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Abstract

Background: Gene and genome duplication play important roles in the evolution of gene function. Compared to
individual duplicated genes, gene clusters attract particular attention considering their frequent associations with
innovation and adaptation. Here, we report for the first time the expansion of the apolipoprotein D (ApoD) ligand-
transporter genes in a cluster manner specific to teleost fishes.

Results: Based on comparative genomic and transcriptomic analyses, protein 3D structure comparison, positive
selection detection and breakpoints detection, the single ApoD gene in the ancestor expanded into two clusters
following a dynamic evolutionary pattern in teleost fishes. Orthologous genes show conserved expression patterns,
whereas lineage-specific duplicated genes show tissue-specific expression patterns and even evolve new gene
expression profiles. Positive selection occurred in branches before and after gene duplication, especially for lineage-
specific duplicated genes. Cluster analyses based on protein 3D structure comparisons, especially comparisons of the
four loops at the opening side, show gene duplication-segregating patterns. Duplicated ApoD genes are predicted to
be associated with forkhead transcription factors and MAPK genes. ApoD clusters are located next to the breakpoints of
genome rearrangements.

Conclusions: Here, we report the expansion of ApoD genes specific to teleost fishes in a cluster manner for the first
time. Neofunctionalization and subfunctionalization were observed at both the protein and expression levels
after duplication. Evidence from different aspects—i.e., abnormal expression-induced disease in humans, fish-
specific expansion, predicted associations with forkhead transcription factors and MAPK genes, specific expression patterns
in tissues related to sexual selection and adaptation, duplicated genes under positive selection and their location next to
the breakpoints of genome rearrangements—suggests the potentially advantageous roles of ApoD genes in
teleost fishes. The cluster expansion of ApoD genes specific to teleost fishes provides thus an ideal evo-devo
model for studying gene duplication, cluster maintenance and new gene function emergence.
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Background
Gene and genome duplication play important roles in
evolution by providing new genetic materials [1]. The
gene copies emerging from duplication events (includ-
ing whole genome duplications (WGD)) can undergo
different evolutionary fates, and a number of models
have been proposed as to what can happen after dupli-
cation [2]. In many instances, one of the duplicates

becomes silenced via the accumulation of deleterious
mutations (i.e. pseudogenization or nonfunctionaliza-
tion [1]). Alternatively, the original pre-duplication
function can be subdivided between duplicates (i.e. sub-
functionalization) [3], or one of the duplicates can gain
a new function (i.e. neofunctionalization) [4]. Although
the probability of accumulating beneficial substitutions
is relatively low, there are, examples of neofunctionali-
zation. For example, the duplication of dachshund in
spiders and allies has been associated with the evolu-
tion of a novel leg segment [5]; the expansion of re-
petitive regions in a duplicated trypsinogen-like gene
led to functional antifreeze glycoproteins in Antarctic
notothenioid fish [6]; and the duplication of opsin
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genes is implicated in trichromatic vision in primates [7].
Another selective advantage of gene duplication can be at-
tributed to increased numbers of gene copies, e.g. in the
form of gene dosage effects [8, 9]. Multiple mechanisms
can act together to shape different phases of gene evolu-
tion after duplication [10].
Functional changes after gene duplication can occur at

the protein level [6, 11, 12]. For example, the physiological
division of labour between the oxygen-carrier function of
haemoglobin and the oxygen-storage function of myoglo-
bin in vertebrates (subfunctionalization) [13] and the
acquired enhanced digestive efficiencies of the duplicated
gene encoding of pancreatic ribonuclease in leaf monkeys
(neofunctionalization) [14]. However, the probability that
functional mutations can occur in a coding region is
relatively small due to pleiotropic constraints. Instead,
changes at the expression level are more tolerable and can
offer immediate phenotypic consequences [15, 16]. For
example, complementary degenerative mutation in the
regulatory regions of duplicated genes is a common
mechanism for subfunctionalization [2, 17]. Many ex-
amples have provided evidence that duplicated genes
acquiring new expression domains are linked to neo-
functionalization (e.g., dac2, a novel leg segment in
arachnids [5]; elnb, bulbus arteriosus in teleost fishes
[18]; and fhl2b, egg-spots in cichlid fishes [19]).
In some cases, gene clusters resulting from gene dupli-

cation have attracted considerable attention, such as Hox
gene clusters [20], globin gene clusters [21], paraHox gene
clusters [22], MHC gene clusters [23] and opsin gene clus-
ters [24]. Duplicated genes in clusters are usually related
to innovation and adaptation [11, 24, 25], suggesting ad-
vantageous roles during evolution. The expansion of gene
clusters can be traced back to WGD and tandem duplica-
tion [25, 26]. In addition to the two rounds of WGD that
occurred before the split between cartilaginous and bony
fish [27], the ancestor of teleost fishes experienced another
round of WGD (teleost genome duplication, TGD) after
divergence from non-teleost actinopterygians, including
bichir, sturgeon, bowfin and spotted gar [28, 29]. This
extra TGD provides an additional opportunity for gene
family expansion in fishes [24, 30–32].
Genome rearrangements have been suggested to occur

frequently in teleost fishes [33]. If genome rearrangements
can capture locally adapted genes or antagonist sex-deter-
mining genes by reducing recombination, the rearranged
genome can promote divergence and reproductive isola-
tion [34, 35] and thus contribute to speciation and adapta-
tion. Examples can be found in butterflies [36],
mosquitoes [37] and fish [38]. This occurs especially when
advantageous genes are located next to the breakpoints of
a genome rearrangement due to the associated low re-
combination rates [39, 40]. Considering that the expan-
sion of gene clusters is usually adaptive (as mentioned

above) and is linked to genome instability [35, 41, 42], it
will be interesting to investigate the roles of gene clusters
located next to the breakpoints of genome rearrange-
ments. However, related studies are sparse.
Here, we report for the first time the cluster expansion

of apolipoprotein D (ApoD) in teleost fishes. The ApoD
gene belongs to the lipocalin superfamily of lipid trans-
port proteins [43, 44]. In humans, ApoD is suggested to
function as a multi-ligand, multifunctional transporter
(e.g., hormone and pheromone transporter) [44, 45],
which is important in homeostasis and in the house-
keeping of many organs [45]. It is expressed in multiple
tissues, most notably in the brain and testis (see e.g. [44,
46, 47]) and is involved in the central and peripheral
nervous systems [44]. However, no detailed analyses of
the ApoD gene in fishes have been reported yet. Here,
we investigate the evolutionary history of ApoD genes in
fishes for the first time.

Results
In silico screening and phylogenetic reconstruction of
ApoD genes
To investigate the expansion of ApoD genes, we per-
formed phylogenetic reconstruction with high-quality
assembly of genomes (Fig. 1a, b). There is one ApoD
gene in coelacanth (Latimeria chalumnae), and two cop-
ies (A and B) in spotted gar (Lepisosteus oculatus)
located in one cluster. Different numbers of ApoD genes
are located in two clusters in different teleost fishes, i.e.,
two copies in cavefish (Astyanax mexicanus; A1 and A2)
and in tetraodon (Tetraodon nigroviridis; B2a and A2);
three copies in zebrafish (Danio rerio; A1, A2 and B2)
and in cod (Gadus morhua; A1, A2 and B2b); four cop-
ies in platyfish (Xiphophorus maculatus; A1, A2, B2a
and B2b); five copies in Amazon molly (Poecilia formosa;
A1, A2, B2a, B2ba1, B2ba2) and in fugu (Takifugu
rubripes; A1, A2, B1, B2a, B2b); six copies in medaka
(Oryzias latipes; A1, A2m1, A2m2, A2m3, B2a, B2b);
and eight copies in stickleback (Gasterosteus aculeatus;
A1, A2s1, A2s2, B1, B2a, B2bs1, B2bs2, B2bs3) and in til-
apia (Oreochromis niloticus; A1, A2t1, A2t2, A2t3, A2t4,
B1, B2a, B2b). Noticeably, although the copy B2b in cod
is clustered within the B2a clade based on a maximum
likelihood (ML) tree, the bootstrap value is very low,
which could be due to recent duplication (Fig. 1b). Con-
sidering its gene direction and syntenic nature relative
to B2b genes in other species (Fig. 1a), we named it copy
B2b. Sequence alignment for the tree construction can
be found in https://doi.org/10.5061/dryad.39g63v2 [116].
To further retrieve the evolutionary history of ApoD

genes in fishes, we performed an in silico screen across
the whole phylogeny of teleost fishes using draft ge-
nomes (Fig. 1c). No ApoD gene was detected in Style-
phorus chordatus. Unlike copy A1, which shows no
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lineage-specific duplication, copy A2 exhibits variable
lineage-specific copies in different fishes, with the high-
est number appearing in a cichlid fish, tilapia (four cop-
ies). Copy B1 is absent in the clade of Gadiformes but
is kept in Acanthopterygii. Species in Danio rerio,
Osmerus eperlanus and Parasudis fraserbrunneri pos-
sess copy B2. The co-existence of B2a and B2b is com-
mon in Percomorphaceae. The largest numbers of
lineage-specific duplicated ApoD genes were found in
tilapia (copy A2), medaka (copy A2) and stickleback
(copy B2b) in Percomorphaceae. The predicted ApoD
gene sequences can be found in https://doi.org/
10.5061/dryad.39g63v2 [116].

To infer the relationship between ApoD gene dupli-
cation and TGD, syntenic analyses were conducted.
These revealed that two paralogous regions in teleost
fishes correspond to one ohnologous region in spot-
ted gar and the chicken (Gallus gallus) (connected by
the same colored lines in Fig. 2A). For example, the
regions highlighted in yellow in linkage group (LG) 9
in spotted gar (left above), or on chicken chromo-
some (chr) 2 (bottom left) have paired paralogous re-
gions in medaka. These are found on chr17, where
the ApoD cluster I is located, and on chr20, where
the ApoD cluster II is located. Similarly, the region
highlighted in purple in LG3 of spotted gar and on
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Fig. 1 a Cluster expansion of ApoD genes specific to teleost fishes after teleost genome duplication (TGD). Each arrow represents a single gene copy.
Genes highlighted in red and orange represent paralogs derived from one common ancestor. Genes colored dark and light green represent paralogs
derived from one common ancestor. Phylogeny reconstruction is based on a consensus fish phylogeny [24]. b Maximum likelihood phylogenetic tree
reconstruction to infer gene duplication. Bootstrap values > 50% are marked on the branch. Lineage-specific duplication events are labelled. Note that
although copy B2b of Gadus morhua is clustered within the B2a clade (labelled with a green star), its bootstrap value is low, which could be
due to recent duplication. c The dynamic evolutionary pattern of ApoD genes across the phylogeny of teleost fishes. Highly variable copy numbers are
detected in different lineages, especially in the Paracanthopterygii lineage. Stylephorus chordatus has lost all ApoD genes. Compared to copy A1, copy
A2 exhibits more variable lineage-specific duplicates in different fishes, with the highest numbers appearing in tilapia (four copies). Copy B1 is absent in
the whole clade of Gadiformes. Copy B2 only shows up in the species Danio rerio, Osmerus eperlanus and Parasudis fraserbrunneri. The co-existence of
B2a and B2b is common in Percomorphaceae. The largest numbers of lineage-specific duplicated genes are found in tilapia (copy A2), medaka (copy
A2) and stickleback (copy B2b) in Percomorphaceae
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chicken chr1 has paired paralogous regions (con-
nected by purple lines) on chr17 and chr20 in
medaka.

ApoD clusters next to the breakpoints of genome
rearrangements
Syntenic analyses clearly show that more than one
chromosome in spotted gar and the chicken are syntenic
to the corresponding paralogous regions in which ApoD
clusters are located in teleost fishes. For example, chro-
mosomes (or LGs) containing ApoD clusters (chr17 and
chr 20 in medaka, LG III and LG XXI in stickleback,

LG9 and LG18 in tilapia, and chr2 and chr24 in zebra-
fish) are syntenic to chromosomes LG10, LG9, LG19,
LG3 and LG14 in spotted gar and chr8, chr2, chr28,
chr1 and chr9 in the chicken (Fig. 2A and B). Notice-
ably, ApoD clusters are located next to the breakpoints
of genome rearrangements (Fig. 2A and B). The rear-
ranged segments (approx. 80 kb to 200 kb syntenic with
LG14 in spotted gar, Fig. 2B) include ApoD clusters and
their neighboring genes (e.g., and2, samd7, sec62, nadkb,
gpr160, skila, prkci and phc3 for Cluster I; otos, myeov2,
and1, tmtopsb, tnk2a and tfr1b for Cluster II) (Fig. 2B).
Analyses of available cichlid genomes further show that
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Fig. 2 (a) Syntenic analyses of genome regions possessing ApoD clusters. The same color between spotted gar and the chicken represents orthologous
chromosomes. Two paralogous duplicated segments in teleost fishes (chromosomes (chrs)/linkage groups (LGs) indicated in red) can be traced back to
one corresponding orthologous region in spotted gar and the chicken (chrs/LGs labelled in black), linked by colorful lines. Arrows show the regions in
which apolipoprotein D (ApoD) clusters are located in. (b) ApoD clusters next to the breakpoints of genome rearrangements before teleost
genome duplication (TGD). The same color between spotted gar and the chicken represents orthologous chromosomes. The red arrows show
breakpoints, and the black arrows show gene directions. Neighboring genes are named according to the Ensembl database. (c) Inversion with
ApoD clusters next to the breakpoints occurred again in cichlid fishes. The haplochromine lineage, the most species-rich lineage of cichlid
fishes, is labelled. (d) ApoD domains and protein-protein association predictions. a. Conserved domains include a single peptide of approx. 20
amino acids (AA) and a lipocalin domain of approx. 144 AA. b. Different paralogs exhibited differential associations. The common associations
are with pla2g15, lcat and MAPK genes. One class (copies A2, B2a and B1) is associated with multiple forkhead transcription factors. The other
class (copies A1 and B2b) lost this association. Instead, it is associated with the lipoprotein-related gene apoa1. The single ApoD gene in
coelacanth possesses both associations
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inversion of the segments (approx. 600 kb to 800 kb)
with ApoD clusters as the breakpoints also occurred in
species belonging to the most species-rich lineage of
cichlid fishes, the haplochromine lineage, as supported
by split-read analyses using Delly (Fig. 2C).

Protein-protein association predictions and protein 3D
structure comparisons
To assess the biological functions of different ApoD genes,
protein-protein associations were predicted. Protein
domain architecture analyses revealed that ApoD proteins
in different fishes are composed of a signal peptide of
approx. 20 amino acids and a lipocalin domain of approx.
144 amino acids (Fig. 2D). The common associations of
ApoD genes are with the immunity-related gene pla2g15
[48, 49], the high-density lipoprotein biogenesis-related
gene lcat [50], different copies of zg16 related to patho-
genic fungi recognition [51] and MAPK genes [52, 53].
ApoD genes in teleost fishes can be subdivided into two
classes based on the association predictions. ApoD genes
from one class (copy A2, copy B2a and copy B1) are asso-
ciated with forkhead transcription factors. ApoD genes
from the other class (copy A1 and copy B2b) lost their
associations with forkhead transcription factors but are
associated with the lipoprotein-related gene apoa1 [54].
Noticeably, the only ApoD gene in coelacanth possesses
associations with both forkhead transcription factors and
apoa1. ApoD in coelacanth is also associated with genes
encoding ligands that can activate the Notch signalling
pathway (jag1, jag2) [55], and the gene belongs to the
annexin family (anxaII) (Fig. 2D). Noticeably, more mem-
bers of forkhead transcription factors and MAPK genes
are associated with ApoD genes after duplication. Unlike
in other fishes, copy A1 in zebrafish is associated with
bone resorption-related duplicated genes (ostf1a, ostf1b,
ostf1c) [56], the cell growth and division-related gene
ppp2cb [57], the neurodevelopment-related gene rab3gap2
[58] and the guanylate-binding gene gbp1 [59] (Fig. 2D).
Homology protein structure modelling of different

ApoD genes shows a conserved structure, including a cup-
like central part made up of eight antiparallel β-sheet
strands and two ends connected by loops (a wide opening
side formed by loops 1, 3, 5 and 7 and a narrow closed
bottom formed by loops 2, 4 and 6; Fig. 3a). Interestingly,
unlike the very conserved cup-like central part, the loops
are highly variable (Fig. 3a). Cluster analyses based on the
whole protein 3D structure can clearly segregate different
duplicates. This is especially true of lineage-specific dupli-
cated genes that are clustered together. Copy B1s is clus-
tered nested within the copy A2 clade (Fig. 3b). The same
analyses focused on only the four loops (loops 1, 3, 5 and
7) at the opening side show a similar segregation pattern
(Fig. 3c). However, cluster analyses focused only on the
three loops (loops 2, 4 and 6) at the bottom side did not

show a gene duplication-segregation pattern (Fig. 3d). De-
tails concerning the PDB files and the cluster results can
be found in https://doi.org/10.5061/dryad.39g63v2 [116].

Positive selection detection of ApoD genes
Positive selection detection using a branch-site model
within codeml in PAML revealed that positive selection oc-
curred in branches before and after duplication, for ex-
ample, the branch of copy A2 in zebrafish; the ancestral
branch of copies B2a and B2b in fugu, medaka and platy-
fish; and, especially, in lineage-specific duplicated genes,
such as in stickleback, cichlid fishes and Amazon molly
(Fig. 4 and https://doi.org/10.5061/dryad.39g63v2 [116]).
Positive selection sites under Bayes empirical Bayes (BEB)
with a posterior probability > 95% are shown in Fig. 5 and
https://doi.org/10.5061/dryad.39g63v2 [116]. Noticeably,
most sites under positive selection are located on the
highly variable loops or on the connections between loops
and the cup-like central part at the opening side (loops 3
and 5; Figs. 3a and 5). Multiple tests of positive selection
on all possible foreground branches followed by Bonferroni
correction is a relatively conservative strategy. If we only
focus on one prior hypothesis on a particular branch with-
out doing multiple test corrections, we will find more
branches with dN/dS values significantly larger than 1 (p <
0.05; https://doi.org/10.5061/dryad.39g63v2 [116]). How-
ever, we chose to use our strategy to make the analyses
more rigorous. Even with this strict but comprehensive
strategy, our results still show that positive selection oc-
curred in branches before and after gene duplication, espe-
cially for lineage-specific duplicated genes. Details about
the codon alignment for the PAML analyses can be found
in https://doi.org/10.5061/dryad.39g63v2 [116].

Gene expression profile detection of ApoD genes in
different species
Based on the available raw transcriptomic data analyses
and the results from quantitative polymerase chain
reaction (qPCR), the gene expression profiles of ApoD
genes were detected in different species (Fig. 6). Copy
A1 is mainly expressed in the skin and the eye. Notice-
ably, copy A1 is also highly expressed in the novel anal
fin pigmentation patterns of the cichlid fish, Astatotila-
pia burtoni, which is consistent with the findings of our
previous study [60]. Copy A2 shows redundant expression
patterns in the gills, eye, skin and gonads in zebrafish and
cavefish, but its orthologous A2 genes, including lineage-
specific duplicated genes in the species of Acanthomor-
phata tested herein (cod, stickleback, medaka, tilapia and A.
burtoni) are expressed in the gills and in the related appar-
atus, the lower pharyngeal jaw. Copy B2 in zebrafish shows
redundant expression profiles (in the skin and gonads)
overlapping with the profiles of copies A1 and A2. Copies
B2a and B2b show specific expression patterns in different
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fishes of Acanthomorphata tested herein. For example,
copy B2b is expressed in the ovary and in the liver in cod,
whereas B2a and B2bs are mainly expressed in the spleen
and in the liver of the stickleback. The expression of B2a
and B2b was not detected in adult medaka, tilapia and A.
burtoni. Interestingly, based on the available transcriptomic
data for the different developmental stages of the gonads in
tilapia, we found that B2a and B2b are highly specifically
expressed at the early developmental stage of gonad tissues
(5 days after hatching, 5dah; Fig. 6). Copy B1 is highly spe-
cifically expressed in the liver in tilapia and in A. burtoni
but not in stickleback in which B1 is inverted (Fig. 1a).
Noticeably, no expression profile was detected for copy B
in spotted gar, at least, not in the tissues we tested. Instead,
expression in tissues including the skin, eye, gill, liver, testis
and brain were detected for copy A in spotted gar. Details
can be found in Fig. 6 and https://doi.org/10.5061/
dryad.39g63v2 [116].

Discussion
Dynamic evolution of ApoD genes in teleost fishes
Here, we report the cluster expansion of ApoD genes
specific to teleost fishes for the first time. Phylogenetic
reconstruction and syntenic analyses clearly show the

expansion of ApoD genes into two clusters with lineage-
specific tandem duplications after TGD. The interplay
between genome duplication and tandem duplication to
prompt the expansion of the gene family has already
been shown in a few studies [61–63]. It has been sug-
gested that the fixation of duplications is much more
common in genome regions in which the rates of muta-
tions are elevated due to the presence of already-fixed du-
plication, which is the so-called “snow-ball” effect [64].
Both genome duplication and tandem duplication can
produce raw genetic materials to fuel the diversification of
teleost fishes at later stages, e.g., morphological complexity
and ecological niche expansion, which is compatible with
the “time lag model” [65]. Neofunctionalization and sub-
functionalization after duplication are important steps to
realize this diversification, and both can be detected in
ApoD duplicates.
The functional divergence of ApoD genes occurred at

the protein level. On one hand, based on the protein-
protein association predictions, although common as-
sociations with MAPK genes are shared among ApoD
genes, subdivided associations with forkhead transcrip-
tion factors and apoa1 were detected in different par-
alogous ApoD genes, indicating subfunctionalization.

Protein 3D structure modelling and cluster analyses

Cluster analyses based on the whole protein 3D structure
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Fig. 3 a Protein 3D structure modelling. Different ApoDs among species exhibit a conserved 3D structure, including a cup-like central part made
up of eight antiparallel β-sheet strands and two ends connected by loops (a wide opening part formed by loops 1, 3, 5 and 7 and a narrow
closed bottom formed by loops 2, 4 and 6). Unlike the very conserved cup-like central part, the loops at the two ends are highly variable. Note that
most sites under positive selection are located on the loops or on the connections between the loops and the cup-like central part. b Cluster analyses
based on the whole protein 3D structure. Cluster analyses can clearly segregate different ApoD duplicates, including lineage-specific duplicated genes.
c Cluster analyses based on loops 1, 3, 5 and 7 at the opening side. Cluster analyses can segregate different ApoD duplicates. d Cluster analyses based
on loops 2, 4 and 6 at the bottom. This cluster analyses cannot segregate different duplicates
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Noticeably, more members of forkhead transcription
factors and MAPK genes are associated with ApoD
genes after duplication. In this case, neofunctionaliza-
tion could also occur but was not limited to the dosage
effects. On the other hand, divergence was also detected
at the protein-structure level. Protein structures are often
related to functional divergence [66–69]. New folds can
even evolve novel functions [70, 71]. Even mutations of a
few residues can induce structural changes [72, 73].
Therefore, structure-based inference is important for
understanding molecular function. Our protein 3D
structure modelling shows a conserved backbone con-
formation, in spite of sequence divergence. Indeed, this
is a feature of the lipocalin family [67], to which ApoDs
belong [43, 44, 74]. The cup-like central part is used to
transport large varieties of ligands, such as hormones
and pheromones [74]. Interestingly, cluster analyses
based on the whole protein structure or on only the
four loops at the opening side can segregate different
duplicates, although not for copy B1. Considering that
copy B1 has been lost multiple times, its function might
not be essential and could share functions with other
copies; thus, it is not surprising if it is clustered to-
gether within the copy A2 clade. The cluster results of
two other individual genes (copy B2 of zebrafish and
B2b of medaka) do not affect the general segregation

pattern. However, unlike the four loops at the opening
side, cluster analyses based on only the three loops
(loops 2, 4 and 6) at the bottom side did not show a
clear segregation pattern. It has been suggested that the
loops of lipocalin proteins can affect ligand binding
specificities, which are similar to the binding modes of
antibodies [75], and mediate protein-protein interac-
tions [67]. Their segregation with different duplicates
might indicate that functional divergence occurred at
the loops at the opening side. The evidence that most
amino acids under positive selection are located on the
loops or connections between loops and strands further
indicates the potentially important roles of these loops
during evolution. Actually, reshaping different parts of
the protein structure is an efficient way to produce
functional divergence at the protein level within a short
time [74], and this could be one of the ways by which
divergence at the protein level occurred in ApoDs.
The functional divergence of ApoD genes also occurred

at the expression level. Different ApoD genes in zebrafish
and cavefish exhibited redundant expression profiles but
became more specific as the numbers of tandem dupli-
cates increased, indicating subfunctionalization. Notice-
ably, new expression profiles were detected in duplicated
paralogs, e.g., copy A1 in novel anal fin pigmentation pat-
terns and copy A2s in the lower pharyngeal jaw in A.

Fig. 4 Positive selection detection using a branch-site model within codeml in PAML. Many duplicated ApoD genes are under positive selection,
with a value of ω significantly larger than 1 after Bonferroni correction, especially for lineage-specific duplicated genes. Note that if the whole
clade is designated as the foreground branch when detecting positive selection, each branch of this clade will be labelled if its ω value
is significantly larger than 1. The unrooted tree was used for PAML analyses, and the rooted tree here is only for presentation. More
details can be found in https://doi.org/10.5061/dryad.39g63v2 [116]
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burtoni, which belongs to the most species-rich cichlid
fish lineage, the haplochromine lineage. These two traits
are key innovations associated with adaptive radiation in
cichlid fishes [76]. With expression changes, duplication
can be an important source for the emergence of novelty
[77], especially if they are adaptive. The relaxed selection
pressure induced by the changing expression profiles can
even further prompt the accumulation of mutations at the
protein level.

Potential advantageous roles of ApoD genes in teleost
fishes
The ApoD gene has been thoroughly studied in human
and mice, and its abnormal expression was reported to be
related to human diseases, such as Parkinson’s disease and
Alzheimer’s disease [78–80]. Interestingly, as our study re-
vealed here, ApoD dynamically expanded in fishes into
two clusters on different chromosomes. Furthermore,
these expanded duplicates are transcriptionally active. For
example, they are highly expressed and are restricted to
different tissues related to sexual selection (skin [81], eye
[82, 83], gonads, and anal fin pigmentation patterns [60])
and adaptation (gills [84–87], spleen [88, 89], and lower
pharyngeal jaw [76, 90]). These tissues are also derived

from the neural crest, which is a key innovation in verte-
brates [76, 91–93]. Additionally, many duplicated ApoD
genes are under positive selection, especially for lineage-
specific duplicated genes. Combined with their associa-
tions with MAPK genes and forkhead transcription factors
and their functions as pheromone and hormone trans-
porters, we report evidence that suggests the potential
importance of ApoD genes in fishes.
Noticeably, two clusters exhibited distinct expression

patterns. ApoD genes in cluster I in most fishes are
expressed in tissues related to sexual selection (skin, eye,
gonad and anal fin pigmentation), but in cluster II, ApoD
genes are mainly expressed in tissues related to adaptation
(gills and lower pharyngeal jaw). Interestingly, both clus-
ters were maintained with their neighboring genes and are
located next to the breakpoints of genome rearrangements
during evolution. An inversion of a chromosomal section
containing ApoD clusters next to breakpoints occurred
again in the haplochromine lineage, the most species-rich
lineage of cichlid fishes [94]. If genome rearrangements
can capture locally adaptive genes or genes related to sex-
ual antagonism, it could accelerate divergence by reducing
recombination rates, thus prompting speciation and adap-
tation and even the emergence of neo-sex chromosomes

Amino acid alignment of ApoD genes among species with protein 3D structure annotation
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Fig. 5 Amino acid alignment of ApoD genes among species with protein 3D structure annotation. The purple arrow represents the β-strand, and
the yellow arrow represents the loop. Sites under positive selection under Bayes empirical Bayes (BEB) with a posterior probability > 95%
are labelled with a red rectangle. Most sites under positive selection are distributed on the loops or on the connections between the
loop and the β-strand. Note that the positions of the sites under positive selection are based on the codon alignment used for PAML
analyses (https://doi.org/10.5061/dryad.39g63v2 [116]) instead of on the amino acid alignment here, but the amino acids that under
positive selection are the same in Fig. 5 and https://doi.org/10.5061/dryad.39g63v2 [116]
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[95]. Given that many ApoD genes are under positive se-
lection, their location next to the breakpoints of genome
rearrangements gives them more opportunities to be in-
volved in speciation and adaptation, which deserves fur-
ther investigation.

Conclusions
Here, we report the cluster expansion of ApoD genes in a
cluster manner specific to teleost fishes for the first time.
Different types of evidence based on computational evolu-
tionary analyses strongly suggest the potentially advanta-
geous roles of ApoD genes in fishes. An in-depth
functional characterization of ApoD genes could help con-
solidate a model for the study of subfunctionalization and
neofunctionalization. Moreover, finding the regulatory
mechanisms behind the cluster expansion of ApoD genes
and the reason why the ApoD gene expansion was specific
to fishes remain open questions. As more fish genomes
with high assembly quality become available, especially
those of closely related species such as cichlid fishes, the
roles of ApoD genes in fish speciation and adaptation can
be further investigated. Above all, the ApoD clusters re-
ported here provide an ideal evo-devo model for studying
gene duplication, cluster maintenance, and the gene

regulatory mechanism and their roles in speciation and
adaptation.

Methods
In silico screening and phylogenetic reconstruction to
infer gene duplication
To retrieve ApoD gene duplication in teleost fishes, we
first extracted orthologs and paralogs in fishes with avail-
able genome data from Ensembl (Release 84) [96] and the
NCBI database (https://www.ncbi.nlm.nih.gov/genome/).
To confirm gene copy numbers, all orthologs and paralogs
were used as queries in a tblastx search against the corre-
sponding genomes. For all unannotated positive hits, a re-
gion spanning approx. 2 kb was extracted, and open
reading frames (ORF) were predicted using Augustus
(http://augustus.gobics.de/) [97]. A BLAST search was then
performed to compare the predicted coding sequences with
the existing transcriptome database to retrieve the corre-
sponding cDNA sequences. The cDNAs were then
re-mapped to the corresponding predicted genes to
re-check the predicted exon-intron boundaries. Coding se-
quences of genes from humans and spotted gar, as well as
those of neighboring genes, were used to perform a tblastx
search against the genomes of lamprey (Lampetra
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fluviatilis) and amphioxus (Branchiostoma belcheri). To
infer gene duplication, an ML analysis was performed using
ApoD genes retrieved from available assembled genomes in
RAxML v8.2.10 [98] with the GTR+G model and the ‘-f a’
option, which generates the optimal tree and conducts
10,000 rapid bootstrap searches.
To further retrieve ApoDs from the draft genomes of

other fishes across the whole phylogeny [23], all se-
quences retrieved above were used as queries in a tblastx
search using a threshold e value of 0.001. The hit scaf-
folds were retrieved, and genes within the scaffolds were
predicted using Augustus. The predicted ApoDs were
then translated and re-aligned with known ApoD ORFs
to further confirm the exon-intron boundaries. All pre-
dicted orthologs and paralogs were used as a query again
in a tblastx search against the corresponding genome
data until no more ApoD genes were predicted.

Syntenic analyses and inversion detection
To further confirm the relationship between ApoD gene
duplication and TGD, gene regions adjacent to the du-
plicates and to the outgroup species that did not experi-
ence TGD (including spotted gar and the chicken) were
retrieved. To this end, a window of 5Mb around the
ApoD clusters in teleost fishes, as well as the corre-
sponding chromosomes in spotted gar and the chicken,
were retrieved from the Ensemble and NCBI databases.
Syntenic analyses were performed with SyMap [99]. To
further detect the structural variation around the ApoD
genes in cichlid fishes, we retrieved the available cichlid
genome raw data from [100]. The programme Delly
[101], based on paired-end split-reads analyses, was used
to detect the inversion and its corresponding break-
points of the segments that contain the ApoD clusters in
cichlid fishes, with tilapia as the reference.

Protein-protein interaction prediction, protein 3D
structure modelling and comparisons
To predict the biological functions of ApoD genes, the
protein domains of ApoD genes and protein-protein inter-
actions were predicted with the Simple Modular Architec-
ture Research Tool (SMART) [102, 103] and the stringdb
database http://string-db.org/ [104]. To determine
whether there were divergences at the protein level for dif-
ferent ApoDs, protein 3D structures were simulated with
Swiss-model [105–107] using the human ApoD crystal
protein structure (PDB ID 2hzr) as the template. The re-
sults were further visualized, evaluated and analyzed with
Swiss-PdbViewer [108]. To compare the protein struc-
tures, we first extracted and converted the corresponding
information in the PDB file using Swiss-PdbViewer. Pro-
tein 3D structure comparisons were then conducted using
Vorolign [109], which can compare closely related protein
structures even when structurally flexible regions exist

[109]. The protein 3D structure comparisons and cluster
analyses were conducted using the ProCKSI-server
(http://www.procksi.net/). Clustering results were further
visualized using Figtree v1.4.2 (http://tree.bio.ed.ac.uk/
software/figtree). Copy B2ba2 of Amazon molly was not
included in the cluster analyses due to its relatively short
sequence. The PDB files were used as input files. For the
global protein structure comparisons, PDB files were ex-
tracted directly from the simulation results of
Swiss-model [105–107]. To only obtain PDB files of the
loop region, we revised the PDB files manually to get rid
of the cup-like central part. To consider the highly vari-
able connections between the loops and the cup-like cen-
tral part (Fig. 3a), we also included the structures of two
more residues next to the loops. The resulting PDB files
were further checked using Swiss-PdbViewer.

Positive selection detection
To examine whether ApoD duplicates underwent adap-
tive sequence evolution, a branch-site model was used to
test positive selection affecting a few sites along the tar-
get lineages (called foreground branches) in codeml
within PAML [110, 111]. The rates of non-synonymous
to synonymous substitutions (ω or dN/dS) with a priori
partitions for foreground branches (PAML manual) were
calculated. Considering the very dynamic evolutionary
pattern of ApoD genes, we tested for positive selection
in every branch in each species. In this case, we desig-
nated each branch as the foreground branch to run the
branch-site model multiple times. Noticeably, there are
two different ways to designate the foreground branch in
the branch-site model. One way is to designate only the
branch as the foreground branch. The other way is to
designate the whole clade (all the branches within the
clade including the ancestral branch) as the foreground
branch. We included both perspectives in our data ana-
lyses (https://doi.org/10.5061/dryad.39g63v2 [116]). If
the whole clade was under positive selection, we labelled
all the branches within this clade, including the ancestral
branch, with ω > 1 in the results (Fig. 4).
All model comparisons in PAML were performed with

fixed branch lengths (fix_blength = 2) derived under the
M0 model in PAML. Alignment gaps and ambiguity char-
acters were removed (Cleandata = 1). A likelihood ratio
test was used to test for statistical significance. In addition,
Bonferroni correction was conducted for multiple-test
correction [112]. The BEB was used to identify sites that
are under positive selection. Sites under positive selection
under BEB with a posterior probability > 0.95 are given in
Fig. 5 and https://doi.org/10.5061/dryad.39g63v2 [116].

Gene expression profile analyses
To determine the expression profiles of ApoD duplicates
in different fishes, raw available transcriptomic data from
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spotted gar, zebrafish, cavefish, cod, medaka, tilapia and A.
burtoni were retrieved from NCBI https://www.ncbi.nlm.
nih.gov/ (https://doi.org/10.5061/dryad.39g63v2 [116]).
Raw reads were mapped to the corresponding cDNAs
(http://www.ensembl.org/) to calculate the RPKM (reads
per kilobase per million mapped reads) value. qPCR
was used to detect the expression profiles of different
ApoD duplicates in the tissues not included in the
available transcriptomes (https://doi.org/10.5061/
dryad.39g63v2 [116]). Fish samples for qPCR include
A. burtoni (provided by Prof. Walter Salzburger, Uni-
versity of Basel, Switzerland), stickleback (collected
from Nideraach and Romanshorn in Switzerland by Dr.
Dario Moser), zebrafish (provided by Prof. Markus Affolter,
Biozentrum, University of Basel, Switzerland), tilapia (pro-
vided by Prof. DeshouWang, Southwest University, Chong-
qing, China) and medaka (provided by Prof. Jing Wei,
Southwest University, Chongqing, China). Prior to tissue
dissection, specimens were euthanized with MS 222
(Sigma-Aldrich, USA) following an approved procedure
(permit nr. 2317 issued by the cantonal veterinary office,
Switzerland; Guidelines for the Care and Use of Laboratory
Animals prescribed by the Regulation of Animal Experi-
mentation of Chongqing, China). RNA isolation was per-
formed according to the TRIzol protocol (Invitrogen,
USA). DNase treatment was performed with the DNA-
free™ Kit (Ambion, Life Technologies, USA). The RNA
quantity and quality were determined with a Nano-
Drop1000 spectrophotometer (Thermo Scientific, USA).
cDNA was produced using the High-Capacity RNA-to-
cDNA Kit (Applied Biosystems, USA). The housekeeping
gene elongation factor 1 alpha (elfa1) [113], ubiquitin
(ubc) [114] and ribosomal protein L7 (rpl7) [115] were
used as endogenous controls. qPCR was performed on a
StepOnePlus™ Real-Time PCR system (Applied Biosys-
tems, Life Technologies) using the SYBR Green Master
Mix (Roche, Switzerland) with an annealing temperature
of 58 °C and following the manufacturer’s protocols.
Primers are available in https://doi.org/10.5061/
dryad.39g63v2 [116].
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