D, bin 6 Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.9955;
Cont vs pDNA, p � 0.9158;
pDNA vs. pDNA � ODN 2088, p � 0.7539;
Cont vs pDNA � ODN 2088, p � 0.9840

Fig. 5E Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.8121;
Cont vs pDNA, p � 8.4 � 10	6;
pDNA vs. pDNA � ODN 2088, p � 0.0374;
Cont vs pDNA � ODN 2088, p � 8.4 � 10	6

Fig. 5F Nonparametric Steel–Dwass Cont vs ODN 2088, p � 0.9966;
Cont vs pDNA, p � 0.9982;
pDNA vs. pDNA � ODN 2088, p � 0.6688;
Cont vs pDNA � ODN 2088, p � 0.7716
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MIP-2, RANTES, and MCP-1] were upregulated in embry-
onic brains following IUE. Although it remains to be de-
termined whether embryonic microglia in the cortex
induce these cytokines and chemokines in response to
recognition of plasmid DNA, it is understood that TLR9-
expressing cells secrete proinflammatory cytokines (such
as TNF-�, IL-6, and IL-12) on uptake of CpG motif-
containing microbial DNA (Wagner, 2004; Rahmani and
Rezaei, 2016). Thus, upregulation of cytokines and
chemokines in IUE brains might be induced by TLR9-
mediated recognition of plasmid DNA.

TNF-� contributes to the proliferation, differentiation,
and survival of neural stem/progenitor cells in the brain

(Bernardino et al., 2008; Peng et al., 2008; Lan et al., 2012;
Kim et al., 2018). IL-6 promotes differentiation of cortical
precursor cells into oligodendrocytes and astrocytes
(Bonni et al., 1997; Gruol and Nelson, 1997; Rajan and
McKay 1998; Nakanishi et al., 2007; Shigemoto-Mogami
et al., 2014), activates adult astrocytes (Campbell et al.,
1993), and functions as a neurotrophic and differentiation
factor for neurons of the central and peripheral nervous
systems (Satoh et al., 1988; Thier et al., 1999; Nakafuku
et al., 1992; Murphy et al., 2000; Erta et al., 2012). There-
fore, although IUE itself has no effect on apoptosis in
neural lineage cells (Zhang et al., 2014; Rosin and Kurra-
sch, 2018), we cannot exclude the possibility that cyto-
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Figure 5. Intraventricular administration of TLR9 antagonist decreases microglial infiltration induced by plasmid DNA
injection. A, Relative expression of TLR9 (normalized against GAPDH) in FACS-isolated CX3CR1- and CX3CR1� cells derived from
the cerebral wall of E14 CX3CR1-GFP mice. Data represent mean � SD (n � 4 samples obtained from independent experiments; p �
0.0286, Mann–Whitney U test). B, Experimental design for ODN 2088 treatment. ODN 2088 was injected together with plasmid DNA
into the lateral ventricle of E12 CX3CR1-GFP mice, and after 2 d (E14) the embryonic brains were fixed. C, Immunofluorescence with
anti-GFP antibody, showing the distribution of microglia in the pallium and choroid plexus. Yellow arrowheads indicate microglia
aberrantly accumulated on the apical surface of the pallium or in the choroid plexus. Cyan arrowheads show microglia which were
almost homogenously distributed in the cerebral wall. Scale bar, 100 �m. D, E, Graphs indicate the number of CX3CR1-GFP� cells
in each 40 �m bin of the pallium (D) and density of microglia directly adhered to the choroid plexus (E), comparing control, only ODN
2088-treated, plasmid DNA-injected, and plasmid DNA � ODN 2088 coinjected brains. F, Graph showing the total number of pallial
microglia within 240 �m from the apical surface. G, Double-immunofluorescence for GFP (CX3CR1) and RFP (Lyn-mCherry) in the
cortex of IUE E14 brain treated with ODN 2088. Microglia exhibited a normal distribution pattern in the Lyn-mCherry expressing region
where IUE succeeded (Movies 1). Scale bar, 100 �m. For statistical analyses in D–F, n � 16 samples obtained from eight embryos
(2 sections, each) were quantified. Two or three littermates per dam were subjected to a series of tests. Data represent mean � SD.
���p � 0.001, ��p � 0.01, �p � 0.05, or n.s., not significant; Steel–Dwass test.
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Figure 6. Endotoxins trigger microglial
aberrant accumulation. A, Relative ex-
pression of TLR4 (normalized against
GAPDH) in FACS-isolated CX3CR1	 and
CX3CR1� cells derived from the cerebral
wall of E14 CX3CR1-GFP mice. Data rep-
resent mean � SD (n � 4 samples ob-
tained from independent experiments; p
� 0.0286, Mann–Whitney U test). B, Im-
munofluorescence with anti-GFP anti-
body, showing the distribution of
microglia in the pallium and choroid
plexus in brains injected with the indi-
cated amount of LPS (2.5 ng, 250 pg, 25
pg, and 2.5 pg). Yellow arrowheads indi-
cate microglia accumulated near the api-
cal surface of the pallium and on the
choroid plexus. Scale bar, 100 �m. C, D,
Graphs depicting the number of pallial
microglia positioned in each bin (C) and
density of microglia adhered to the cho-
roid plexus (D) in brains treated with var-
ious amounts of LPS. E, The total number
of pallial microglia within 240 �m from the
apical surface. For statistical analyses in
C–E, n � 10 samples obtained from five
embryos (2 sections, each) were quanti-
fied. One or Two littermates per dam were

subjected to a series of tests. Data represent mean � SD. ���p � 0.001, ��p � 0.01, �p � 0.05, or n.s., not significant; Steel–Dwass
test.

Table 6 Statistics for Figure 6

Graph Data structure Type of test p
Fig. 6C, bin 1 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.0012;

Cont vs 250 pg, p � 0.0021;
Cont vs 25 pg, p � 0.0055;
Cont vs 2.5 pg, p � 0.7868

Fig. 6C, bin 2 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.4164;
Cont vs 250 pg, p � 0.8867;
Cont vs 25 pg, p � 1.0000;
Cont vs 2.5 pg, p � 0.9924

Fig. 6C, bin 3 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.3094;
Cont vs 250 pg, p � 0.9889;
Cont vs 25 pg, p � 0.8691;
Cont vs 2.5 pg, p � 0.9998

Fig. 6C, bin 4 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.7372;
Cont vs 250 pg, p � 0.9700;
Cont vs 25 pg, p � 0.3816;
Cont vs 2.5 pg, p � 0.9811

Fig. 6C, bin 5 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 1.0000;
Cont vs 250 pg, p � 0.8700;
Cont vs 25 pg, p � 1.0000;
Cont vs 2.5 pg, p � 0.9986

Fig. 6C, bin 6 Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.9278;
Cont vs 250 pg, p � 0.6779;
Cont vs 25 pg, p � 0.3559;
Cont vs 2.5 pg, p � 0.9514

Fig. 6D Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.0015;
Cont vs 250 pg, p � 0.0015;
Cont vs 25 pg, p � 0.0026;
Cont vs 2.5 pg, p � 0.5054

Fig. 6E Nonparametric Steel–Dwass Cont vs 2.5 ng, p � 0.0190;
Cont vs 250 pg, p � 0.0845;
Cont vs 25 pg, p � 1.0000;
Cont vs 2.5 pg, p � 0.9994
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Figure 7. Plasmid DNA itself elicits mi-
croglial response via TLR9. A, Immuno-
fluorescence with anti-GFP antibody,
showing the distribution of microglia in the
pallium and choroid plexus in brains in-
jected with the indicated amount of
endotoxin-free plasmid DNA (0.5, 0.25,
and 0.13 �g). Yellow arrowheads show mi-
croglia accumulated near the apical sur-
face and on the choroid plexus. Scale bar,
100 �m. B, C, Graphs depicting the num-
ber of pallial microglia positioned in each
40 �m bin (B) and the total number of
these cells within 240 �m from the apical
surface (C). D, Density of microglia ad-
hered to the choroid plexus. For statistical
analyses in B–D, n � 10 samples obtained
from five embryos (2 sections, each) were
quantified. Two or three littermates per
dam were subjected to a series of tests.
Data represent mean � SD. ���p � 0.001,
��p � 0.01, �p � 0.05, or n.s., not signifi-
cant; Steel–Dwass test (Fig. 7-1). E, Exper-
imental design for administration of ODN
2088 together with endotoxin-free plasmid
DNA. F, CX3CR1-GFP immunostaining
showing microglial distribution in brains in-
jected with endotoxin-free plasmid DNA
and ODN 2088 coinjected brains. Yellow
arrowhead indicates microglia adhered to
the choroid plexus. Cyan arrowheads
show microglia which were almost homog-
enously distributed in the cerebral wall.
Scale bar, 100 �m. G, H, Graphs depicting
the number of pallial microglia positioned
in each bin (G) and the total number of
these cells within 240 �m from the apical
surface (H). I, Density of microglia adhered
to the choroid plexus. For statistical anal-

yses in G–I, n � 16 samples obtained from eight embryos (2 sections, each) were quantified. Two or three littermates per dam were
subjected to a series of tests. Data represent mean � SD. ���p � 0.001, ��p � 0.01, �p � 0.05, or n.s. not significant; Steel–Dwass
test (Fig. 7-2).

Figure 8. Schematic summary. Schematic illustration showing
the mechanism underlying the aberrant distribution of microglia in
the cerebral wall of IUE-performed brain. The presence of exoge-
nously derived plasmid DNAs induced microglia to accumulate
along the apical surface of the cerebral wall and aggregate in the
choroid plexus. This effect was independent of capillary needle
puncture of the brain wall, or application of electrical pulses. Such
microglial response is mediated by activation of TLR9, which is
expressed intracellularly in microglia.
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kines produced by microglia expressing TLR9 could
modify the physiologic environment in IUE brain.

We showed that exposure to as little as 25 pg of
intraventricular LPS (a smaller amount than that contained
in plasmid DNA solutions purified with the QIAGEN plas-
mid Maxi Kit) could attract microglia toward the apical
surface. Importantly, although ODN 2088 coadministra-
tion coupled with endotoxin-free plasmid DNAs restored
microglial aberrant distribution, it did not completely in-
hibit microglial aggregation in the choroid plexus, indicat-
ing that other molecular mechanisms might function for
sensing plasmid DNAs. Previous studies revealed that
double-stranded DNA complexed with cationic liposomes
can induce type I interferon independently of CpG motifs

in mouse embryonic fibroblasts and HEK293 cells, which
do not express TLR9 (Ishii et al., 2006; Shirota et al.,
2006). Recently, Takaoka et al. (2007) reported a cyto-
plasmic DNA sensor, DNA-dependent activator of IFN-
regulatory factors (DAI), that recognizes double-stranded
DNA and activates innate immune responses indepen-
dently of TLR9. Further studies are required to elucidate
whether a TLR9-independent immune response to plas-
mid DNA occurs in microglia.

In summary, intraventricular plasmid DNA injection, a
procedure essential for standard IUE techniques, can
induce abnormal microglial behaviors in developing cor-
tical walls. These abnormalities can be partly prevented
by application of the TLR9 antagonist ODN2088. Overall,

Table 7 Statistics for Figure 7

Graph Data structure Type of test p
Fig. 7B, bin 1 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 7.4 � 10	4;

Cont vs 0.25 �g, p � 0.0017;
Cont vs 0.13 �g, p � 0.9880;

Fig. 7B, bin 2 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.0018;
Cont vs 0.25 �g, p � 0.0557;
Cont vs 0.13 �g, p � 0.9880;

Fig. 7B, bin 3 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.0018;
Cont vs 0.25 �g, p � 0.5785;
Cont vs 0.13 �g, p � 1.0000;

Fig. 7B, bin 4 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.1122;
Cont vs 0.25 �g, p � 0.6280;
Cont vs 0.13 �g, p � 0.9880;

Fig. 7B, bin 5 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.5457;
Cont vs 0.25 �g, p � 0.3241;
Cont vs 0.13 �g, p � 0.8824;

Fig. 7B, bin 6 Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.9691;
Cont vs 0.25 �g, p � 0.9887;
Cont vs 0.13 �g, p � 0.9773;

Fig. 7C Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 0.9011;
Cont vs 0.25 �g, p � 0.9593;
Cont vs 0.13 �g, p � 0.9994;

Fig. 7D Nonparametric Steel–Dwass Cont vs 0.5 �g, p � 9.0 � 10	4;
Cont vs 0.25 �g, p � 9.0 � 10	4;
Cont vs 0.13 �g, p � 0.7593

Fig. 7G, bin 1 Nonparametric Steel–Dwass Cont vs pDNA, p � 3.0 � 10	6;
pDNA vs. pDNA � ODN 2088, p � 5.2 � 10	6;
Cont vs pDNA � ODN 2088, p � 0.0429

Fig. 7G, bin 2 Nonparametric Steel–Dwass Cont vs pDNA, p � 7.0 � 10	6;
pDNA vs. pDNA � ODN 2088, p � 1.1 � 10	5;
Cont vs pDNA � ODN 2088, p � 0.4461

Fig. 7G, bin 3 Nonparametric Steel–Dwass Cont vs pDNA, p � 6.9 � 10	5;
pDNA vs. pDNA � ODN 2088, p � 4.3 � 10	4;
Cont vs pDNA � ODN 2088, p � 0.2716

Fig. 7G, bin 4 Nonparametric Steel–Dwass Cont vs pDNA, p � 0.0047;
pDNA vs. pDNA � ODN 2088, p � 0.0900;
Cont vs pDNA � ODN 2088, p � 0.2895

Fig. 7G, bin 5 Nonparametric Steel–Dwass Cont vs pDNA, p � 0.5717;
pDNA vs. pDNA � ODN 2088, p � 0.3952;
Cont vs pDNA � ODN 2088, p � 0.8520

Fig. 7G, bin 6 Nonparametric Steel–Dwass Cont vs pDNA, p � 0.9469;
pDNA vs. pDNA � ODN 2088, p � 0.9472;
Cont vs pDNA � ODN 2088, p � 0.9965

Fig. 7H Nonparametric Steel–Dwass Cont vs pDNA, p � 0.6872;
pDNA vs. pDNA � ODN 2088, p � 0.9550;
Cont vs pDNA � ODN 2088, p � 0.7672

Fig. 7I Nonparametric Steel–Dwass Cont vs pDNA, p � 2.6 � 10	5;
pDNA vs. pDNA � ODN 2088, p � 0.5896;
Cont vs pDNA � ODN 2088, p � 9.2 � 10	5
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our findings emphasize that studies of embryonic micro-
glia following IUE should be interpreted with caution.
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