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Abstract

Fear of pain demonstrates significant prognostic value regarding the development of persistent musculoskeletal
pain and disability. lts assessment often relies on self-report measures of pain-related fear by a variety of
questionnaires. However, based either on “fear of movement/(re)injury/kinesiophobia,” “fear avoidance beliefs,”
or “pain anxiety,” pain-related fear constructs plausibly differ while it is unclear how specific the questionnaires are in
assessing these different constructs. Furthermore, the relationship of pain-related fear to other anxiety measures such
as state or trait anxiety remains ambiguous. Advances in neuroimaging such as machine learning on brain activity
patterns recorded by functional magnetic resonance imaging might help to dissect commonalities or differences
across pain-related fear constructs. We applied a pattern regression approach in 20 human patients with nonspecific
chronic low back pain to reveal predictive relationships between fear-related neural pattern information and different
pain-related fear questionnaires. More specifically, the applied multiple kernel learning approach allowed the gener-
ation of models to predict the questionnaire scores based on a hierarchical ranking of fear-related neural patterns
induced by viewing videos of activities potentially harmful for the back. We sought to find evidence for or against
overlapping pain-related fear constructs by comparing the questionnaire prediction models according to their
predictive abilities and associated neural contributors. By demonstrating evidence of nonoverlapping neural predictors
within fear-processing regions, the results underpin the diversity of pain-related fear constructs. This neuroscientific
approach might ultimately help to further understand and dissect psychological pain-related fear constructs.
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(s )

Pain-related fear, often assessed through self-reports such as questionnaires, has shown prognostic value
and clinical utility for a variety of musculoskeletal pain disorders. However, it remains difficult to determine a
common underlying construct of pain-related fear due to several proposed constructs among questionnaires.
The current study describes a novel neuroscientific approach using machine learning of neural patterns within
the fear circuit of chronic low back pain patients that has the potential to identify neural commonalities or
differences among the various constructs. Ultimately, this approach might afford a deeper understanding of the
suggested constructs and might be also applied to other domains where ambiguity exists between different
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Introduction

Self-report measures of emotional states are para-
mount for behavioral neuroscience by enabling the under-
standing of brain response patterns (Shrout et al., 2018).
However, the validity of self-reports is limited (Choi and
Pak, 2005), probably also because often overlapping psy-
chological constructs are assessed, illustrated by the fact
that various questionnaires attempt to assess related con-
structs. One example is pain-related fear (PRF), which is a
major explanatory variable of disability in patients with
persistent musculoskeletal pain (Crombez et al., 1999;
Vlaeyen and Linton, 2000; Vlaeyen et al., 2016). For the
assessment of PRF, various questionnaires exist based
on potentially different constructs such as fear of move-
ment/injury and reinjury/kinesiophobia, fear avoidance
beliefs, or pain anxiety. There is an open debate on what
their scores reflect on the fear—anxiety spectrum (Lund-
berg et al., 2011; Caneiro et al., 2017). Fear represents a
reaction to an imminent threat, preparing the individual for
“fight-flight-freeze,” whereas anxiety is described as be-
ing more diffuse (e.g., cognitions about a future threat;
LeDoux and Pine, 2016; Kreddig and Hasenbring, 2017).
While PRF questionnaires do not clearly distinguish be-
tween these emotions (Lundberg et al., 2011; Kreddig and
Hasenbring, 2017), brain research provides evidence for a
functional differentiation of fear and anxiety. Both emo-
tions are controlled by the fear circuit (Tovote et al., 2015);
however, subcortical regions (e.g., the amygdala) seem to
be more involved in fast and defensive fear reactions
(short defensive distance to threat) while cortical regions
(e.g., the prefrontal cortex) are more likely to be respon-
sible for complex cognitions of anxiety (large defensive
distance to threat; McNaughton and Corr, 2004; Qi et al.,
2018). Therefore, advances in neuroimaging enable ex-
ploring the subcortical/cortical contributions to PRF con-
structs by examining interrelations between self-reported
emotional states and brain response patterns. Specifi-
cally, machine learning techniques such as multivariate
pattern analysis (MVPA) applied to functional magnetic
resonance imaging (fMRI) data make it possible to directly
study the predictive relationship between a content-
selective cognitive or emotional state (expressed as a
label) and corresponding multivoxel fMRI activity patterns
(Haynes, 2015; Hebart and Baker, 2017). The label may
have discrete (classification) or continuous (regression)
values such as questionnaire scores (Formisano et al.,
2008). Back-straining activities (i.e., bending and lifting)
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are the most feared and pain-provoking movements
among people with low back pain (LBP), based on ratings
of perceived harmfulness or physiologic responses
(Leeuw et al., 2007a; Glombiewski et al., 2015; Stevens
et al., 2016; Caneiro et al., 2017). As such, bending and
lifting, either active or passive (e.g., through pictures) have
been frequently used to provoke PRF (Leeuw et al,
2007c; Trost et al., 2009; Barke et al., 2016; Caneiro et al.,
2017). Therefore, we provoked PRF by presenting video
clips of daily activities including bending and lifting (harm-
ful condition) and harmless activities such as walking
(harmless condition) in a sample of 20 patients with non-
specific chronic LBP. We applied a pattern regression
analysis in combination with multiple kernel learning
(MKL) to assess potential neural predictors of the various
PRF constructs based on the weighting of (1) harmful and
harmless conditions (condition weights) and (2) pattern
information within subcortical and cortical fear-proce-
ssing regions (region weights). We first contrasted the
different PRF questionnaires in terms of their model per-
formance, namely the ability of the model to predict the
questionnaire scores based on brain response patterns
across fear-processing regions. Second, we compared
the different prediction models according to the distribu-
tions of their condition and region weights to explore
potential neural commonalities or differences of related
PRF constructs. If the PRF questionnaires share overlap-
ping PRF constructs, then the region weights should be
similarly distributed across fear-processing regions. Con-
versely, if the contributing brain regions vary across the
prediction models, this would provide evidence for non-
overlapping PRF constructs across questionnaires. Ulti-
mately, this approach might help to further understand
and dissect the various PRF constructs in chronic LBP.

Materials and Methods

Patients

The study was approved by the Ethics Committee Zu-
rich (Switzerland), and all patients provided written in-
formed consent before participation. The study was
conducted in accordance with the Declaration of Helsinki.
We recruited a total of 20 patients (mean age, 39.35 years;
SD, 13.97 years; 7 females; Table 1) with nonspecific
chronic LBP, which is considered to be a complex bio-
psychosocial condition (Deyo and Weinstein, 2001; Maher
et al., 2017). Patients were recruited via local chiropractic
and physiotherapy centers as well as via on-line adver-
tisements. Inclusion criteria were low back pain of at least
6 months duration and age between 18 and 65 years.
Exclusion criteria were a history of psychiatric or neuro-
logic disorders and specific causes for the pain (e.g.,
infection, tumor, fracture, inflammatory disease) that were
ruled out by an experienced clinician.

Self-report measures of pain-related fear

PRF was assessed using several questionnaires:

(1) The Tampa Scale of Kinesiophobia (TSK) question-
naire (Kori et al., 1990; Vlaeyen et al., 1995) was used to
assess fear of movement/(re)injury and kinesiophobia.
The 17-item German version of the TSK (TSK-17) with
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Table 1: Patient characteristics and descriptive statistics of questionnaires

cLBP patients (N = 20, 7 females)

Minimum Maximum Mean SD
Age 21 62 39.35 13.97
TSK-17 26 52 36.90 5.59
TSK-13 16 43 27.60 5.96
TSK-11 13 38 23.20 5.71
TSK-11-SF 5 16 9.70 2.69
TSK-11-AA 5 20 11.90 3.35
PASS 13 68 38.15 16.57
PASS-C 1 15 8.70 4.19
PASS-E 3 21 9.85 4.77
PASS-F 2 20 9.45 5.28
PASS-P 0 15 7.35 4.21
FABQ 3 83 35.45 22.53
FABQ-PA 2 21 12.80 5.59
FABQ-W 0 40 15.50 12.12
S-Anxiety 36 53 43.70 4.78
T-Anxiety 31 59 43.00 6.05
PainDETECT current pain 0 8 3.77 2.49
PainDETECT strongest pain 2 10 6.15 2.16
PainDETECT average pain (previous 4 weeks) 1 7 3.75 1.88
Ratings harmful activities 0 10 5.44 2.38
Ratings harmless activities 0 5 1.28 1.32

cLBP = chronic low back pain. Tampa Scale of Kinesiophobia (TSK, SF = somatic focus, AA = activity avoidance); Pain Anxiety Symptoms Scale (PASS,
PASSc = cognitive anxiety; PASSe = escape/avoidance; PASSf = fear; PASSp = physiology); Fear Avoidance Beliefs Questionnaire (FABQ, FABQ-PA =
physical activity, FABQ-W = work); State-Trait Anxiety Inventory (S-Anxiety, T-Anxiety).

satisfactory internal consistency (Cronbach’s « = 0.76—
0.84) contains statements focusing on the fear of physical
activity rated on a 4-point Likert scale from 1 (strongly
disagree) to 4 (strongly agree; Rusu et al., 2014). Due to
additional versions of the original 17-item TSK question-
naire, we also calculated the questionnaire scores of the
13- and 11-item TSK versions (TSK-13, TSK-11). The 13-
and 11-item versions were previously validated by confir-
matory factor analysis and demonstrated acceptable lev-
els of internal consistency (Cronbach’s « = 0.80; Goubert
et al.,, 2004; Tkachuk and Harris, 2012). A two-factor
solution of the TSK-11 version provides the best fit in
terms of explaining variance across German, Dutch,
Swedish, and Canadian samples, and included the sub-
scales “activity-avoidance” (TSK-AA; the belief that that
activity may result in injury/reinjury or stronger pain) and
“somatic focus” (TSK-SF; the belief in underlying and
serious medical problems; Roelofs et al., 2007; Rusu
et al., 2014).

(2) The German version of the fear avoidance beliefs
questionnaire (FABQ; Waddell et al., 1993; Pfingsten
et al., 2000) consists of 16 back pain-specific items re-
lated to fear avoidance beliefs rated on a 7-point rating
scale (0, completely disagree; 6, completely agree). It
includes two distinct and established subscales related to
beliefs about about how work (FABQ-W) and physical
activity (FABQ-PA) affect LBP, with internal consistencies
of @ = 0.88 and « = 0.77, respectively (Waddell et al.,
1993).

(3) The short version of the pain anxiety symptoms
scale (PASS-20) assesses fear and anxiety responses
related to pain including cognitive, physiologic, and motor
response domains (McCracken and Dhingra, 2002). ltems
on the PASS-20 are measured on a 6-point Likert scale
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and relate to four different subscales, including cognitive
anxiety (PASS-C), fear (PASS-F), physiology (PASS-P),
and escape/avoidance (PASS-E; Roelofs et al., 2004b).
The German version of the PASS-20 has an internal con-
sistency of « = 0.90 (Kreddig et al., 2015).

Furthermore, patients were asked to fill out the painDE-
TECT questionnaire, which includes three 11-point nu-
meric rating scales, with 0 being “no pain” and 10 being
the “worst imaginable pain” to assess current pain, stron-
gest, and average pain intensity in the previous 4 weeks
(Freynhagen et al., 2006). Finally, to investigate potential
differences or shared variance between PRF and general
anxiety, we used the State-Trait Anxiety Inventory (STAI),
the most widely used self-report measure of anxiety,
which includes two subscales (Spielberger and Gorsuch,
1983; Julian, 2011): the State Anxiety Scale (S-Anxiety)
assesses current levels of anxiety, whereas the Trait Anx-
iety Scale (T-Anxiety) evaluates more stable aspects of
anxiety such as “anxiety proneness” (Julian, 2011). All
questionnaires were administered at the fMRI appoint-
ment before brain scanning. We tested the scores of the
different questionnaires for the assumption of normality of
the data using the Shapiro-Wilk test and visually using
Q-Q plots implemented in SPSS Statistics (version 23,
IBM; Ghasemi and Zahediasl, 2012).

Scanning protocol and design

Brain imaging was performed on a 3 T whole-body MRI
system (Achieva, Philips), equipped with a 32-element
receiving head coil and MultiTransmit parallel RF trans-
mission. Each imaging session started with a survey scan,
a B1 calibration scan (for MultiTransmit), and a SENSE
reference scan. High-resolution anatomic data were ob-
tained with a 3D T1-weighted (T1w) turbo field echo scan
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consisting of 145 slices in sagittal orientation with the
following parameters: field of view (FOV) = 230 X 226
mm?; slice thickness = 1.2 mm; acquisition matrix =
208 X 203 (resulting in a voxel resolution of 1.1 X 1.1 X
1.2 mm); TR = 6.8 ms; TE = 3.1 ms; flip angle = 9°;
number of signal averages = 1. Functional time series
were acquired using whole-brain gradient-echo echopla-
nar imaging sequences (365 volumes), consisting of 37
slices in the axial direction (anterior commissure—posterior
commissure angulation) with the following parameters:
FOV = 240 X 240 mm?; acquisition matrix = 96 X 96;
slice thickness = 2.8 mm (resulting in a voxel resolution of
2.5 X 2.5 X 2.8 mm); interleaved slice acquisition; no slice
gap; TR = 2100 ms; TE = 30 ms; SENSE factor = 2.5; flip
angle = 80°.

The PRF-provoking stimuli (harmful condition) con-
sisted of video clips with a duration of 4 s recorded from
a third-person perspective (Meier et al., 2016). The video
clips showed potentially harmful activities (back-straining
movements such as bending and lifting) selected from the
Photograph Series of Daily Activities (PHODA; Leeuw
et al., 2007a). The original PHODA was developed in close
collaboration with human movement scientists, physical
therapists, and psychologists, and is composed of a fear
hierarchy based on ratings of the perceived harmfulness
of daily activities in patients with chronic LBP. From the
40 potentially harmful activities included in the short elec-
tronic PHODA version (Leeuw et al., 2007a), we chose
three scenarios from the top six most harmful activities,
namely shoveling soil with a bent back, lifting a flowerpot
with slightly bent back, and vacuum cleaning under a
coffee table with a bent back. Furthermore, we created
video clips of three activities rated as less harmful, such
as walking up and down the stairs and walking on even
ground (harmless condition). Presentation software (Neu-
robehavioral Systems) was used to present the video clips
in a pseudorandomized order (no more than two identical
consecutive trials). The patients were asked to carefully
observe the video clips, which were displayed using MR-
compatible goggles (Resonance Technology). The three
harmful and harmless activities were each presented five
times (30 trials total). After the observation of each video
clip, the patients were asked to rate the perceived harm-
fulness of the activity on a visual analog scale (VAS)
anchored with the endpoints “not harmful at all” (0) and
“extremely harmful” (10). All ratings were performed using
an MR-compatible track ball (Current Designs). After the
VAS rating, a black screen with a green fixation cross
appeared (duration jittered between 6 and 8 s). We have
used this experimental protocol successfully for investi-
gations of neural correlates of PRF self-reports in previous
fMRI studies based on mass-univariate analyses (Meier
et al., 2016, 2017).

MR data organization and preprocessing

We used an existing fMRI dataset of previously re-
ported studies (Meier et al., 2016, 2017). The fMRI data
were organized according to the Brain Imaging Data
Structure (RRID:SCR_016124; http://bids.neuroimagin-
g.io/), which provides a consensus on how to organize
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data obtained in neuroimaging experiments. Preprocess-
ing was performed using FMRIPREP (version 1.0.0-rc2,
RRID:SCR_016216; https://github.com/poldracklab/fm-
riprep), a Nipype based tool (Gorgolewski et al., 2011),
which requires minimal user input and provides easily
interpretable and comprehensive error and output report-
ing. This processing pipeline includes state-of-the-art
software packages for each step of preprocessing (for a
detailed description of the different workflows, see
https://fmriprep.readthedocs.io/en/stable/workflows.
html). Each T1w volume was skullstripped using ants-
BrainExtraction.sh version 2.1.0 (using OASIS template).
The skullstripped T1w volume was coregistered to the
skullstripped ICBM 152 Nonlinear Asymmetrical MNI tem-
plate version 2009c¢ using nonlinear transformation imple-
mented in ANTs version 2.1.0 (Avants et al., 2008). Func-
tional data were slice time corrected using AFNI (Cox,
1996) and motion corrected using MCFLIRT version 5.0.9
(Jenkinson et al., 2002). This was followed by coregistra-
tion to the corresponding T1w volume using boundary-
based registration 9 df implemented in FreeSurfer version
6.0.0 (Greve and Fischl, 2009). Motion-correcting trans-
formations, T1w transformation, and MNI template warp
were applied in a single step using antsApplyTransforma-
tions version 2.1.0 with Lanczos interpolation. Three tis-
sue classes were extracted from T1w images using FSL
FAST version 5.0.9 (Zhang et al., 2001). Voxels from CSF
and white matter were used to create a mask used to
extract physiologic noise regressors using aCompCor
(Behzadi et al., 2007). The mask was eroded and limited to
subcortical regions to limit overlap with gray matter, and
six principal components were estimated. Independent
component analysis-based automatic removal of motion
artifacts (AROMA) was used to generate aggressive mo-
tion-related noise regressors. The AROMA classifier iden-
tifies motion components with high accuracy and robust-
ness and is superior to motion artifact detection using 24
motion parameters or spike regression (Pruim et al.,
2015). Finally, to preserve high spatial frequency while reduc-
ing noise, spatial smoothing with a full-width at half-maximum
4 mm Gaussian kernel was applied. To accelerate data prepro-
cessing, we performed parallel computing using the Docker
environment (https://www.docker.com/) and the GC3Pie
framework (https://github.com/uzh/gc3pie) on the Science-
Cloud supercomputing environment at the University of Zurich
(S3IT; https://www.s3it.uzh.ch/).

MVPA input data

The preprocessed data were subsequently passed onto
the Statistical Parametric Mapping software package
(SPM12, version 6906; RRID:SCR_007037; http://www.
filion.ucl.ac.uk/spm/) for model computation using a gen-
eral linear model (GLM). For each patient, a design matrix
was built with separate regressors for the harmful and
harmless activities, respectively (15 harmful and 15 harm-
less stimuli). The video clips were modeled as boxcar
functions (onset = onset of video clip; duration = 4 s) and
convolved with the standard canonical hemodynamic re-
sponse function, as implemented in SPM12. In addition,
the following nuisance regressors were implemented in
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the GLM model for each patient: (1) the six regressors
derived from the component-based physiologic noise
correction method (aCompCor) and (2) the motion-related
regressors generated by AROMA (see MR data organiza-
tion and preprocessing section). A high-pass filter with a
cutoff of 128 s was used to remove low-frequency noise.
Finally, for each patient, voxelwise B images for each
condition were computed and served as the input images
for the MVPA.

Multivariate pattern analysis

Compared with univariate analyses, MVPA can achieve
greater sensitivity and is able to detect subtle and spa-
tially distributed effects (Schrouff et al., 2013; Haynes,
2015). A pattern of activity can represent many more
different states than each voxel individually, which leads
to an information-based view compared with the acti-
vation-based view of univariate analyses (Hebart and
Baker, 2017). MVPA was performed using routines imple-
mented in PRoNTo version 2.0 (RRID:SCR_006908;
http://www.minl.cs.ucl.ac.uk/pronto/; Schrouff et al.,
2013). For the readout of multivariate neural information
that might serve as a potential score estimator of the
different PRF questionnaires, we applied a newly intro-
duced pattern regression approach based on supervised
machine learning and testing phases using MKL. In brief,
the objective in supervised pattern recognition regression
analysis is to learn a function from data that can accu-
rately predict the continuous values (labels; i.e., f(x) = y;
from a given dataset D = {x, y;}, i = 1...N, where Xx;
represents pairs of samples or vectors and y; represents
the different labels). Ultimately, the learned function from
the learning set is used to predict the labels from new and
unseen data (Schrouff et al., 2013). MKL allows account-
ing for brain anatomy (determined by a brain atlas; see
Feature selection) and different modalities (e.g., anatomic/
functional data or in the current approach: conditions)
during the model estimation by considering each brain
region and modality as separate kernels. This approach
allows determination of the contribution of each brain
region (region weights) and condition (condition weights)
to the final decision function of the model in a hierarchical
manner by simultaneously learning and combining the
different linear kernels that are based on support vector
machines (SVMs; Rakotomamonijy et al., 2008; Fernandes
et al., 2017; Schrouff et al., 2018). Compared with con-
ventional MVPA methods based on whole-brain voxel
weight maps, this procedure provides a straightforward ap-
proach to draw inferences on the region level without the
need for multiple comparison correction (Schrouff et al.,
2018). To account for possible differential contributions of
the harmful and harmless conditions to the decision func-
tion, we included the individual SPM B images of each
condition as separate modalities in the MKL model (condi-
tion weights). The kernels were mean centered and normal-
ized (to account for the different sizes of the involved brain
regions) using standard routines implemented in PRoNTo.
Subsequently, for each questionnaire, we trained a separate
MKL regression model with the respective labels (FABQ,
TSK-17-, TSK-13, TSK-11, PASS and all subscale scores,
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and state and trait anxiety). Furthermore, we trained MKL
regression models based on the harmfulness ratings col-
lected during the fMRI measurements (mean ratings of the
harmful condition and harmless condition, respectively). This
resulted in a total of 17 MKL models providing outputs for
model evaluation, including model performance, region, and
conditions weights. To reduce the risk of overfitting for each
model, we applied a nested cross-validation procedure us-
ing a “leave-one-subject-out” cross-validation scheme to
train the model including optimization of the model hyper-
parameter “C” (range, [0.1, 1, 10, 100, 1000]). Furthermore,
to generate a data-based null distribution of the perfor-
mance measures [r and normalized mean squared error
(nMSE); see Model evaluation and interpretation], each
model was recomputed 16,000 times with permuted labels
(permuted questionnaire score per subject) using parallel
computing. Multiple-comparison correction for the model
performance (r values and nMSE) was based on a false
discovery rate (FDR) of 5% (p(FDR) < 0.05). As a note, by
controlling the expected proportion of false-positives, FDR-
controlling procedures provide less stringent control of type
| errors compared with other procedures, such as the Bon-
ferroni correction, which control the probability of at least
one type | error. In addition, each model representing a
potential PRF construct [i.e., a model with a significant (FDR
corrected and uncorrected) performance] was trained and
tested through an additional cross-validation procedure us-
ing each predictive feature set (brain regions that contrib-
uted >10%; see Table 5) of the other models (between-
model cross-validation; e.g., training and testing of the
FABQ labels was repeated using the predictive feature sets
of the TSK-11, TSK-13, and T-Anxiety models). A failure of
predictive performance in the between-model cross-
validation would point toward a dissociation of brain regions
contributing to the different models and would therefore be
indicative of nonoverlapping PRF constructs.

Feature selection

To further reduce the risk of overfitting and based on a
priori knowledge of brain regions involved in fear processing,
we limited the feature space to bilateral fear-related brain
regions including the amygdala, hippocampus, thalamus,
anterior cingulate, insula, and medial prefrontal, and orbito-
frontal cortices (Meier et al., 2014; Tovote et al., 2015; Braem
et al., 2017). The respective brain regions were parcellated
according to the automated anatomic labeling (AAL; RRID:
SCR_003550; http://www.gin.cnrs.fr/en/tools/aal-aal2/; see
Table 5 for the different labels; Tzourio-Mazoyer et al., 2002)
atlas and projected on the ICBM 152 Nonlinear template
(see MR data organization and preprocessing) by means of
MATLAB (version R2017b)-based surface-volume registra-
tion tools (svreg) implemented in BrainSuite (version 17a;
RRID:SCR_006623; http://brainsuite.org/; Shattuck and
Leahy, 2002). BrainSuite was also used to generate surfaces
of the selected AAL regions for visualization.

Model evaluation and interpretation

Model performance was assessed by two metrics com-
monly used to assess the performance of regression
models (lvanescu et al., 2016; Fernandes et al., 2017), as
follows: Pearsons’s correlation coefficient (r) and the
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MSE. The correlation coefficient characterizes the linear
relationship between true and predicted labels; the MSE
is calculated as the average of the squared differences
between the true and predicted labels. A significant pos-
itive correlation between true and predicted labels would
indicate strong decoding performance. Unlike in conven-
tional correlation analysis, however, a negative correlation
would indicate poor performance. Furthermore, for each
model, we report the nMSE because the different ques-
tionnaires are based on different score ranges. To explore
possible differential contributions of fear-related brain re-
gions to the prediction models, we report the contribution
rank of each brain region (region weight) within each
condition (condition weight) provided by the MKL ap-
proach (see Table 5). Importantly, the selection of regions
by the MKL model might be influenced by small variations
in the dataset (because of the leave-one-subject-out
cross-validation) and might therefore lead to different
subsets of regions being selected across cross-validation
steps (folds). Providing a quantification of this variability,
the “expected ranking” (ER; see Table 5) characterizes the
stability of the region ranking across folds, as follows: The
closer the ER to the ranking of the selected fold, the more
consistent is the ranking of the respective brain region
across folds. On the other hand, if the ER is different from
the ranking, this means that the ranking might be variable
across folds.

Results

Ratings, questionnaire scores, and correlations

Importantly, the comparison of the ratings during fMRI
measurements demonstrated that the potentially harmful
activities were perceived as being significantly more
harmful compared with the harmless activities (paired t
test: T = 8.22; p < 0.001, two-tailed). Descriptive statis-
tics of the different questionnaires as well as the age and
sex of the patients are summarized in Table 1. Regarding
the questionnaire data, visual inspection (Q-Q plots) and
the Shapiro-Wilk test indicated the non-normality of the
data (p < 0.05) of several questionnaires (FABQ,
FABQ-W, TSK-11, FABQ-PA, and T-Anxiety); therefore,
the nonparametric Spearman’s rank correlation coeffi-
cient was used. Several significant positive correlations
between the different PRF questionnaires scores were
observed (p < 0.05; Table 2). Most of the TSK scales
significantly correlated with the PASSs (0.97 < r's > 0.46,
p < 0.05), whereas the FABQ work scale did not show
significant relationships with the TSK and PASSs (p >
0.05), except for the PASS-F (r = 0.49, p < 0.05). Fur-
thermore, only the S-Anxiety scale of the STAI scale
demonstrated significant correlations with some, but not
all, TSK scales (0.44 > r's < 0.63, p < 0.05). Finally, only
the PASS-F showed a positive and significant relationship
with the mean rating of the harmful condition (r = 0.44,
p < 0.05; Table 2).

Model performance

The MKL models with significant performance results
[p < 0.05, FDR-corrected (FDR) and uncorrected (uncorr)]
characterized by the Pearsons’s correlation coefficient (r)
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and the nMSE are depicted in Figure 1A-E (Table 3, for
review). The FABQ model demonstrated a significant de-
coding performance characterized by a positive correla-
tion between true and predicted labels (r = 0.61, p(FDR) =
0.012, nMSE = 4.25, p(uncorr) = 0.014). Interestingly, the
FABQ-W model showed strong predictive power (r =
0.74, p(FDR) = 0.004, nMSE = 1.81, p(FDR) = 0.003),
whereas the FABQ-PA scale was not decodable from
fear-related brain response patterns (r = 0.03, p(uncorr) =
0.162, nMSE = 1.68, p(uncorr) = 0.161). Among the TSK
scales, only the TSK-13 (r = 0.37, p(uncorr) = 0.034,
nMSE = 1.09, p(uncorr) = 0.033) and the TSK-11 (r =
0.63, p(FDR) = 0.009, nMSE = 0.90, p(uncorr) = 0.032)
models demonstrated a significant decoding perfor-
mance. The TSK-17 model (r = 0.19, p(uncorr) = 0.09,
nMSE = 1.10, p(uncorr) = 0.091) and the TSK-11 sub-
scale models did not show a significant decoding perfor-
mance (TSK11-SF: (r = —0.73, p(uncorr) = 0.832, nMSE
= 0.86, p(uncorr) = 0.773; TSK-11-AA: r = —0.63, p(un-
corr) = 0.908, nMSE = 0.88, p(uncorr) = 0.879). In addi-
tion, none of the PASSs were decodable from fear-related
brain response patterns (PASS: r = 0.18, p(uncorr) = 0.119,
NMSE = 4.63, p(uncorr) = 0.115/PASS-C: r = —0.44, p(un-
corr) = 0.515, nMSE = 1.64, p(uncorr) = 0.513/PASS-E: r =
—0.32, p(uncorr) = 0.339, nMSE = 1.38, p(uncorr) = 0.331,
PASS-F: r = —0.15, p(uncorr) = 0.259, nMSE = 1.70, p(un-
corr) = 0.251/PASS-P: r = —0.51, p(uncorr) = 0.518, nMSE
= 1.36, p(uncorr) = 0.512). Furthermore, the T-Anxiety
model demonstrated a moderate decoding performance (r
= 0.48, p(FDR) = 0.011, nMSE = 1.01, p(uncorr) = 0.015),
whereas the S-Anxiety model was not significant (r = —0.46,
p(uncorr) = 0.481, nMSE = 1.51, p(uncorr) = 0.475). The
ratings of perceived harmfulness during fMRI measurements
were not decodable from fear-related brain response pat-
terns (rating harmful: r = —0.01, p(uncorr) = 0.247, nMSE =
0.64, p(uncorr) = 0.242; Rating harmless: r = —0.72, p(un-
corr) = 0.481, nMSE = 0.38, p(uncorr) = 0.441). Finally, the
between-model cross-validation (see Multivariate pattern
analysis) did not result in significant performance results
(p(uncorr) values >0.11) between different feature sets (e.g.,
FABQ labels were not predictable using the TSK-11 feature
set; Table 4).

Condition and region weights

The condition and region weights of models with pre-
dictive performance (p < 0.05, FDR-corrected and uncor-
rected; see Model performance) are illustrated in Figure
1A-E and are described in detail in Table 5 (sections A-E).
The decoding performances of the FABQ models (FABQ
and FABQ-W) were driven by a major contribution of the
harmful condition (88% and 87%, respectively). Within
this condition, the left thalamus (rank 1), the right
amygdala (rank 2) and the left hippocampus (rank 3)
contributed >69% of the total region weights in the FABQ
model (Table 5, section A, Fig. 1A). Similarly, the right
amygdala (rank 1) and the left thalamus (rank 2) carried
the most predictive neural information with 79.62% of the
total region weights in the FABQ-W model (Table 5, sec-
tion B, Fig. 1B). In both FABQ models, the right amygdala
also demonstrated an association with the harmless con-
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Table 2: Spearman’s rank correlations between the different pain-related fear questionnaires
TSK- TSK- Rating Rating
TSK-17 TSK-13 TSK-11 11_SF 11_AA PASS PASS-C PASS-E PASS-F PASS-P FABQ FABQ-PA FABQ-W S-ANXIETY T-ANXIETY harmful harmless
TSK-17 Corr. 1.000 0.834:: 0.800++ 0.609++ 0.759++ 0.611:+ 0.503" 0.614++ 0.556" 0.647+: 0.337 0.494" 0.280 0.449" 0.299 0.133  0.289
coeff.
Sig. 0.000 0.000 0.004 0.000 0.004 0.024 0.004 0.011 0.002 0.146 0.027 0.231 0.047 0.200 0.577 0.216
TSK-13 Corr. 0.834:+ 1.000  0.960:: 0.754: 0.789:++ 0.686++ 0.559" 0.777:+ 0.666+: 0.558" 0.344  0.442: 0.339 0.451" 0.139 0.240 0.168
coeff.
Sig. 0.000 0.000 0.000 0.000 0.001 0.010 0.000 0.001 0.011 0.138 0.050 0.144 0.046 0.558 0.307  0.479
TSK-11 Corr. 0.800:+ 0.960++ 1.000 0.793:+ 0.779++ 0.685:++ 0.559° 0.766++ 0.643++ 0.565++ 0.360 0.404 0.378 0.470" 0.071 0.276  0.091
coeff.
Sig. 0.000 0.000 0.000 0.000 0.001 0.010 0.000 0.002 0.009 0.120 0.077 0.101 0.037 0.766 0.238 0.703
TSK-11_SF Corr. 0.609:+ 0.754++ 0.793++ 1.000 0.350 0.519" 0.462° 0.529° 0.502° 0.502° 0.351 0.315 0.411 0.629:x 0.034 0.044 0.178
coeff.
Sig. 0.004 0.000 0.000 0.131 0.019 0.040 0.016 0.024 0.024 0.130 0.176 0.071 0.003 0.886 0.854  0.452
TSK-11_AA Corr. 0.759:+ 0,789+ 0.779++ 0.350 1.000 0.477° 0.268  0.564:+ 0.486° 0.421 0.336 0.375 0.280 0.284 0.035 0.270 0.135
Coeff.
Sig. 0.000 0.000 0.000 0.131 0.034 0.254 0.010 0.030 0.065 0.147 0.103 0.231 0.224 0.883 0.250 0.570
PASS Corr. 0.611:+ 0.686++ 0.685++ 0.519" 0.477" 1.000 0.895:+ 0.899:+ 0.886++ 0.801:+ 0.415 0.535" 0.400 0.320 0.156 0.317 -0.118
coeff.
Sig. 0.004 0.001 0.001 0.019 0.034 0.000 0.000 0.000 0.000 0.069 0.015 0.081 0.168 0.510 0.173  0.620
PASS-C Corr. 0.503" 0.559" 0.559" 0.462° 0.268 0.895+#+ 1.000  0.737:+ 0.690++ 0.707:+ 0.329 0.424 0.344 0.227 0.118 0.214  -0.254
coeff.
Sig. 0.024 0.010 0.010 0.040 0.254 0.000 0.000 0.001 0.000 0.157 0.063 0.137 0.336 0.621 0.366  0.280
PASS-E Corr. 0.614:+ 0.777++ 0.766++ 0.529° 0.564:+ 0.899:++ 0.737++ 1.000 0.918++ 0.544" 0.472" 0.592:« 0.419 0.387 0.161 0.330 -0.062
coeff.
Sig. 0.004 0.000 0.000 0.016 0.010 0.000 0.000 0.000 0.013 0.036 0.006 0.066 0.092 0.499 0.156  0.795
PASS-F Corr. 0.556" 0.666++ 0.643:+ 0.502" 0.486" 0.886+: 0.690:+ 0.918+: 1.000 0.541" 0.577+: 0.736++ 0.486" 0.291 0.188 0.445" 0.085
coeff.
Sig. 0.011 0.001 0.002 0.024 0.030 0.000 0.001 0.000 0.014 0.008 0.000 0.030 0.213 0.428 0.049 0.720
PASS-P Corr. 0.647:+ 0.558" 0.565++ 0.502° 0.421 0.801:: 0.707++ 0.544° 0.541° 1.000 0.261 0.304 0.328 0.289 0.112 0.118  -0.023
coeff.
Sig. 0.002 0.011 0.009 0.024 0.065 0.000 0.000 0.013 0.014 0.267 0.193 0.157 0.216 0.639 0.619 0.925
FABQ Corr. 0.337 0.344 0.360 0.351 0.336 0.415 0.329 0.472° 0.577:+ 0.261 1.000 0.781+x 0.951+x 0.314 -0.032 0.195  0.009
coeff.
Sig. 0.146 0.138 0.120 0.130 0.147 0.069 0.157 0.036 0.008 0.267 0.000 0.000 0.178 0.894 0.410  0.970
FABQ-PA Corr. 0.494° 0.442+ 0.404 0.315 0.375 0.535" 0.424  0.592:+ 0.736++ 0.304  0.781:: 1.000 0.638++ 0.140 0.009 0.377 0.178
coeff.
Sig. 0.027 0.050 0.077 0.176 0.103 0.015 0.063 0.006 0.000 0.193 0.000 0.002  0.557 0.969 0.101  0.452
FABQ-W  Corr. 0.280 0.339 0.378 0.411 0.280 0.400 0.344 0.419 0.486° 0.328 0.951:* 0.638++ 1.000 0.291 -0.069 0.185  -0.040
coeff.
Sig. 0.231 0.144 0.101 0.071 0.231 0.081 0.137 0.066 0.030 0.157 0.000 0.002 0.213 0.772 0.435 0.867
S-ANXIETY Corr. 0.449" 0.451" 0.470" 0.629++ 0.284 0.320 0.227 0.387 0.291 0.289 0.314 0.140 0.291 1.000 0.128 -0.198 0.090
coeff.
Sig. 0.047 0.046 0.037 0.003 0.224 0.168 0.336 0.092 0.213 0.216 0.178 0.557 0.213 0.592 0.402 0.707
T-ANXIETY Corr. 0299 0.139 0.071 0.034 0.035 0.156 0.118 0.161 0.188 0.112 -0.082 0.009 -0.069 0.128 1.000 0.185 0.378
coeff.
Sig. 0.200 0.558 0.766 0.886 0.883 0.510 0.621 0.499 0.428 0.639 0.894 0.969 0.772 0.592 0.435 0.100
Rating Corr. 0.133 0.240 0.276 0.044 0270 0.317 0214 0.330 0.445° 0.118 0.195 0.377 0.185 -0.198 0.185 1.000 0.289
harmful coeff.
Sig. 0.577 0.307 0.238 0.854 0.250 0.173 0.366 0.156 0.049 0.619 0.410 0.101 0.435 0.402 0.435 0.217
Rating Corr. 0.289 0.168 0.091 0.178 0.135 -0.118 -0.254 -0.062 0.085 -0.023 0.009 0.178 -0.040  0.090 0.378 0.289 1.000
harmless coeff.
Sig. 0.216 0.479 0.703 0.452 0570 0.620 0.280 0.795 0.720 0.925 0.970 0.452 0.867 0.707 0.100 0.217

Corr. coeff., Correlation coefficient; Sig., significance.
*xp < 0.005 (bold), *p < 0.05 (bold). Bold indicates significance.

dition, although it was of minor relevance (~11%). In
comparison, the TSK models demonstrated a moderate
contribution of the harmful condition (TSK-13, 60%; TSK-
11, 66%). Both predictive model performances of the TSK
were driven by a major contribution of the right lateral
orbitofrontal cortex (IOFC; TSK-13, 52.7%; TSK-11,
60.49%; Table 5, sections C and D, Fig. 1C,D). Further-
more, the left medial orbitofrontal cortex (MOFC) and the
right hippocampus carried predictive information within
the harmless condition in both TSK models (TSK-13: left
gyrus rectus, 19.51%; right hippocampus, 14.03%; TSK-
11: left gyrus rectus, 21.29%; right hippocampus,
10.41%). With almost equal contributions of the harmful

November/December 2018, 5(6) e0107-18.2018

(52%) and harmless conditions (48%), the prediction of
the T-Anxiety scores was mainly driven by neural contri-
butions of the left medial prefrontal cortex (mPFC) and
mOFC (accounting for 44% of the total region weights in
the harmful condition) and the left thalamus (together with
the mOFC accounting for 44% of the total region weights
in the harmless condition; Table 5, section E, Fig. 1E).

Discussion

Evidence from cross-sectional and longitudinal behav-
ioral studies demonstrates a strong association between
PRF and disability in chronic pain (Leeuw et al., 2007b;
Wertli et al., 2014b; Esteve et al., 2017). However, the
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Figure 1. The model performance (r, MSE) characterizes the strength of the relationship between true and predicted labels. Condition
and region weights show the predictive contribution of the two different conditions (harmful, harmless) and fear-related brain regions
(parcellated according to the AAL atlas; L, left; R, right) to the final decision function of each MKL model (questionnaires A-E with
model performance; p < 0.05, FDR corrected and uncorrected). Brain regions (feature set) were identified as follows: thalamus (1);
hippocampus (2); amygdala (3); insula (4); mOFC: rectus (5), Frontal_Sup_Orb (6), Frontal_Med_Orb (7); IOFC: Frontal_Mid_Orb (8),
Frontal_Inf_Orb (9), mPFC: Frontal_Sup_Medial (10); anterior cingulate cortex: Cingulum_Ant (11). < indicates the not visible

contralateral homolog.

different PRF constructs such as “fear of movement/
(re)injury/kinesiophobia,” “fear avoidance beliefs,” or
“pain anxiety” are often used interchangeably in the liter-
ature (Lundberg et al., 2011), and it is unclear whether
they share a common PRF construct reflected by similar
neural sources. The subcortical/cortical neural basis of
fear and anxiety that controls cognition and regulates
appropriate behavior dependent on threat characteristics
is well described (Gray and MacNaughton, 2000; LeDoux,
2000; McNaughton and Corr, 2004; Panksepp, 2011;

November/December 2018, 5(6) e0107-18.2018

Shackman et al., 2011; Qi et al., 2018). Although both
emotions are linked to similar neuromodulatory systems
of the fear circuit (Tovote et al., 2015), anxiety is less well
understood and more complex than fear. Current re-
search suggests a functional differentiation characterized
by subcortical regions processing fast fear responses to
an imminent threat (defensive responses) and cortical
systems processing complex cognitions related to fear
and anxiety where the threat is distal in space or time
(LeDoux and Pine, 2016; Qi et al., 2018).
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Table 3: Model performances of the different MKL models
(characterized by r and nMSE)

MKL model r p value nMSE p value
FABQ total 0.61 0.012x 4.25  0.014
FABQ-W 0.74 0.004+ 1.81 0.003:¢
FABQ-PA 0.03 0.162 1.68 0.161
TSK-17 0.19 0.098 1.10 0.091
TSK-13 0.37 0.034 1.09 0.033
TSK-11 0.63 0.009:+ 0.90 0.032
TSK-11-SF -0.73 0.832 0.86 0.773
TSK-11-AA —0.63 0.908 0.88 0.879
PASS 0.18 0.119 4.63 0.115
PASS-C -0.44 0.515 1.64 0.513
PASS-E -0.32 0.339 1.38 0.331
PASS-F -0.15 0.259 1.70 0.251
PASS-P -0.51 0.518 1.36 0.512
T-Anxiety 0.48 0.011x  1.01 0.015
S-Anxiety —0.46 0.481 1.51 0.475
Ratings harmful activities —-0.01 0.247 0.64 0.242
Ratings harmless activities —0.72 0.481 0.38 0.441

Bold: p < 0.05, # p < 0.05, corrected for multiple comparisons (FDR, 5%).

The current MVPA approach using MKL demonstrated
the feasibility to neuronally dissect the proposed con-
structs of PRF self-reports based on their subcortical/
cortical predictors during PRF-related brain activity. The
results revealed that while the variability across individu-
als of some questionnaires, specifically the FABQ and
FABQ-W, TSK-13, TSK-11, and T-Anxiety scales, was
predictable from response patterns in fear-related, disso-
ciable neural sources on subcortical and cortical levels,
this was not the case for the FABQ-PA, the TSK-11
subscales (TSK-11-AA and TSK-SF), the PASSs, and the
S-Anxiety scale. Furthermore, the on-line ratings of per-
ceived harmfulness were not decodable from fear-related
brain response patterns.

FABQ and TSK

The FABQ and FABQ-W scales demonstrated the best
model performances among the investigated PRF ques-
tionnaires, which were characterized by a strong contri-
bution of neural information in the harmful condition
(condition weights, 88% and 87%, respectively). Interest-
ingly, the FABQ-PA scale did not show a predictive asso-
ciation with fear-related brain response patterns. The
better model performance of the FABQ-W based on fear-
related brain activity patterns is in line with the emerging
evidence that the FABQ-W is a better predictor of treat-
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ment outcome in chronic LBP compared with the FABQ-
PA, although this might be dependent on the patient
population (Waddell et al., 1993; George et al., 2005,
2008; Wertli et al., 2014a). In support of this, the FABQ-W
scale qualified for a clinical prediction rule regarding im-
provement after spinal manipulation, whereas the
FABQ-PA scale did not (Flynn et al., 2002; Dougherty
et al., 2014).

With respect to the region weights, the FABQ models
were mainly driven by subcortical neural contributions
involving the thalamus, hippocampus, and the amygdala,
while frontal brain regions played a minor role. The thal-
amus and, particularly, its midline structures have been
considered to be a nonspecific arousing system (van der
Werf et al., 2002). However, it has been shown recently
that parts of dorsal midline thalamic structures are nec-
essary for fear memory processing by directly targeting
the hippocampus, which plays an important role for
context-dependent emotional memory (Penzo et al.,
2015; Lara-Vasquez et al., 2016; Zheng et al., 2017).
Furthermore, the amygdala has long been considered a
“fear center” (Darwin, 1873; Panksepp, 1998). However,
the heterogeneous structure consisting of several nuclei is
not essential for the experience of fear, which has been
demonstrated in patients with amygdala lesions (Ander-
son and Phelps, 2002; Feinstein et al., 2013; LeDoux and
Pine, 2016). Instead, the amygdala has been shown to be
more strongly implicated in behavioral and physiologic
responses to threats (i.e., defensive processes); its
relation to complex cognitions like fear and anxiety is
controversial (Panksepp, 2011; LeDoux and Pine, 2016;
Fanselow and Pennington, 2017). A recent opinion article
(LeDoux and Hofmann, 2018) suggested that subjective
feelings of fear and anxiety do not initially arise from
subcortical activity of the fear circuit centered around the
amygdala. Thus, amygdala activity and mediated physio-
logic responses of fear and anxiety might be, at its best,
only a correlate of subjective feelings of fear and anxiety
(LeDoux and Hofmann, 2018). Nevertheless, the results
presented here indicate a strong predictive association
between subjective reports of PRF, assessed by the
FABQ scales, and amygdala activity patterns.

Among the TSK scales, the TSK-13 and the TSK-11
demonstrated a predictive association with fear-related
brain response patterns, albeit with less contribution of
the harmful condition compared with the FABQ scales
(TSK-13, 60%; TSK-11, 66%). The TSK-11 version

Table 4 : Model performances of the between-model cross-validation (characterized by r and nMSE)

Feature set FABQ total labels FABQ-W labels

FABQ total r =0.72, p = 0.001%,
nMSE = 3.29, p = 0.001*
FABQ-W r = 0.8, p = 0.001%,
nMSE = 1.63, p = 0.001*
TSK-11 r=017,p = 0.12, r= —0.06, p = 0.26,
nMSE = 6.27, p = 0.13 nMSE = 4.08, p = 0.26
TSK-13 r=0.04,p = 0.18, r=—0.06,p = 0.31,
nMSE = 7.16, p = 0.32 nMSE = 4.08, p = 0.27
T-Anxiety r=0.23,p =011, r=02,p =021,

nMSE = 6.01, p = 0.11 nMSE = 3.43, p = 0.25

TSK-11 labels
r=-0.42,p = 0.68
nMSE = 1.30, p = 0.69
r = —0.40, p = 0.59,
nMSE = 1.26, p = 0.47

r = 0.83, p = 0.001:
nMSE = 0.57, p = 0.001x*
r=-0.25p = 0.41,
nMSE = 1.35, p = 0.81

TSK-13 labels
r=—0.65p = 091
nMSE = 1.48, p = 0.86
r= —0.06,p = 0.25
nMSE = 4.08, p = 0.24

r = 0.83, p = 0.001:
nMSE = 0.57, p = 0.002x

T-Anxiety labels
r=-032,p =042
nMSE = 1.56, p = 0.66
r=-032,p =042
nMSE = 1.56, p = 0.66
r=-039,p =057
nMSE = 1.74, p = 0.96
r=-037,p =047
nMSE = 1.78, p = 0.98
r=-0.24,p =041,

nMSE = 1.45, p = 0.83

Bold: p < 0.05, # p < 0.05, corrected for multiple comparisons (FDR of 5%).
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Table 5 : Condition and region weights showing the contribution of the two different conditions and fear-related brain regions
to the final decision function of each MKL model (questionnaires A-E with model performance, p < 0.05, FDR corrected and
uncorrected; see Fig. 1) in hierarchical order

Harmful Harmless

activities Condition weight activities Condition weight

Brain region Region Region Brain region Region Region
Rank AAL label size (vox) weight (%) ER AAL label size (vox) weight (%) ER
A. FABQ total®
1 Thalamus_Lx* 519 27.25 1.8 Amygdala_R: 96 11.06 0.95
2 Amygdala_Rs 96 24.69 1.6 Hippocampus_R 424 0.61 14.70
3 Hippocampus_L:* 400 17.29 2.6 Amygdala_L 97 0.43 18.10
4 Frontal_Med_Orb_R 413 9.56 4.0 Frontal_Inf_Orb_L 714 0.19 5.15
5 Frontal_Inf_Orb_R 744 6.39 6.1 Frontal_Sup_Orb_L 451 0.00 2.35
6 Frontal_Med_Orb_L 324 217 7.5 Frontal_Sup_Orb_R 469 0.00 3.30
7 Hippocampus_R 424 0.31 8.2 Frontal_Mid_Orb_L 408 0.00 4.25
8 Frontal_Sup_Orb_L 451 0.00 6.1 Frontal_Mid_Orb_R 444 0.00 5.20
9 Frontal_Sup_Orb_R 469 0.00 7.0 Frontal_Inf_Orb_R 744 0.00 6.90
10 Frontal_Mid_Orb_L 408 0.00 8.0 Frontal_Sup_Medial_L 1417 0.00 7.85
11 Frontal_Mid_Orb_R 444 0.00 8.9 Frontal_Sup_Medial_R 1006 0.00 8.80
12 Frontal_Inf_Orb_L 714 0.00 9.9 Frontal_Med_Orb_L 324 0.00 9.75
13 Frontal_Sup_Medial_L 1417 0.00 11.1 Frontal_Med_Orb_R 413 0.00 10.70
14 Frontal_Sup_Medial_R 1006 0.00 12.1 Rectus_L 381 0.00 11.65
15 Rectus_L 381 0.00 13.3 Rectus_R 352 0.00 12.60
16 Rectus_R 352 0.00 14.3 Insula_L 887 0.00 13.55
17 Insula_L 887 0.00 15.2 Insula_R 821 0.00 14.50
18 Insula_R 821 0.00 16.2 Cingulum_Ant_L 599 0.00 15.45
19 Cingulum_Ant_L 599 0.00 171 Cingulum_Ant_R 639 0.00 16.40
20 Cingulum_Ant_R 639 0.00 18.1 Hippocampus_L 400 0.00 17.35
21 Amygdala_L 97 0.00 19.9 Thalamus_L 519 0.00 19.95
22 Thalamus_R 478 0.00 20.9 Thalamus_R 478 0.00 20.90
B. FABQ-WP
1 Amygdala_Rs 96 40.20 1.40 Amygdala_Rx* 96 11.82 1.05
2 Thalamus_Lx 519 39.42 1.45 Hippocampus_R 424 0.64 16.21
3 Frontal_Med_Orb_L 324 417 4.90 Frontal_Med_Orb_L 324 0.22 7.57
4 Frontal_Med_Orb_R 413 242 7.25 Cingulum_Ant_R 639 0.16 14.52
5 Hippocampus_L 400 0.52 16.55 Frontal_Sup_Orb_L 451 0.00 2.36
6 Cingulum_Ant_R 639 0.24 16.50 Frontal_Sup_Orb_R 469 0.00 3.31
7 Thalamus_R 478 0.13 20.00 Frontal_Mid_Orb_L 408 0.00 4.26
8 Frontal_Sup_Orb_L 451 0.00 4.30 Frontal_Mid_Orb_R 444 0.00 5.21
9 Frontal_Sup_Orb_R 469 0.00 5.25 Frontal_Inf_Orb_L 714 0.00 6.15
10 Frontal_Mid_Orb_L 408 0.00 6.20 Frontal_Inf_Orb_R 744 0.00 710
11 Frontal_Mid_Orb_R 444 0.00 7.15 Frontal_Sup_Medial_L 1417 0.00 8.05
12 Frontal_Inf_Orb_L 714 0.00 8.10 Frontal_Sup_Medial_R 1006 0.00 9.00
13 Frontal_Inf_Orb_R 744 0.00 9.05 Frontal_Med_Orb_R 413 0.00 10.63
14 Frontal_Sup_Medial_L 1417 0.00 10.00 Rectus_L 381 0.00 11.57
15 Frontal_Sup_Medial_R 1006 0.00 10.95 Rectus_R 352 0.00 12.52
16 Rectus_L 381 0.00 12.55 Insula_L 887 0.00 13.47
17 Rectus_R 352 0.00 13.50 Insula_R 821 0.00 14.42
18 Insula_L 887 0.00 14.45 Cingulum_Ant_L 599 0.00 15.36
19 Insula_R 821 0.00 15.40 Hippocampus_L 400 0.00 17.15
20 Cingulum_Ant_L 599 0.00 16.35 Amygdala_L 97 0.00 18.94
21 Hippocampus_R 424 0.00 19.05 Thalamus_L 519 0.00 19.89
22 Amygdala_L 97 0.00 20.00 Thalamus_R 478 0.00 20.84
C. TSK-13°
1 Frontal_Inf_Orb_Rx* 744 52.70 1.55 Rectus_Lx 381 19.51 2.00
2 Rectus_L 381 2.37 6.00 Hippocampus_Rs 424 14.03 1.80
3 Insula_L 887 1.33 8.90 Amygdala_L 97 2.34 16.40
4 Hippocampus_L 400 0.67 14.05 Cingulum_Ant_L 599 1.09 13.95
5 Insula_R 821 0.62 11.55 Rectus_R 352 0.59 11.65
6 Amygdala_R 96 0.33 17.10 Frontal_Sup_Orb_R 469 0.44 4.50
7 Frontal_Mid_Orb_R 444 0.12 5.60 Hippocampus_L 400 0.41 15.85
8 Frontal_Med_Orb_R 413 0.12 10.35 Thalamus_R 478 0.14 19.55
9 Hippocampus_R 424 0.12 16.50 Frontal_Med_Orb_R 413 0.12 11.25
10 Frontal_Med_Orb_L 324 0.12 9.60 Amygdala_R 96 0.12 18.40
11 Frontal_Inf_Orb_L 714 0.12 6.95 Frontal_Inf_Orb_L 714 0.12 6.95
12 Thalamus_R 478 0.11 20.25 Frontal_Inf_Orb_R 744 0.12 7.90
13 Frontal_Sup_Medial_L 1417 0.11 8.05 Frontal_Sup_Orb_L 451 0.12 3.50
14 Rectus_R 352 0.11 12.15 Frontal_Sup_Medial_L 1417 0.12 8.90
15 Amygdala_L 97 0.11 17.90 Cingulum_Ant_R 639 0.12 16.10
16 Frontal_Sup_Medial_R 1006 0.11 9.20 Frontal_Mid_Orb_R 444 0.12 6.30
17 Frontal_Mid_Orb_L 408 0.11 5.650 Thalamus_L 519 0.11 19.75

(Continued)
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Table 5 Continued

Harmful Harmless

activities Condition weight activities Condition weight

Brain region Region Region Brain region Region Region
Rank AAL label size (vox) weight (%) ER AAL label size (vox) weight (%) ER
18 Thalamus_L 519 0.11 19.80 Frontal_Med_Orb_L 324 0.11 11.00
19 Cingulum_Ant_R 639 0.11 15.50 Insula_R 821 0.11 14.65
20 Frontal_Sup_Orb_R 469 0.11 4.90 Insula_L 887 0.11 13.80
21 Cingulum_Ant_L 599 0.11 14.70 Frontal_Sup_Medial_R 1006 0.1 10.30
22 Frontal_Sup_Orb_L 451 0.00 4.10 Frontal_Mid_Orb_L 408 0.11 5.85
D. TSK-11¢
1 Frontal_Inf_Orb_R: 744 60.49 1.05 Rectus_Lx 381 21.29 1.60
2 Insula_L 887 0.90 11.15 Hippocampus_Rs# 424 10.41 1.90
3 Amygdala_R 96 0.65 17.20 Thalamus_L 97 0.41 17.60
4 Hippocampus_L 400 0.61 14.95 Amygdala_L 599 0.12 17.25
5 Amygdala_L 97 0.56 17.00 Cingulum_Ant_L 352 0.12 14.65
6 Insula_R 821 0.46 12.55 Thalamus_R 469 0.11 20.00
7 Frontal_Med_Orb_R 413 0.34 9.35 Frontal_Mid_Orb_R 400 0.11 5.75
8 Frontal_Mid_Orb_R 444 0.12 4.90 Cingulum_Ant_R 478 0.11 15.70
9 Frontal_Med_Orb_L 324 0.12 8.65 Frontal_Sup_Medial_L 413 0.11 8.55
10 Hippocampus_R 424 0.11 16.55 Amygdala_R 96 0.11 18.50
11 Rectus_L 381 0.11 10.70 Hippocampus_L 714 0.11 16.75
12 Frontal_Inf_Orb_L 714 0.11 6.30 Frontal_Med_Orb_R 744 0.11 11.45
13 Thalamus_R 478 0.11 20.40 Frontal_Inf_Orb_L 451 0.11 7.00
14 Rectus_R 352 0.1 11.75 Frontal_Sup_Orb_L 1417 0.1 3.45
15 Frontal_Sup_Medial_R 1006 0.11 8.30 Frontal_Inf_Orb_R 639 0.11 8.05
16 Cingulum_Ant_R 639 0.11 15.35 Frontal_Sup_Medial_R 444 0.1 9.90
17 Frontal_Sup_Medial_L 1417 0.11 7.50 Rectus_R 519 0.11 12.65
18 Cingulum_Ant_L 599 0.11 14.55 Insula_R 324 0.11 14.50
19 Frontal_Mid_Orb_L 408 0.11 4.90 Frontal_Sup_Orb_R 821 0.11 4.65
20 Thalamus_L 519 0.11 19.90 Frontal_Mid_Orb_L 887 0.10 5.60
21 Frontal_Sup_Orb_R 469 0.10 4.10 Insula_L 1006 0.10 13.75
22 Frontal_Sup_Orb_L 451 0.00 3.25 Frontal_Med_Orb_L 408 0.10 11.10
E. T-Anxiety®
1 Frontal_Sup_Medial_L: 1417 20.20 1.95 Frontal_Med_Orb_Lx* 324 20.86 1.05
2 Frontal_Med_Orb_L: 324 13.82 1.90 Thalamus_Lx 519 13.29 3.75
3 Rectus_L 381 9.97 3.25 Frontal_Sup_Orb_R 469 9.87 2.85
4 Frontal_Mid_Orb_R 444 3.48 7.30 Amygdala_L 97 2.06 10.15
5 Insula_R 821 2.85 6.90 Amygdala_R 96 0.44 18.95
6 Rectus_R 352 0.98 10.40 Frontal_Sup_Medial_L 1417 0.40 9.15
7 Cingulum_Ant_R 639 0.87 14.50 Frontal_Mid_Orb_R 444 0.23 6.30
8 Amygdala_L 97 0.25 17.35 Cingulum_Ant_R 639 0.06 15.95
9 Frontal_Inf_Orb_R 744 0.22 9.00 Hippocampus_L 400 0.00 16.95
10 Amygdala_R 96 0.07 19.00 Frontal_Sup_Orb_L 451 0.00 4.35
11 Frontal_Sup_Orb_L 451 0.00 4.70 Frontal_Mid_Orb_L 408 0.00 5.35
12 Frontal_Sup_Orb_R 469 0.00 5.65 Frontal_Inf_Orb_L 714 0.00 7.25
13 Frontal_Mid_Orb_L 408 0.00 6.60 Frontal_Inf_Orb_R 744 0.00 8.20
14 Frontal_Inf_Orb_L 714 0.00 8.45 Frontal_Sup_Medial_R 1006 0.00 10.10
15 Frontal_Sup_Medial_R 1006 0.00 10.40 Frontal_Med_Orb_R 413 0.00 11.05
16 Frontal_Med_Orb_R 413 0.00 11.35 Rectus_L 381 0.00 12.00
17 Insula_L 887 0.00 13.10 Rectus_R 352 0.00 12.95
18 Cingulum_Ant_L 599 0.00 14.35 Insula_L 887 0.00 13.90
19 Hippocampus_L 400 0.00 16.20 Insula_R 821 0.00 14.85
20 Hippocampus_R 424 0.00 17.15 Cingulum_Ant_L 599 0.00 15.80
21 Thalamus_L 519 0.00 19.95 Hippocampus_R 424 0.00 18.55
22 Thalamus_R 478 0.00 20.90 Thalamus_R 478 0.00 20.90

The brain regions (L, left; R, right) were parcellated according to the AAL atlas: Thalamus, amygdala, hippocampus, medial orbitofrontal regions (MOFC: Rec-
tus, Frontal_Sup_Orb = superior frontal gyrus, orbital part, Frontal Med_Orb = medial orbitofrontal cortex), lateral orbitofrontal regions (IOFC: Frontal_
Mid_Orb = middle frontal gyrus orbital part, Frontal_Inf_Orb = inferior frontal gyrus pars orbitalis), medial prefrontal regions (mPFC: Frontal_Sup_Medial =

medial frontal gyrus, Cingulum_Ant = anterior cingulate cortex). ER = expected ranking.
- harmful activities, 88%; harmless activities, 12%.

ZCondition weight
bCondition weight
°Condition weight
dCondition weight
¢Condition weight

: harmful activities, 87%; harmless activities, 13%.

: harmful activities, 60%; harmless activities, 40%.

: harmful activities, 66%; harmless activities, 34%.

: harmful activities, 52%; harmless activities, 48%.

*Brain regions included in the feature set for between model cross-validation (see Table 4 for results).

showed a stronger relationship between true and pre-
dicted labels compared with the TSK-13 version (r = 0.60,
nMSE = 0.90, p < 0.05). This result might reflect the
progress of previous research regarding the psychometric
properties of the different TSK versions. Compared with
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the 17-item version, the 13-item version has better psy-
chometric properties without the four inversely phrased
items (Roelofs et al., 2004a; Neblett et al., 2016), and the
11-item version has been recommended for future re-
search and clinical settings (for a chronological summary,
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see Tkachuk and Harris, 2012). Interestingly, no predictive
association could be “learned” by MKL using the TSK-11
subscale labels (TSK-11-SF and TSK-11-AA scores). Al-
though these two lower-order factors (activity avoidance
and somatic focus) are reflective of the higher-order con-
struct “fear of movement and (re)injury/kinesiophobia,”
the nonsignificant result might indicate that they are as-
sociated with inconsistent neural patterns across individ-
uals.

Regarding the region weights of the TSK models, the
right IOFC provided the most predictive information for
the two TSK scales (TSK-13, 52%; TSK-11, 60%). In
agreement with the phobia-related construct (kinesiopho-
bia), dysfunction of the OFC has been shown to be impli-
cated in the processing of phobia-related stimuli in
disorders such as social anxiety disorder (Dilger et al.,
2003). Specifically, IOFC activity was reduced when
phobogenic trials were contrasted with fear-relevant trials
(Aue et al., 2015). Furthermore, a hyperactive IOFC has
been shown to be linked to anxiety-laden cognitions
(Hahn et al., 2011). Interestingly, the higher cortical con-
tributions of the TSK models were clearly dissociable
from the largely subcortical contributions involving the
amygdala, hippocampus, and thalamus that predicted the
FABQ scores.

To conclude, the FABQ scales demonstrated high PRF
sensitivity (harmful condition weights > 87%) and were
linked to subcortical predictors that have been associated
with fear responses to an imminent threat and defensive
behavior (McNaughton and Corr, 2004; LeDoux and Pine,
2016). In contrast, the TSK scales appeared to capture
emotional states largely associated with cortical fear pro-
cessing that might be related to cognitive aspects of PRF.
In support of this, the observed higher harmless condition
weights of the TSK compared with the FABQ models
might indicate that the TSK scales are associated with
more diffuse anxiety-related cognitions.

PASS

Surprisingly, the PASS failed to demonstrate a predictive
association with fear-related brain response patterns. There
may be several explanations. First, although the FABQ and
the TSK have been specifically developed for patients with
musculoskeletal pain, the PASS is suitable for various pain
phenotypes (Crombez et al., 1999). Second, the PASS has
been shown to be more strongly associated with negative
affect and less predictive of pain disability and behavioral
performance (Crombez et al., 1999). Third, all PASS sub-
scales demonstrated significant multicollinearity in our sam-
ple, suggesting nonindependence between the different
subscales. All these aspects may have led to less sensitivity
of fear-related neural patterns to the PASS and its subscales
in the current study.

The superiority of the FABQ scale (driven by the
FABQ-W) in decoding performance compared with the
TSK and PASSs might also be influenced by the back-
specific items of the FABQ in conjunction with the nature
of the PRF-provoking stimuli (back-straining movements).
The items of the FABQ were specifically related to the
back, while the TSK and PASS can be used with various
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musculoskeletal pain diagnoses such as work-related up-
per extremity disorders, chronic LBP, fibromyalgia, and
osteoarthritis (Roelofs et al., 2007). Nevertheless, the
FABQ has also been adapted to shoulder pain, where it
demonstrated better factor structure and a stronger as-
sociation with disability compared with the TSK-11 (Mint-
ken et al., 2010).

State and trait anxiety

Beside PRF, anxiety, and depression significantly
mediate the relationship between pain and disability (Mar-
shall et al., 2017). However, fear responses specifically
related to a patient’s pain and/or potentially painful move-
ments might be more relevant for explaining disability in
chronic LBP than general trait anxiety responses (Mc-
Cracken et al., 1996). The current results are in line with
this notion. First, most of the PRF measures did not show
a significant relationship with state or trait anxiety. Sec-
ond, state anxiety was not decodable from fear-related
brain responses to potentially harmful activities in chronic
pain patients. Interestingly, with respect to the trait anxi-
ety model (T-Anxiety; Fig. 1E), the harmful and the harm-
less conditions carried almost equal predictive neural
information (52% vs 48%). This suggests that the trait
anxiety measure is associated with neural content irre-
spective of the harmfulness of a stimulus, provoked by,
for example, enhanced attention to visual information pro-
cessed in fear-related brain regions; Berggren et al.,
2015). It might further indicate that the T-Anxiety scale
captures neural responses that are associated with a
more generalized fear response.

Regarding the region weights, predictive information
was predominantly provided by brain regions that were
less involved in the prediction of the other PRF measures,
namely parts of the mPFC and mOFC (Table 5, section E).
This is in line with the proposed functional differentiation
of neural structures regarding fear in response to an
imminent threat (defensive response) and cognitive fear/
anxiety (distal, uncertain threat) whereas the latter in-
volves more rostral cortical structures such as the mPFC
and mOFC (McNaughton and Corr, 2004; LeDoux and
Pine, 2016). Moreover, research on self-report measure-
ments indicates that trait anxiety is relatively distinct from
tissue damage fear, which supports a behavioral and
neural dissociation of trait anxiety and PRF (Cooper et al.,
2007; Perkins et al., 2007).

Harmfulness ratings

Interestingly, although the PRF-provoking harmful ac-
tivities were rated as significantly more harmful compared
with the harmless activities, the ratings of perceived
harmfulness during fMRI measurements were not decod-
able from fear-related brain response patterns. Further-
more, the ratings did not show significant correlations
with PRF measures (except the PASS-F scale; Table 2).
Others reported only moderate relationships (r values
<0.39) between perceived harmfulness ratings of PHODA
items and self-report measures such as the TSK, pain-
catastrophizing scale, or pain intensity (Leeuw et al.,
2007a), indicating that ratings of perceived harmfulness
assess something akin to, but also distinct from, PRF
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self-report measures. The weak relationships between
ratings of perceived harmfulness and self-report mea-
sures of PRF might be explained by the specificity of the
potentially harmful movements depicted by the PHODA
items. Namely, the ratings of perceived harmfulness were
specifically related to back-straining movements such as
bending and lifting, while the PRF measures might also be
associated with other potentially harmful movements. As
such, the fear-related neural patterns induced by the
observation of potentially harmful activities for the back
might not include information about movement specific-
ity. Instead, these neural patterns might predict PRF and
its constructs in a more general fashion that is captured
by the TSK and FABQ.

Limitations

A limitation of this study is the relatively small sample
size in conjunction with the cross-validation framework.
Ideally, the predictive model should be trained and tested
with completely independent data. However, the results
obtained are likely to be valid for the following several
reasons: (1) the goal of the current study was not maxi-
mizing decoding performance, rather, multivariate decod-
ing was used for the interpretation and understanding of
the different PRF constructs, for which significant predic-
tive accuracy was obtained (Hebart and Baker, 2017); (2)
the applied linear SVM has been shown to exhibit good
performance even in very high-dimensional settings with
small sample sizes (Varoquaux and Thirion, 2014); (3) the
applied regression approach using continuous variables
enhances statistical power compared with a categorical
analysis (e.g., low vs high fear; Altman and Royston,
2006); and (4) the variability of the regions that contribute
most to the models across cross-validation folds was very
small (indicated by the ER), demonstrating stable ranking,
irrespective of which subject’s data were left out for val-
idation. For these reasons, the differences of the predic-
tion models are unlikely to be caused by the small sample
size. A further limitation is related to the sparsity approach
(L1 regularization) of the MKL algorithm currently imple-
mented in PRoNTo, which does not select brain regions
with highly correlated neural information. Therefore, po-
tential lateralization effects of brain regions (e.g., left and
right amygdala) should be carefully interpreted. Finally,
the study design only allows interpretations of PRF to
back-straining movements and LBP. Therefore, conclu-
sions related to other musculoskeletal conditions should
be drawn with caution. Nevertheless, the current ap-
proach might represent a promising new tool to dissect
psychological constructs of self-report measures by using
their neural predictors.

Conclusion

This is the first time that multivariate brain response patterns
have been used to better understand and dissect a psycho-
logical construct, here, PRF, conventionally assessed by self-
report (questionnaires). Relating content-selective neural
information to potentially different psychological con-
structs likely supports their construct validity by revealing
(hidden) commonalities or differences across psycholog-
ical constructs. Indeed, dissociable fear-related neural
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information served as score estimators of the FABQ
(FABQ total and FABQ-W), the TSK (13- and 11-item
versions), and the T-Anxiety questionnaire, supporting the
distinctness of the fear constructs behind these question-
naires. The FABQ scales demonstrated strong predictive
power with high sensitivity to the harmful condition and
were associated with subcortical fear-processing regions
(amygdala, thalamus, hippocampus). The TSKs were
more related to neural response patterns of the OFC,
potentially indicating that the construct of kinesiophobia
is more related to higher-order brain structures associ-
ated with anxiety, while the FABQ scales are more related
to subcortical defensive responses to fear. The PASS and its
subscales failed to demonstrate a predictive association
with fear-related brain response patterns. From a clinical
point of view, it might indicate that the various PRF ques-
tionnaires, although often correlating, indeed measure dif-
ferent fear phenotypes related to pain. Therefore, the results
emphasize the need to carefully consider the different PRF
questionnaires in research and clinical settings as their con-
structs do not appear to be interchangeable.
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