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1. Introduction

Medical research focuses on identifying the causes and deciphering the mechanisms related 

to a disease, aiming to eventually develop accurate diagnostic tools and effective treatments. 

With the breakthrough technological advances of the last decades, the “educated” guess that 

had been previously used for raising scientific hypotheses is rapidly being replaced by the 

knowledge provided through untargeted high-throughput methods that are able to generate 

enormous data sets in a short amount of time and in a cost-effective manner. Fortunately, 

major advances have been also observed in computational mathematics which enables the 

accurate analysis of the “big” data sets deriving from high-throughput approaches. Here, we 

summarize the most important “-omics” procedures and describe the current challenges 

related to their use. Additionally, we describe the novel methods of data-mining and 

machine learning analysis, and particularly, how they can be used in a hierarchical manner to 

produce robust results for medicine from “big” data.

Corresponding author at: 330 Brookline Avenue, East campus, Beth Israel Deaconess Medical Center, Stoneman Building, ST-820, 
Boston, MA 02215, USA., cmantzor@bidmc.harvard.edu.
Author contributions: All authors contributed to the writing of the manuscript.

Declaration of interest
Authors have nothing to disclose.

HHS Public Access
Author manuscript
Metabolism. Author manuscript; available in PMC 2019 January 09.

Published in final edited form as:
Metabolism. 2018 October ; 87: A1–A9. doi:10.1016/j.metabol.2018.08.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Omics and their use in medicine

The term “omics” refers to the comprehensive characterization, quantitation and 

quantification of a large number of molecules, grouped according to fundamental structural 

or functional biological similarities that they demonstrate. The largest and most important 

categories so far include:

a) Genomics were the first omics to appear and are the most extensively 

investigated thus far. Genomics comprise the analysis of a whole genome, 

aiming to identify genetic variants that are either associated with a specific 

disease and/or its future prognosis, or are related to the response to a specific 

treatment [1]. Genome wide association studies (GWAS) are large observational 

studies with thousands of subjects deriving from multiple populations that 

usually follow a case-control study design and aim to identify single nucleotide 

polymorphisms (SNPs) that are more frequently present in the group of cases 

(i.e. group of subjects with a specific disease) versus the control group (i.e. 

healthy individuals). The first GWAS was performed in 2005, and included only 

96 cases and 50 healthy controls [2]. This study identified two SNPs associated 

with an increased risk for age-related macular degeneration [2]. Since then, a 

great number of GWAS have been performed with thousands of subjects in 

dozens of different diseases [3–5]. GWAS have been very effective at identifying 

genetic predisposition for certain multifactorial diseases such as metabolic 

diseases (i.e. coronary heart disease [6], diabetes [7], obesity [8], dyslipidemia 

[9], hypertension, NAFLD [10]), neurological disorders (i.e. Alzheimer [11], 

bipolar disorders), certain types of cancer (e.g. breast cancer [12], ovarian cancer 

[13], prostate cancer [14]), gastroenterological diseases (e.g. Crohn's disease 

[15]) and autoimmune disorders (e.g. rheumatoid arthritis [16]).

b) Epigenomics analyze the reversal modifications of DNA (e.g. DNA 

methylation) or DNA-related proteins (histone modification). These 

modifications affect gene expression and transcription without changing the 

DNA sequence. Epigenetic modifications are influenced by genetic and 

environmental factors, can occur at any time over a person's lifetime, can last a 

lifetime, and can be inherited [17,18]. Epigenome-wide association studies have 

linked specific epigenetic modifications with cardiovascular disease [19], 

obesity [20], type 2 diabetes (T2D), cancer [21] and other diseases [22,23]. 

Methods used to assess epigenetic modifications include histone modification 

assays such as ChIP-Chip and ChIP-Seq which couple chromatin 

immunoprecipitation with DNA microarrays or with next generation DNA-

sequencing, and DNA methylation assays, which adapt next generation DNA-

sequencing procedures.

c) Transcriptomics refers to the quantitation and quantification of all RNA 

transcripts in a biological sample. This includes analysis both of protein-coding 

and non-coding transcriptome (long-non coding RNA as well as short RNAs 

such as microRNAs, small nuclear RNAs, piwi-interacting RNAs etc.). The 

coding transcriptome is practically an intermediate step in biological processes, 
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linking genome with proteome. Protein-coding transcriptome has been used to 

identify mechanisms involved in different diseases, as well as combined with 

genomics and proteomics (Proteogenomics) to discover new genes and their 

functional relevance. The non-coding transcriptome is not associated with 

protein formation but can still significantly affect major physiological processes, 

such as major hormonal pathways [24,25], brown adipose tissue development 

[26], cell growth, proliferation and differentiation [27,28]. Consequently, 

specific non-coding RNAs have been associated with several metabolic diseases, 

neurological disorders and different types of cancer [29].

d) Proteomics refers to the quantitation and quantification of peptides/proteins in 

biological samples or the investigation of their post-translational modifications 

and interactions. The post-translational modifications that can be investigated 

are protein phosphorylation, glycosylation, ubiquitination, nitrosylation and 

proteolysis. Post-translational modifications can have a major impact on protein 

function and transport, enzymatic activity and intracellular signaling pathways 

[30]. Proteomics are performed with mass-spectrometric methods. Protein-

protein interactions require affinity purification methods as preparation steps. 

Proteomics are widely used in different research fields. They are used to identify 

possible biomarkers of a disease, to detect potential therapeutic targets, and to 

understand fundamental biological functions.

e) Metabolomics is the investigation of intermediate small molecules and products 

of metabolism. It commonly refers to molecules <1 kD, including amino acids, 

fatty acids and carbohydrates. Metabolomics quantify the end products of 

cellular processes, offering this way a snapshot of the metabolic status of cell(s). 

The analysis of metabolomics involves first a separation step of the analytes, 

usually performed with gas or liquid chromatography followed by mass 

spectrometry. Nuclear magnetic resonance (NMR) spectroscopy can also be 

used as detection method without prior separation steps. The main advantage of 

metabolomics is that their findings are downstream processes of proteomics, 

transcriptomics or genomics, and consequently, they are more strongly related to 

the final phenotype. Thus, they bridge phenotype with genotype in functional 

genomics and specifically to identify genetic loci regulating the concentrations 

of certain metabolites, thus affecting certain biochemical pathways [31]. 

Additionally, metabolomics profiling is used to identify novel biomarkers in 

various diseases [32–34] and specifically those that have a major impact on 

cellular metabolic functions, such as cancer [35], metabolic diseases [25,36,37] 

and neurological disorders [38]. For example, an area of major interest for 

metabolomics is breast cancer, where metabolomics profiling has demonstrated 

great potentials as a biomarker for diagnosing different types of breast cancer, 

assessing prognosis as well as predicting treatment response [39]. Similarly, 

numerous metabolomics studies have been performed in different populations 

with T2D and have identified positive or negative associations of specific 

metabolite classes (e.g. increase in branched-chain and aromatic amino acids 

and in lactate and glycolytic intermediates, decrease in tricarbocylic acid cycle 
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intermediates) with the development of the disease [40,41]. Finally, 

metabolomics are being used in drug development processes, since they are very 

useful at assessing drug toxicity.

f) Lipidomics is the comprehensive investigation of cellular lipids in biological 

systems. In fact, the lipidome is part of the metabolome and lipidomics analysis 

utilizes the same tools as metabolomics. The main difference compared to 

metabolomics is that lipidomics analyses are able to detect a larger amount of 

lipids. Therefore, it is particularly important in diseases for which their 

pathogenesis is closely related to lipid metabolism, such as in obesity [42,43], 

T2D [44,45], atherosclerosis [46], hypertension [47], cardiovascular disease 

[48], stroke, metabolic syndrome [25] and non-alcoholic fatty liver disease [49]. 

In these diseases, lipidomics have been mainly used to identify novel pathways 

that can be potentially targeted therapeutically. Additionally, lipidomics have 

been used to detect new biomarkers in breast and prostate cancer as well as in 

Alzheimer's disease or other neurological disorders [50].

g) Glycomics is the comprehensive investigation of glycan structures i.e. sugars. 

Glycans derive from complex biosynthetic pathways and can have extreme 

complicated branched structures. They usually bind to proteins to form the 

glycoproteins in a process called glycosylation, or conjugate with lipids to create 

the glycolipids. Glycans can affect the stability and folding of proteins and 

consequently their function. Glycoproteins are usually located at cell surface and 

are important for cell to cell recognition, while glycolipids are located often in 

cell membrane and are important for cell stability. Glycomics analysis is usually 

performed with mass-spectrometric methods, while lectin and antibody arrays 

can also provide high-throughput screening of samples containing glycans. 

Glycomics are less utilized compared to the other omics. Thus far, the particular 

focus is to assess glycosylation in different cancers (i.e. breast, brain, colon, 

liver, lung, prostate etc.) [51]. Interestingly, alterations in glycan profile have 

been far less investigated in metabolic diseases (e.g. obesity, diabetes or non-

alcoholic liver disease), despite the fact that most glycoproteins are formed in 

the liver i.e. an organ which is particularly susceptible to metabolic changes. 

Glycomics analyses in other liver diseases have led to the development of the 

GlycoCirrhotest [52], the GlycoFibrotest [53] and the GlycoHCC test [54], 

which can predict cirrhosis, fibrosis and HCC respectively, based on changes in 

the glycome profile. In particular, core fucosylated AFP is the success story in 

glycomics, as it is currently the only FDA-approved test for the detection of 

HCC [55].

3. From single to multi-omics procedures - advantages, challenges and 

trends

Selecting a multi-omics approach compared to a single-omic analysis offers some profound 

advantages but has some serious challenges. A major advantage of the multi-omics analysis 

is the breadth of the information that it provides. The etiology of the most prevalent diseases 
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(i.e. obesity, T2D, NAFLD, certain types of cancer, Alzheimer disease) is multifactorial. 

Thus, identification of one specific factor associated with a disease will most probably have 

limited prognostic or therapeutic value. Additionally, association does not imply causation 

and associations actually outnumber causations, where many of the reported associations are 

not reproduced in future studies. The multi-omics analysis allows for the identification of 

associated factors from different biological processes, i.e. gene expression, protein synthesis 

and post-translational modifications, cellular metabolic processes, glycosylation, etc., 

maximizing the available information, and thus, increasing the possibility of identifying the 

root causes of a disease. A second advantage of multi-omics analysis is the depth of the 

information it provides. For example, a single change in gene expression may be weakly 

associated with the pathophysiology of a multifactorial disease. However, when this finding 

is further supported with alterations in mRNA expression and in protein concentration, the 

possibility that this gene or protein is an important factor in the pathogenesis of the disease 

increases. Similarly, individual changes in metabolites, lipids or glycans may have limited 

translational potential, but when combined, they may reveal important pathways associated 

with the etiology of a disease.

Despite the obvious advantages of multi-omics, the field has to overcome important 

challenges. First, the etiology of certain diseases is extremely complex, and related 

processes have been evolving over long periods of time and are often susceptible to factors 

that may fluctuate over time and thus be difficult to assess or quantify at any given 

timepoint. For example, environmental parameters or lifestyle choices may significantly 

affect the risk for the development or prognosis of a metabolic disease; however, it may still 

be very difficult to monitor them over time and assess their contribution to a specific 

outcome at the time of disease manifestation. Additionally, most of the analyses performed 

have inherent biologic and experimental errors and rely on capturing a snapshot of complex 

and dynamic biological systems. Consequently, untimely sample collection due to an 

incorrect experimental design or simply due to randomness can lead to too much “noise” 

that would not allow us to clearly identify inciting factors or errors (i.e. findings that may 

not be representative of the condition that is investigated).

The biggest challenge that multi-omics is facing, for which it needs a systematic approach 

and effective solutions, is how to best and most accurately analyze the already huge, and 

ever increasing, data sets, while at the same time, minimizing the risk of leading to the 

wrong scientific conclusions due to false positive results.

There are specific strategies that are being used to reduce the risk of false positive or 

negative results:

a) Increased sample size: The necessary sample size to have adequate power to 

detect associations depends on effect size and the heterogeneity of the 

background noise. If no previous studies are available, the effect size should be 

estimated a priori. Practically, the investigator must decide not only what it is 

realistic to expect in terms of effect size but also what should be considered 

biologically meaningful (beyond statistical significance). In these estimations, 

financial as well as time limitations may play a significant role. This issue was 
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often observed amongst the early candidate gene studies for several diseases, 

which were underpowered and led to non-reproducible results. In order to 

overcome the problem of sample size, several human centric consortia and 

biobanks have been created to collect either targeted or untargeted 

anthropometric, demographic and biochemical data as well as biospecimens to 

be used for further studies. Good examples of such biobanks are the UK biobank 

[56] or the Million Veterans Program (MVP) [57] that have already collected an 

until recently unbelievably large volume of data (e.g. the Million Veterans 

Program (MVP) has been linked with all clinical records of veterans since 1993 

through the online medical record or CPRS) as well as biospecimens of 

>500,000 individuals, which continues to accrue. Another good example is the 

NAFLD Adult Database and Biobank that consists of >1200 individuals with 

biopsy-proven NAFLD of different stages coupled with already collected 

physiologic measures and serum or plasma samples. Such biobanks allow the 

planning of research studies that would have been previously considered 

infeasible due to the high costs and time-consuming process related to the 

performance of a de novo large clinical study.

b) Reduced or integrated heterogeneity of the investigated populations: Most omics 

studies follow a case-control study design. Cases are usually individuals with a 

disease and controls are “healthy” individuals, i.e. individuals without the 

disease. A strategy to reduce heterogeneity is to match both groups as well as 

possible for several already known, associated factors (e.g. age, BMI, sex for 

metabolic diseases). In some cases, monozygotic twins are used in order to 

achieve the highest possible biological proximity. There are two main problems 

with this approach. First of all, we may not know all the possible associated 

factors, and thus, we may still have a large variation between groups. 

Uncontrolled confounding due to unknown or simply unmeasured factors can 

still introduce confounding. Second and most importantly, in a tightly matched 

case-control study findings will be tailored for the specific populations selected, 

and thus, they may have limited applicability to the population at large. Another 

approach, which is more demanding but much more accurate, is to integrate all 

or as close to all known factors into our models. Such approaches need advanced 

mathematical skills and statistical analysis (s. below Artificial Intelligence - 

Machine Learning, see below). This approach, along with the creation of large 

studies providing a mountain of data e.g. MVP, allow the creation of nested 

case-control studies which provide the time-sequence criterion for, although they 

still cannot fully prove, causality.

c) Reduced heterogeneity related to the methods used for measurements: Omics 

measurements can demonstrate significant heterogeneity, i.e. laboratory error or 

variability, depending on the quality of samples, batch effects and instruments 

that are being used for the measurements. It is, thus, very important that both 

processing and analysis of samples from cases and controls follows the same 

procedures. Recent technological advances have allowed for the streamlining of 

processes and have increased reproducibility of the results. Additionally, 
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technological advances have allowed more specific services to be provided, 

including the ability to perform omics analysis on single cells or to study more 

in-depth post-translational protein modifications (i.e. ubiquitinations, 

phosphorylations etc.). Still, challenges remain with large and/or multicenter 

studies in which data are expected to have inherent variability of a various 

degree due to: i) sample collection by various medical staff following different 

protocols, ii) collection and entering of clinical information by various doctors 

working in medical facilities that differ from each other, iii) laboratory values 

that derive from samples that were processed and measured in various clinical 

chemistry laboratories distributed geographically all over the United States 

and/or over many decades during which both medical practices and laboratory 

technology have been evolving. Despite the major fiscal challenges, the authors 

believe that such studies should repeat the measurements of key variables (e.g. 

lipid profile for cardiovascular studies or liver tests for NASH studies, etc.) in 

the context of quality-control efforts, and if large variations are found, in terms 

of chronology or geographic variability of data entry, certain key variables will 

have to be reanalyzed for the entirety of the population of a study to minimize 

variability and enhance certainty for the results.

d) Reduced background noise of data by reducing feature space: Each omic 

analysis provides measurements/data for dozens and up to thousands of different 

variables. Thus, it is impossible to avoid false positive results only by increasing 

sample size, as this will demand a sample size of hundreds of thousands (or 

more) samples. A classical approach is therefore to try to reduce the feature 

space by grouping the different variables based on their contribution to the 

variability observed between the two investigated groups as well as based on 

their biochemical or functional proximity. In all cases, the use of advanced 

mathematical models and especially of machine learning techniques (s. below) 

may significantly improve the accuracy of any findings.

e) Validation of the results by a second or third study: Reproducibility is a major 

issue not only in omics analysis but in many clinical as well as experimental 

studies. It is generally recognized that basic research studies, even when 

published in really high profile journals, face reproducibility issues more 

frequently than observational human studies and the latter more frequently than 

randomized, controlled clinical trials. A strategy that has been increasingly 

adopted over the last few years is to independently validate findings from an 

omics analysis in a second population with similar characteristics to the first. 

This approach certainly adds robustness to a study. Another validation strategy 

which can be combined with the first is to perform an omics analysis in the same 

population in a later timepoint. This strategy can be very useful in studies where 

the outcome is not binary (e.g. “presence of the disease: yes, no”) but ordinal or 

continuous (e.g. stage of the disease) and the subject may change group/stage of 

the disease over time.

f) Validation of the results in in vitro or in vivo models: Another strategy to add 

robustness to the findings is to further investigate them using in vitro and/or in 
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vivo models. A good example is genomics studies that have identified novel 

mutations or genes related to a disease. In many cases, the functional relevance 

of these findings is further evaluated in cell lines or in knockout rodent models. 

Similar approaches have been employed in metabolomics or proteomics studies, 

which indicate a specific pathway related to the outcome of interest 

(pathogenesis of a disease or response to a treatment). This pathway can be then 

investigated in animal models of the disease or treatment of interest.

One could envision using more and more advanced analytical approaches (see below) to 

both minimize error while maximizing efficiency and to incorporate in a study as many of 

the above omics tools as possible to gain clarity about underlying mechanisms. As 

technology evolves, one could also envision not only moving to a biological validation of 

findings by in vitro and in vivo models but also possibly incorporating results of all these 

experiments into future mathematical models in order to increase the certainty and accuracy 

of the conclusions. These analytic techniques are evolving and provide increasing power as 

briefly outlined below.

4. Artificial intelligence - machine learning

Machine learning is a fundamental concept of artificial intelligence that focuses on the 

progressive improved performance of a computer for a specific task through its ability to 

“learn” with data. In medicine, machine learning can be used to analyze large data sets, as 

the ones that derive from multi-omics measurements, and can lead to algorithms with 

predictive value [45]. The main machine learning categories are supervised and 

unsupervised learning [58]. In supervised learning, the algorithm is provided with inputs 

(e.g. omics data) corresponding to specific outputs (e.g. presence of a disease or not), where 

the information is used to develop a general rule that will link the input to the output. In 

unsupervised learning, no information is provided, and the algorithm has to train all possible 

scenarios and find the structure linking the input to the output. Additionally, there are several 

intermediate categories of machine learning such as the semi-supervised learning, where the 

algorithm is provided with a limited amount of information, i.e. input data can be much 

more than the labeled outputs, which is often the case in multi-omics studies. Machine 

learning tasks typically include: a) dimensionality reduction to reduce the input mass by 

decreasing the number of random variables under consideration, b) clustering-classification 

to organize different variables of the input in groups with common characteristics, c) density 

estimation to assess distribution of input variables in specific space, and d) regression to 

estimate the relationships among variables and for developing predictive models.

a) Unsupervised and supervised data integration

Multi-omics data integration, in which information from different layers of omics data is 

combined to discover the coherent biomarkers, is one of the major challenges in “precision 

medicine”. Considerable work has been done in the field of bioinformatics to develop data 

integration algorithms (c.f. the review in [59]) among which matrix factorization methods 

(e.g. sparse canonical correlation analysis [60,61] and partial least squares [62]), Bayesian 

methods [63], and network-based methods [64] for unsupervised learning, network-based 
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models, and multiple kernel learning methods (e.g. support vector machine [65]) for 

supervised data integration have been proven to be more effective.

Given the large data set that multi-omics measurements provide, a “hierarchical” approach 

in which several of the above algorithms as well as novel machine learning tools are 

combined is necessary for the accurate analysis of the data and for developing predictive 

models. Suppose that we are interested in developing a diagnostic algorithm, which can 

distinguish with high sensitivity and specificity people suffering from disease X from 

healthy individuals. Additionally, we would like the algorithm to be able to classify patients 

with disease X in 4 groups of increasing disease severity (i.e. X1-X4). Here, we use a case-

control study design, where cases are the subjects suffering from disease X in various stages 

(i.e. X1-X4) and controls are healthy individuals that are matched only for age and sex. In 

both groups, we collect anthropometric, demographic and biochemical data, and perform 

untargeted plasma metabolomics, glycomics and lipidomics analysis. The anthropometric, 

demographic and biochemical variables are in the order of 10, while glycomics 

measurements are in the order of 100, and metabolomics as well as lipidomics 

measurements are of the order of 1000. Based on the classic omics statistical analysis and 

using the “rule of ten” [66], we require screening at least 10,000 subjects with disease X and 

10,000 healthy controls. Such sample sizes, however, are rarely available. Different 

hierarchical approaches may be proposed depending on the type of disease and the number 

of layers in the available omics data (e.g. metabolomics, glycomics and lipidomics). For 

example, as the first step, one can apply a dimensionality reduction method such as principle 

component analysis (PCA) in order to reduce the number of variables under consideration. 

In PCA, which is a matrix factorization approach, a set of possibly correlated variables is 

transformed into uncorrelated variables or “principal components”. In many cases, a small 

number of components is able to cover the vast majority of the variance observed in the 

study population. In an unsupervised learning setting, other correlation-based analysis such 

as canonical correlation analysis (CCA) [60,61] and partial least squares (PLS) [62] can 

alternatively be used. Several variants of these methods with sparse solutions (e.g. sparse 

CCA and sparse PLS to account for dimensionality reduction) and constraints to identify 

structures and groups within data sets (e.g. CCA-sparse group) have been used [67] for 

clustering analysis. In clustering, variables are grouped together based on their similarities. 

For example, lipid molecules that are measured by the lipidomics analysis are grouped in 

lipid classes according to their biochemical structure (e.g. sphingolipids, ceramides, 

glycoglycerolipids, etc.). Similarly, metabolites are divided in large classes, while glycans 

can also be categorized according to biochemical similarities (e.g. presence of fucose or 

sialic acids, etc.).

In a supervised learning setting, however, the phenotype labels of samples (e.g. disease or 

normal) are available and can be used for training the machine learning classification 

algorithms. Partial least squares-discriminant analysis (PLS-DA) is perhaps the most widely 

used method applied to metabolomics datasets for multivariate classification and regression 

analysis [68]. PLS-DA is a technique used to optimize separation between different groups 

of samples, which is accomplished by linking two data matrices x (i.e. raw data) and y (i.e. 

groups, class membership, etc.). The method is in fact an extension of PLS, which handles 
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single dependent continuous variable, whereas PLS-DA can handle multiple dependent 

categorical variables. The main advantage of the PLS-DA algorithm is the availability and 

handling of highly collinear and noisy data, which are very common outputs from 

metabolomics experiments. Several caveats, however, have been reported for PLS-DA such 

as difficulties in the identification of small numbers of variables that are responsible for the 

separation between two or more groups and its tendency to overfitting [68]. Thus, other 

alternatives of classification algorithms such as random forests [69] and support vector 

machines [70] have been recommended and practiced for certain problems as well.

b) Semi-supervised learning (SSL)

As described above, SSL in is an intermediate type between supervised and unsupervised 

learning [71]. In SSL, the algorithm receives a collection of data points, but only a subset of 

these data points has associated labels. For example, gene-finding systems can be trained 

using a semi-supervised approach, in which the input is a collection of annotated genes and 

an unlabeled whole-genome sequence. The learning procedure begins by constructing an 

initial gene-finding model on the basis of the labeled subset of the training data alone. Next, 

the model is used to scan the genome, and tentative labels are assigned throughout the 

genome. These tentative labels can then be used to improve the learned model, and the 

procedure iterates until no new genes are found. The semi-supervised approach can in some 

cases work much better than a fully supervised approach because the model is able to learn 

from a much larger set of genes — all of the genes in the genome — rather than only the 

subset of genes that have been identified with high confidence. In biomedicine, SSL 

although relatively new has been applied to several problems already and has achieved 

notable results, for example, in the study of protein classification and in functional 

genomics, among others [72,73]. Due to its capability of learning from both labeled and 

unlabeled data, SSL is potentially more effective in predicting disease genes.

Semi-supervised learning requires making certain assumptions about the data set [73]. These 

assumptions of consistency are: (i) nearby points are likely to have the same label and (ii) 

points on the same structure (typically referred to as a cluster or a manifold) are likely to 

have the same label [73]. The requirement of the “smoothness” assumption is already 

fulfilled automatically by employing PCA to identify the proper feature space, and by 

applying clustering algorithms within each omics category based on molecules biochemical 

similarities or involvement in common functional pathways.

Considering the situation that a large amount of unlabeled data with only a small amount of 

labeled data are available, SSL is the proper way to train a nonlinear classifier to diagnose 

different stages in a disease (e.g. X1-X4 in the above example). Furthermore, an extension of 

generative adversarial networks (GANs) — categorical GANs (CatGANs) that belong to 

unsupervised machine learning methods can be used to integrate labeled and unlabeled data 

[74–76]. CatGANs combine both the generative and the discriminative perspective. In 

particular, the discriminative neural network classifier D predicts the label y for the input x 
through the conditional distribution p(y|x, D); the adversarial generative neural network G 
tries to fool the classifier D into accepting bogus input examples, which enforces robustness 
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of the classifier (see Fig.1) hence, both are trained simultaneously and in competition with 

each other.

c) Bayesian methods and multi-fidelity data integration

The main advantage of Bayesian methods in data integration is that they can make 

assumptions not only on different types of data sets with various distributions but also on the 

correlations among data sets. For example, Bayesian logistic regression may be used for 

labeled binary (e.g. healthy vs. disease) or categorical (e.g. X1-X4 in the above example) 

omics data, where uncertainty associated with both the sampling size and the data can be 

quantified as well. Bayesian logistic regression is typically performed in three steps: First, 

the likelihood function for the data is written as p(y|x, β), where x and y are the vectors of 

predictors and binary outcomes, respectively, and β is the vector of unknown regression 

coefficients. Second, a prior distribution (initial belief) over the known parameters is 

assumed as p(β). Third, using Bayes theorem, a posterior distribution of the parameters, 

which is the updated belief about them given evidence, is formed by multiplying the prior 

distribution by the likelihood function: p(β|x, y) ∝ p(y|x, β) p(β). Note that, one cannot 

evaluate the closed form posterior but can approximate it by sampling or by employing 

variational methods. If a Laplace prior is used, sparsity in the model parameters is promoted, 

which provides a simple and efficient training method. Using Laplacian as prior leads to the 

posterior parameter distribution that can be accurately approximated as a Gaussian, and, 

hence, the predictive distribution can be written as the convolution of a sigmoid and 

Gaussian. If no prior information is known, one can use a non-informative prior, e.g. Cauchy 

priors.

Additionally, autoregressive statistical schemes can be employed to learn the correlations 

between labeled and unlabeled data (multi-omics and clinical data) in the form of 

hierarchical multi-fidelity modeling that can be implemented both in terms of neural 

networks (for classification) as well as Gaussian processes (for regression). In this multi-

fidelity approach, one can obtain robust answers by employing a few “gold data” (e.g., 

histology data for a disease) and a lot of “silver data” (e.g., multi-omics plus clinical data) 

and fusing them together either with linear or nonlinear autoregressive schemes (see Fig. 2). 

Nonlinear auto-regressive Gaussian process regression (NARGP) methods have recently 

been used in learning complex systems and demonstrated very good performance in 

discovering functional relationships (synergistically) from different types of data [77]. Many 

existing multi-fidelity algorithms are based on Gaussian process (GP) regression in 

combination with the linear auto-regressive information (AR1) fusion scheme put forth by 

Kennedy and O'Hagan [78]. They are effective when low-fidelity models can capture the 

right trends, and the low- and high-fidelity model outputs exhibit strong linear correlation 

across the input space [77]. In many cases, however, the low-fidelity may provide some 

erroneous trends along with the correct trends and in those cases the linear autoregressive 

schemes pioneered in may fail [78].

We present a pedagogical example for multi-fidelity information fusion using linear and 

non-linear auto-regressive models to show the effectiveness of each approach. Let us assume 

that the low-fidelity model is the function fL(x) = sin(8πx), while the high-fidelity function 
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is fH(x) = (x ‐  2) fL
2(x). We further assume that we only have access to 50 observations of fL, 

supplemented by only 14 observations of fH (see Fig. 3). Using this data set, our goal now is 

to reconstruct the high-fidelity signal as accurately as possible. As shown in Fig. 3(b), AR1 

(red curve) fails to discover the real function (blue curve). However, NARGP obtains the 

right function with very small uncertainty (see Fig. 3(c)). Remarkably, NARGP correctly 

predicts the true underlying signal even at regions where no high-fidelity data is available 

and also the low-fidelity model is erroneously providing the opposite trend (e.g. for 0.25 < x 

< 0.35). The robust NARGP predictions is due to the structure in the prior that enables it to 

learn the nonlinear and space-dependent cross-correlation between the low- and high-fidelity 

data (see Fig. 3(d)). This is a key feature in constructing robust multi-fidelity modeling 

algorithms, as it provides a mechanism to safeguard against wrong trends in the low-fidelity 

data, while still being able to distill useful information from them. Furthermore, predicting 

the uncertainty as in this example leads to “active learning” (see Fig. 2), which informs us as 

to which new experimental or clinical data are required to predict with confidence, i.e. in 

regions with large uncertainty.

d) Novel machine-learning algorithms

Deep learning, implemented via deep neural networks (DNNs), is a powerful approach to 

classification, regression and inference problems across disciplines. However, due to the lack 

of rigorous mathematical foundations of the emerging DNN architectures, their effectiveness 

is not always guaranteed, and there are currently no established metrics of their 

performance. New algorithms aim to endow DNNs with uncertainty quantification (UQ) 

methods for DNNs, i.e. including uncertainty of the DNN as an approximator but also 

parametric uncertainty due to inherent randomness in the data. Another emerging topic in 

machine learning is the new concept of meta-learning, i.e. “learning to learn”, which is 

fundamental in transfer learning, from one situation to another. Meta-learning enables an 

automated way to optimize the DNN, saving great amounts of human effort and time [79].

We have discussed above both Gaussian processes as well as DNN, with the former being 

more accurate in general and provide UQ, while the latter can deal with many parameters 

(dimensions) and can be more easily trained. Neural-net-induced Gaussian process (NNGP) 

regression inherits both the high expressivity of deep neural networks (DNNs) as well as the 

uncertainty quantification property of Gaussian processes (GPs). Previous works on NNGP 

have targeted classification [80], and more recent work has focused on generalizing the 

NNGP method to function approximation and to solving partial differential equations 

(PDEs) [81]. Published work on benchmark problems suggest that NNGP combines the best 

of two worlds, i.e. both high accuracy and easier training, and, thus, has a potential to be 

used in many emerging applications in the future, especially with multi-fidelity data as 

discussed above. NNGP is essentially a Gaussian process method for classification or 

regression but based not on an arbitrary kernel but rather on a kernel produced by data that 

was fed into a DNN.
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5. Conclusions

Omics are high throughput procedures able to provide important information at different 

levels (gene, mRNA, protein, metabolite level, etc.) in complicated biological systems. The 

combination of more than one omic analysis (multi-omics approach) can lead to more robust 

scientific conclusions and can be particularly fruitful at developing diagnostic tools or 

identifying novel therapeutic targets in multifactorial diseases, such as metabolic diseases, 

neurological disorders and cancer. Indeed, the combination of the above with clinical data 

from computerized patient records as well as targeted biochemical and hormonal analyses 

holds great promise for advancing significantly biomedical research at unprecedented rates, 

leading to the elucidation of underlying mechanisms as well as discoveries of novel 

diagnostic and therapeutic tools but is, at the same time, inherently linked to several 

challenges, such as the computational approach. The use of large, real world, clinical data 

sets and biobanks that could be used for both traditional and omics analyses, combined with 

the advanced computational methodology described herein, allow for the performance of 

phenome-wide association studies- novel and promising tools to assess both potential 

benefits and adverse effects of therapeutic agents with known pathways and related genes. 

Such hypothesis generating studies, which would then be validated by other cohort studies 

and clinical trials, have great potential to catalyze research, in general, and drug discovery 

and safety efforts, more specifically. The use of advanced and continuously improving 

machine learning methods is necessary to benefit from analyzing the large data sets 

produced by multi-omics and other laboratory and clinical data that are been collected and 

stored at a great cost to our society. Continuous improvements of the methodologies 

involved and engagement of the best and brightest researchers will be needed to minimize 

false and unreproducible results and to lead to accurate and effective advances in the 

biomedical field that would have the potential to provide tangible benefits to our suffering 

fellow human beings.
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Fig. 1. 
Visualization of CatGAN with the generator G (in purple) and the discriminative classifier D 

(in orange) neural networks: The generator creates synthetic data samples of multi-omics, 

specific hormones and clinical data (anthropometric, demographic or from medical history) 

from a noise source z. The classifier receives both “fake” and real (disease) data and aims to 

tell them apart. For a real data sample, the classifier also assigns it to the stage of the 

disease.
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Fig. 2. 
Multi-fidelity data integration through active leaning: Active learning is combined with the 

NARGP algorithm to integrate histology, omics and clinical data into a machine-learning 

predictor. It can also guide us as to what new experiments are needed to enhance 

predictability, which works by considering the maximum of an acquisition function and 

obtaining one more point in the parameter space using data at different levels (e.g. low- or 

high-fidelity – (LF) or (HF)).
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Fig. 3. 
Linear (AR1) vs. non-linear (NARGP) Gaussian process regression: (a) Exact low- (red) and 

high-fidelity (blue) functions along with the observations used for training the multi-fidelity 

GP models (14 blue points, 50 red points). (b) Exact solution vs. the NARGP posterior mean 

and uncertainty. (c) AR1 predictions and its uncertainty vs. exact solution. (d) Cross-

correlation structure between the exact low- and high-fidelity signals vs. the cross-

correlation learnt by the NARGP and AR1 schemes trained on the given multi-fidelity 

dataset. (Adopted from Perdikaris et al. [77].)
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