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In this article, we review the past applications of in vitro models in identifying human 

hepatotoxins and then focus on the use of multiscale experimental models in drug 

development, including the use of zebrafish and human cell-based, 3-dimensional (3D), 

microfluidic systems of liver functions as key components in applying Quantitative Systems 

Pharmacology (QSP). We have implemented QSP as a platform to improve the rate of 

success in the process of drug discovery and development of therapeutics.1,2 Our working 

definition of QSP is “Determining the mechanism(s) of disease progression and 

mechanism(s) of action of drugs on multiscale systems through iterative and integrated 

computational and experimental methods to optimize the development of therapeutic 

strategies” (Fig. 1).

The stakeholders involved in drug development from academia, industry, and government 

agencies have long understood the need to improve drug candidate selection by optimizing 

efficacy while screening out potential toxins so as to concentrate efforts on candidates with 

favorable chances for market approval. A survey of the number of new drugs released 

between 2000 and 2009 demonstrated a 25-year low in drug approvals despite increases in 

research and development (R&D) investment.3 Laverty and colleagues4 reported that 66% of 

failed clinical trials were due to a lack of efficacy and 21% for unacceptable drug toxicity. 

However, Sacks and colleagues5 evaluated clinical drug trials between 2000 and 2012 using 

additional criteria to further refine the analysis and reported that lack of efficacy alone 

accounted for only 41% of failures, while the combination of poor efficacy and safety 

accounted for 35%, and safety alone accounted for 19% of drug failures. Together, 

cardiovascular and liver toxicity accounted for nearly 75% of all postmarket drug 
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withdrawals in the United States between 1975 and 2007.6 Although cardiotoxicity has 

recently surpassed hepatotoxicity as the main organ toxicity ending clinical trials or causing 

postmarket drug withdrawal, hepatotoxicity has been the most frequent cause of drug 

product recalls between 1953 and 2014.7

CURRENT STATUS OF DRUG HEPATOTOXICITY PREDICTION USING 

MAMMALIAN IN VIVO MODELS

The liver is responsible for a wide range of functions, including xenobiotic detoxification, 

protein synthesis, synthesis and storage of glucose, production of the bile necessary for 

digestion, and regulation of blood cholesterol and triglycerides. The organ is positioned 

downstream of the gastrointestinal tract to enable “first-pass” clearance of orally ingested 

drugs and toxins. The structural organization of the liver sinusoidal space facilitates close 

contact between circulating compounds and the transporter-rich hepatocyte membrane 

proteins that allow for rapid and efficient transport of drugs from the portal blood. The high 

capacity for biotransformation in the hepatocyte also facilitates the generation of reactive 

metabolites that can cause liver damage.8

The key data for assessing hepatotoxicity derives from drug safety study protocols approved 

by regulatory agencies. Although evidence suggests that preclinical animal studies can 

predict up to approximately 70% of human toxicity, several problems are apparent from this 

approach.6 First, the traditional animal studies clearly fail to identify all possible adverse 

liver effects, because many compounds pass safely through animal testing only to be found 

hepatotoxic in the clinical trials or in the postmarketing. Second, the traditional drug safety 

protocols were designed only to ask broad questions with a simple yes or no answer; for 

example, is the compound hepatotoxic? Is the compound a reproductive toxin? Traditional 

preclinical drug safety assessments essentially ignored the why and the how of toxicity.9 

Historically, few efforts were made to link the observational results from drug safety studies 

to molecular and cell level events, mechanisms of toxicity (MOTs), or to interactions 

between tissues and organs.

Adherence to the regulatory agencies’ drug safety protocols also failed to account for the 

poor concordance between animal and human organ toxicity (Table 1). The concordance can 

be as low as 40% for the liver to better than 90% for drugs with hematological liability.10 A 

good demonstration of how animal testing failed to identify clinical hepatotoxic drugs is 

exemplified by a series of structurally similar and marketed drug pairs for the same 

therapeutic indication (Table 2). In each case, one of the drugs in the pair exhibited no 

hepatotoxicity during preclinical and clinical trials or in postmarket surveillance, but the 

other was “silent” during the animal studies, yet induced hepatotoxicity in clinical trials or in 

the postmarket release. This discordance in the liver findings has been attributed to 

differences in the metabolism and metabolic clearance pathways between man and animal 

test species.11

After expensive postmarket drug recalls for Troglitazone and Bromfenac and the restrictive 

labeling for Trovafloxacin and Tolcapone, the pharmaceutical industry initiated strategies to 

prescreen compounds for liver toxicity. In one example, the industry successfully 
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implemented in vitro and specialized in vivo pharmacokinetic (PK) screening early in the 

lead optimization process. Although in 1993 nearly 39% of compounds failed in clinical 

trials due to poor PK, this fell dramatically to 7% by 2003 following implementation of early 

drug discovery PK profiling.12 However, during the same period of time, the rate of 

compounds failing in the clinic due to toxicity rose from 10% to 16%.12 Based on the 

success in PK profiling, it was projected that a strategy similar to early PK screening also 

would be successful in identifying and eliminating potential hepatotoxins before proceeding 

into preclinical testing.

IN VITRO MODELS FOR PREDICTING DRUG-INDUCED HEPATOTOXICITY

Many commonly used in vitro hepatotoxicity assays rely on subcellular liver fractions, 

established hepatoma cell lines, primary animal and human hepatocytes, liver slices, and 

whole perfused livers. The use of in vitro data from microsomes, primary hepatocytes and 

S9 subcellular fractions to predict in vivo drug clearance is generally a well-accepted 

procedure.13,14 Whole perfused livers and liver slices on the other hand are low throughput, 

require continual usage of animals, are costly, and still suffer the lack of concordance with 

human toxic liabilities. These models have been reviewed elsewhere.11

Rodent and human primary hepatocytes have become a mainstay of hepatotoxicity testing in 

the in vitro laboratory.11 Large numbers of healthy hepatocytes can be isolated from a single 

rat or from a human liver resection or autopsy. This has allowed moderate to high-

throughput screening to identify potential hepatotoxins, while at the same time reducing 

animal use, amount of test agent, cost per compound tested, and the time required to make a 

toxic liability decision. The primary hepatocyte has been a convenient model for 

investigating MOT, pharmacokinetics, identification of metabolites, and dose response 

toxicity. However, an important limitation in the use of isolated primary hepatocytes is a 

reduction in function and differentiation after 24 to 48 hours in culture.15 To avoid this issue, 

many in vitro hepatotoxicity tests have been conducted using established human hepatoma 

cell lines such as HepG2 and HepaRG or with immortalized primary hepatocytes such the 

Corning HepatoCell (Corning, NY).16–18 The limitation to these cell types, however, is low 

or absent biotransformation for many of the important cytochrome P450 enzymes and phase 

II conjugation reactions involved in drug clearance.11,19 The advantages and disadvantages 

of the more commonly used single-cell and cell fraction in vitro models are compared in 

Table 3.

The primary hepatocyte and immortalized hepatocytes have been used in 2D monolayers, 

2D co-cultures, 3D single-cell type, and 3D co-cultures depending on the questions posed. 

Two-dimensional monolayer assays have been applied to collect simple cell death end points 

to triage large numbers of compounds.11 In recent years, high-throughput screening (HTS) 

assays have been used to measure MOTs known to be relevant to mechanisms of clinical 

hepatotoxicity. The latter assay type, which is often referred to as “fit-for-purpose,” tests 

compounds in a model designed solely to identify a specific mechanism of toxicity. 

Examples of “fit-for-purpose” hepatocyte assays include mitochondrial dysfunction, 

oxidative stress, bile salt exporter protein inhibition, covalent binding, and pregnane X 
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receptor nuclear receptor modulation. These 5 mechanisms have a demonstrable association 

to increased risk for clinical hepatotoxicity.20–24

Although preclinical animal testing remains critical for Investigational New Drug and New 

Drug Application approval, a significant shift to alternative approaches using quantitative 

structure-activity relationships (QSAR) computational models, simple in vitro cytotoxicity 

and “fit-for-purpose” HTS assays have been promoted by governmental agencies such as the 

Environmental Protection Agency, the National Center for the Advancement of Translational 

Sciences (NCATS), and the National Toxicology Program. These initiatives have resulted in 

the development of a number of databases (eg, Tox21, ToxCast) and models for prioritizing 

compounds based on HTS assay hepatotoxicity, as well as other organ toxicities.25 In 

addition to the government initiatives, most R&D organizations in academia and the 

pharmaceutical industry have a slate of in vitro toxicity assays and computational 

approaches designed to eliminate unfavorable compounds early in the drug discovery 

process.26

PAST EXPERIENCES WITH IN VITRO LIVER ABSORPTION, DISTRIBUTION, 

METABOLISM, EXCRETION, AND TOXICITY MODELS PREDICTING HUMAN 

CLINICAL TOXICITY

The concordance of in vitro toxicity testing with clinical hepatotoxicity varies from only 

25% for the simple in vitro assays to nearly 80% for the more complex assays and analyses.
17,27 Table 4 presents a subset of computational approaches: in vitro 2D human cell-based 

HTS assays; a human cell co-culture model; and one in vitro covalent binding assay selected 

from a joint Food and Drug Administration (FDA) National Center for Toxicology Research, 

California Institute of Technology, and Hannover Medical School report which cross-

validated the concordance of these methods to human drug-induced liver injury (DILI).27 

Three interesting findings are noteworthy from the results: (1) multiparametric cell-based 

models performed better than the computational or cell-free covalent binding assays; (2) the 

predictive result for DILI-negative drugs (assay specificity) was always higher than the 

predictive result for DILI-positive drugs (assay sensitivity); and (3) an apparent upper limit 

to the predicted DILI nearing 75% to 80% was reached with the existing in vitro cell-based 

systems.27 A likely explanation for the plateau of predictive concordance of 80% with 

existing in vitro cell models is the reductionist strategy used to simplify the organized, 

multicellular complexity of the liver microenvironment to single-cell or even 2-cell type 

testing assays.

ZEBRAFISH LARVAE AS A LOW-COST, MEDIUM-THROUGHPUT, WHOLE-

ORGANISM PLATFORM TO PREDICT DRUG HEPATOTOXICITY

The use of animals for experimentation, especially warm-blooded species, presents ethical 

concerns, and governing bodies now strive to implement the reduction, refinement, and 

replacement (“3R”) of animals strategy in research.28 The European Union Directive 

2010/63/EU on the protection of animals used for scientific purposes requires the use of 

species with the lowest capacity to experience pain, suffering, and distress, and mandates 
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that the smallest number of animals be used to obtain scientifically valid results. Studies in 

rodents are further limited by the high costs for acquisition and maintenance.

In recent years, there has been an increased recognition that in vitro phenotypic experimental 

cell models, as well as small multicellular organisms, can be used in the multiscale approach 

described as part of QSP.1 Zebrafish in particular have attracted attention not only as a 

model for drug discovery, but also as a preclinical model for toxicity assessments.29–32 Their 

prospective position in drug discovery and toxicity assessment is envisioned to be a bridge 

between simple cell-based and the still mandated mammalian testing.33

Zebrafish are uniquely positioned for large-scale experimentation. Zebrafish are vertebrate 

animals with high similarity to mammals, both organotypically and physiologically. They 

have a tractable, diploid genome that is 70% to 80% similar to humans and that is amenable 

to both forward and reverse genetics. Because of their small size, zebrafish, at the larval 

stage, are compatible with multiwell plate formats used in HTS, requiring only small 

amounts of compounds/drugs. Their high fecundity makes it possible to obtain large 

numbers of specimens for experimentation, dramatically reducing cost compared with 

rodent models. The zebrafish embryo therefore provides a cost-effective opportunity to 

discover potential drug liabilities using functional assays in a living animal as a complement 

to the emerging human tissue models.

The zebrafish embryonic liver is completely developed and functional by 72 hours post 

fertilization (hpf), as judged by organ appearance and functional markers, such as phase 1 

and phase 2 biotransformation capabilities, serum protein secretion, glycogen storage, and 

lipogenesis.34–36 Importantly, transgenic zebrafish larvae expressing human Cyp3A4 have 

been developed and will find use in PK and toxicity testing.37

Assays for zebrafish hepatotoxicity have thus far mainly been observational. In zebrafish 

larvae, necrotic cells can be visually identified by a change in appearance from translucency 

to opaque black.31 A major shortcoming of macroscopic cell death assays is that they are not 

sensitive enough to detect early toxicity.38 Nonetheless, a variant of this methodology using 

liver degeneration, changes in size, and yolk sac retention as endpoints has recently been 

published and shown to predict 8 of 8 known hepatotoxicants.39 Changes in liver 

appearance, for example, cellular organization, interactions, and shape, also can be detected 

by histopathology from tissue slices, although this method is time-consuming, requires a 

trained pathologist, and therefore is usually reserved to validate observations by other 

measurements. Last, hepatotoxicity can be assessed in the adult zebrafish using canonical 

liver enzyme assays (eg, alanine aminotransferase), although the use of adults eliminates the 

convenience, ethical impact, and high-throughput compatibility that embryos offer.40 Our 

own data suggest that even gross organism toxicity, assessed by visual inspection of 

morphologic changes in 72 hpf larvae (ie, bent tails, distended peritoneum and edema, 

pericardial congestion) can distinguish hepatotoxic from nontoxic agents (Table 5).

Zebrafish toxicity research is now shifting from observational to mechanism-based toxicity 

assays. Mesens and colleagues41 explored a molecular endpoint that captures effects on lipid 

metabolism because liver injury is frequently associated with perturbations in lipid 

Vernetti et al. Page 5

Clin Liver Dis. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism. Hence, the group looked at expression of liver-specific fatty acid binding 

protein 10a (L-FABP 10a) as a molecular biomarker for hepatotoxicity and found that 

changes in expression were predictive of specific mechanisms. A corollary example was 

recently published by Verstraelen and colleagues,42 in which they evaluated the expression 

of 5 liver-specific genes (including 2 apoptosis, and 2 metabolism-related) following 

exposure with 5 known toxicants. Their results confirmed those of Mesens and colleagues41 

with L-FABP 10a and further documented that biomarker responses are compound-

dependent, mechanism-dependent, and concentration-dependent. At the present time, the 

utility of biomarkers for prediction of toxicity appears to have potential in “fit-for-purpose” 

studies. If highly predictive biomarkers can be found, the zebrafish offers the opportunity to 

generate transgenic reporter lines that would greatly increase throughput.

Our own work has embraced adaptation of in vitro, human mechanism-based toxicity 

models and screening in zebrafish. In addition to morphologic observations (see Table 5), 

this suite of assays includes measurements of reactive oxygen species (ROS) and 

mitochondrial membrane perturbations because they are very good predictors of clinical 

toxicity.24 Fig. 2 illustrates the utility of ROS measurements in zebrafish larvae using 

menadione. Menadione is a naphthoquinone that generates ROS in cells through redox 

cycling. Menadione caused time-dependent and dose-dependent generation of ROS in 

zebrafish that correlated with embryonal toxicity and ROS induction and death in cultured 

hepatocytes, although there were quantitative differences between these types of models, 

likely due to differences in drug uptake, glutathione levels, and possibly metabolism. 

Additional development of these methods is required.

CASE STUDY: USING “FIT-FOR-PURPOSE” ASSAY EVALUATIONS TO 

RANK-ORDER COMPOUNDS

Given the limits to predicting human hepatotoxicity from current in vitro and in vivo 

methods, additional improvements to the test systems and analytical methods are needed to 

select better compounds for preclinical testing. A case study is presented to illustrate one 

strategy used at the University of Pittsburgh Drug Discovery Institute to rank-order 

compounds for hepatotoxicity risk. Compounds are screened through zebrafish embryos and 

a set of in vitro “fit-for-purpose” cytotoxicity and mechanism of toxicity assays are then 

applied (Fig. 3). Rank ordering does not rely on any one single assay, but as a profile of risk 

factors calculated from the safety margin (the ratio of toxic level to therapeutic level) 

categorically binned into high, moderate, or low risk. The development of this approach was 

an extension of the time-dependent and concentration-dependent multiplexed MOT endpoint 

assays for mitochondrial function, oxidative stress, and cytotoxicity analyses developed and 

validated in the CellCiphr HepG2 and primary hepatocyte toxicity panels. Our use of the 

safety margin to classify risk, taken together with a Pfizer study that reported an increase in 

concordance between in vitro assays and clinical hepatotoxicity with drugs that induced 2 or 

more MOTs, suggested that some improvements are possible.17,23,43 In the case study 

described here, the chance of clinical hepatotoxicity increases in compounds with more high 

and moderate risk factors.
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EMERGENCE OF HUMAN TISSUE AND ORGAN MODELS

For the reasons presented previously, new strategies are required to better identify 

hepatotoxic compounds, especially chronic toxicity, as well as to develop better human 

efficacy and disease models. The development of biomimetic, multicellular, 3D, microfluidic 

microphysiology models of the human liver and other organs are in development.44,45

Cellular responses to drugs in the intact human organ are more accurately represented by 3D 

human cell cultures than the traditional static 2D cell cultures, with additional advantages 

provided by the inclusion of media perfusion to provide nutrients, oxygen, chemicals, and 

remove waste products.46–48 Researchers are now capitalizing on the increased availability 

of human primary, immortalized, or induced pluripotent stem cell (iPSC)-derived 

hepatocytes, new bioengineering materials, microfabrication techniques, and microfluidic 

devices to construct reasonable representations of the adult human liver acinus in 3D 

multicellular microphysiological systems (MPS).48,49 These MPS can be maintained for a 

month or longer, allowing chronic, as well as acute, responses to drug challenges. In our 

recent study, we demonstrated acute and chronic drug effects, including the induction of 

fibrosis by methotrexate and the induction of immune-mediated hepatotoxicity.48 A 

comparison of some current static and perfused 3D, multicell models are presented in Table 

6.

Of particular interest to those who study hepatotoxicity is the creation of a “liver on a chip” 

with iPSC-derived adult hepatocytes from patients who have susceptibility to DILI events or 

other defined genetic and disease backgrounds. This would place liver MPS platforms at the 

center of personalized medicine and in the continuum of the QSP approach to drug 

discovery and evaluation of disease progression.1,2 The potential ramifications and promises 

of this new paradigm for drug discovery, disease progression, and toxicity assessments are 

discussed in more detail in the Prospectus.

PROSPECTUS: MOVING TO THE FUTURE: INTEGRATING THE HUMAN 

LIVER ON A CHIP, COMPUTATIONAL MODELS, AND QUANTITATIVE 

SYSTEMS PHARMACOLOGY

Collectively, the limited concordance of laboratory animal drug safety testing with human 

safety, the apparent 80% limit of success of human-based 2D in vitro models and the 65% to 

75% rate of success with computational models to predict drug-induced clinical 

hepatotoxicity has shifted the focus to the creation of human, 3D, microfluidic systems, 

referred to as MPS. One such platform has been developed at the University of Pittsburgh 

Drug Discovery Institute and integrates an MPS liver model using 4 human liver cell types 

organized into a microfluidic, 3D, sinusoidal complex, with the capacity for live cell 

monitoring of MOT using fluorescence-based biosensors over a period of several weeks. 

Secreted proteins, cytokines, and metabolites collected from the efflux are analyzed by 

biochemical assays and mass spectrometry along with the results from imaging biosensors 

for parameters such as apoptosis, ROS production, and free calcium levels. All of the data 

are linked in a database designed to collect, manage, and model the data (Fig. 4). Integrated 
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human MPS platforms that are biomimetics of normal organ structure and function have the 

potential to improve on the current predictive limit (approximately 80%) and diminish the 

odds of “silent” human hepatotoxins from being introduced into clinical trials or the market.

Continued improvements to the MPS liver models will include the application of renewable 

cells (eg, human iPSC-derived adult hepatocytes, as well as the nonparenchymal cells) to 

permit the investigation of the heterogeneous human genetic backgrounds, as well as 

specific diseases (eg, nonalcoholic fatty liver disease, hepatocarcinoma, and rare childhood 

liver diseases). Further advances also will include liver metabolic zonation and higher 

throughput arrays of MPS. The microphysiology database also will continue to evolve as a 

tool to manage, mine, and model the experimental data, as well as public sources of 

preclinical and clinical findings, expert-based drug knowledge, physical properties, 

pharmacology targets, adverse event reporting, and large datasets from “omics,” including 

toxicogenomics, metabolomics, proteomics, reactive metabolite proteomics, and 

transcriptomics.50 Furthermore, QSP is expected to increase our understanding of the 

integrated and interacting cellular, tissue, and organ networks; genes; proteins; and 

metabolic processes that give rise to liver disease progression, therapeutic efficacy, and drug-

induced hepatotoxicity.1,50
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KEY POINTS

• Quantitative Systems Pharmacology is a multiscale, iterative, and integrated 

computational and experimental approach for optimizing the development of 

therapeutic strategies.

• Limited efficacy and drug safety methods continue to limit the efficiency of 

the discovery and development of therapeutics.

• Mammalian in vivo models have low concordance to clinical hepatotoxicity.

• The predictive concordance between the existing in vitro experimental models 

coupled with computational modeling and clinical hepatotoxicity has reached 

a limit.

• Three-dimensional, multicellular, microfluidic, human tissue and organ 

experimental models are a promising alternative to whole animal and cultured 

cell methods for efficacy and safety testing.
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Fig. 1. 
QSP is an approach to drug discovery and development that applies iterative and integrated 

computational and experimental methods to determine the mechanism(s) of disease 

progression and mechanism(s) of action of drugs on multiscale systems. QSP starts with 

patients and patient samples, applies computational and experimental models, and ends with 

fundamental knowledge that optimizes therapeutic treatments for patients. This article 

focuses on the use of multiscale experimental models for liver toxicity and efficacy testing, 

especially phenotypic models.
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Fig. 2. 
ROS generation correlates with death in zebrafish larvae and rat hepatocytes. (A) Zebrafish 

larvae at 72 hpf were arrayed in 96-well microplates, loaded with dihydroethidium (DHE) 

for 30 minutes, and treated with menadione (50 μM). At the indicated time points, plates 

were scanned and analyzed for red oxyethidium fluorescence on an ArrayScan VTi high-

content reader (ThermoFisher, Waltham, MA, USA). (B) Fluorescence micrographs of dose-

dependent menadione-induced oxyethidium generation at 48 hpf. (C) Zebrafish larvae at 72 

hpf (closed circles) or cultured rat hepatocytes (open circles) were treated in 96-well plates 

with various concentrations of menadione and oxyethidium fluorescence quantified. Toxicity 

correlated with production of ROS in both zebrafish embryos and hepatocytes.
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Fig. 3. 
Case use of multiple “fit-for-purpose” assays to determine hepatotoxicity risk. The 

concentration of inhibitor in which the response is reduced by half (IC50) results from 6 

different assays in zebrafish, HepG2 and primary hepatocytes are used to calculate the safety 

margin, defined as the toxic IC50 response/Cmax blood concentration. The lower the safety 

window the higher the risk for hepatotoxicity. To rank-order compounds, the safety margin 

is categorized into high (red), moderate (yellow), or low (green) risk to generate the heat 

map. The overall rank order is determined by the number of high and moderate risks. a 

Acute lethal dose at which one-half of zebrafish embryos are dead by 24-hour exposure. b 

Drug quantity not sufficient (QNS) to repeat study to calculate safety margin.
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Fig. 4. 
Overview of the Human Liver Microphysiology Platform for studying human liver 

physiology, disease models and drug safety testing. The platform is composed of the 

following: (A) the Sequentially Layered, Self-Assembly Liver model (SQL-SAL) 

constructed from a microfluidic device and 4 human cell types, a fraction of which are 

“sentinel” cells expressing fluorescence-based biosensors, and that can include disease-

specific cells, such as cancer cells. Data are collected from the model via (B) high-content 

imaging readouts of transmitted light contrast and fluorescence; and (C) biochemical and 

mass spectrometry readouts.48,51 (D) The multiplexed data are uploaded into the 

Microphysiology Systems Database (MPS-Db) to manage data, associate external data 

sources, and build predictive models of human efficacy and toxicity.50
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Table 1

Concordance of animal and human organ toxicity

Target Organ Concordance, %

Liver 40–5410,52

Cutaneous/Ophthalmic 36

Endocrine 60

Urinary tract 64

Neurologic 70

Cardiovascular 80

Gastrointestinal 85

Hematologic 91

Data from Olson H, Betton G, Robinson D, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol 
Pharmacol 2000;32(1):56–67.
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Table 2

Clinical liver effects of structurally similar drugs found safe in animals

Human Liver Toxic Drug Structure Human Liver Safe Drug Structure

Nefazodone Trazodone

Bromfenac Diclofenac

Alpidem Zolpidem

Trovafloxacin Moxifloxacin

Ibufenac Ibuprofen

Tolcapone Entacapone
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Table 3

Commonly used cell and cellular fraction in vitro models for absorption, distribution, metabolism, excretion, 

and toxicity (ADMET)

Model Application Advantage Disadvantage Reference

Hepatocyte cell fractions 
microsomes

Liver clearance, 
metabolite ID

Fast, inexpensive, individual 
variation can be studied

Overestimates in vivo 
metabolism; only CYP and 
UGT enzymes

14,53

S9 Liver clearance, 
metabolite ID

Phase I and phase II activity Lower enzyme activity in the 
S9 fraction, may miss low level 
metabolites

14

1° hepatocyte suspensions Liver clearance, 
metabolite ID

In vivo levels of drug metabolism 
and transport proteins, 
cryopreservation

4-h time limit 19

Transgenic cell lines for PK Metabolite ID Single enzyme reactions generate 
high levels of metabolites for 
structural ID

Overestimate involvement of 
one enzyme species

14

Established liver cells lines 
HepG2

Toxicity testing, 
MOT, induction

Established cell line, inexpensive Absence or low expression of 
most phase I and phase II 
enzymes

14,19

HepaRG Toxicity testing, 
MOT, induction, 
metabolite ID

CYP1A2 and 3A4 
inducible,established cell line

High CYP3A4, Cyp 7A1 
expression, but low in all other 
CYP levels compared with 
primary hepatocytes

19,54

Primary Heps PK, toxicity testing, 
metabolite ID

Well characterized, intact 
metabolism, intact transporters, 
cryopreservation

Decline in differentiated 
functions; no immune or 
fibrosis cells; single donor 
variation

14

Spheroids: established cell 
lines HepG2, HepaRG

PK, toxicity testing, 
metabolite ID

Extend differentiated cell 
functions from days to weeks, 3D, 
improved metabolism

Cell functions lower than 
primary hepatocytes, low urea, 
albumin production

55–57

Abbreviations: CYP, cytochrome p450; Heps, hepatocytes; MOT, mechanisms of toxicity; PK, pharmacokinetic; UGT, udp-glucuronosyltransferase
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Table 5

Gross morphologic observations in zebrafish larvae identify known toxicants including hepatotoxic 

amiodarone

Compound/Dose Range Gross Morphology Concentration, μM

Dose range 200 66 20 6.6 2 0.66 DMSO

Menadione Live/dead
a

0/4 0/4 0/4 4/0 4/0 4/0 4/0

Visual toxicity
b

1/4 2/4 0/4 0/4

Amiodarone Live/dead 0/4 0/4 4/0 4/0 4/0 4/0 4/0

Visual toxicity 2/4 3/4 0/4 1/4 0/4

Dose range 1000 300 100 30 10 3 DMSO

Caffeine Live/dead 4/0 4/0 4/0 4/0 4/0 4/0 4/0

Visual toxicity 3/4 4/4 0/4 0/4 0/4 0/4 0/4

Dose range 20 6.6 2 0.66 0.2 0.07 DMSO

CCCP Live/dead 1/4 4/0 4/0 4/0 4/0 4/0 4/0

Visual toxicity 0/1 2/4 3/4 3/4 4/4 2/4 0/4

Rotenone Live/dead 1/4 3/4 4/0 4/0 4/0 4/0 4/0

Visual toxicity 1/1 0/3 1/4 2/4 3/4 2/4 0/4

Abbreviations: CCCP, Carbonyl cyandide m-chorophenyl hydrazone; DMSO, dimethyl sulfoxide.

a
Translucent (live), Opaque (dead).

b
Bent tail, distended peritoneum, edema, pericardial congestion.
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Table 6

Examples of multicellular static and microfluidic liver models for absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) testing

Model Application Advantage Disadvantage References

Static models

    Co-culture spheroids Stellate cell activation Long term 3D 
culturing with 
improved drug 
metabolism and 
output of albumin, 
urea

Specialized plates to from 
spheroids, specialized culturing 
techniques

67

    Co-culture 
micropatterned primary 
hepatocytes with fibroblasts

Hepatotoxicity Metabolite ID 
Disease models

Hepatocytes maintain 
differentiated 
function 2–3 wk

2D cultures, specialized plates 65,68

    Four-cell spheroids 
primary hepatocytes, 
primary liver NPC

Hepatotoxicity Metabolite ID Hepatocytes maintain 
differentiated 
function >3 wk, 3D, 
immune-mediated 
toxicity

Specialized culturing techniques 69

3D microfluidic, multicellular liver models

    Primary hepatocytes, 
endothelial cells

Hepatotoxicity Hepatocytes maintain 
differentiated 
function >3 wk, 
microfluidic 
improves function

Specialized culturing techniques, 
perfusion system

70

    Hepatocytes, endothelial 
cells, stellate cells, Kupffer-
like immune cells

PK, toxicity, therapeutic 
intervention, liver disease model

Hepatocytes maintain 
differentiated 
function >3 wk, 
immune-mediated 
toxicity, fibrosis 
activation 
microfluidic 
improves function

Specialized culturing techniques, 
perfusion system

48,51,71

Abbreviations: 2D, 2 dimensional; 3D, 3 dimensional; NPC, non parenchymal cells; PK, pharmacokinetic.
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