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ABSTRACT Population structure leads to systematic patterns in measures of mean relatedness between individuals in large genomic
data sets, which are often discovered and visualized using dimension reduction techniques such as principal component analysis (PCA).
Mean relatedness is an average of the relationships across locus-specific genealogical trees, which can be strongly affected on
intermediate genomic scales by linked selection and other factors. We show how to use local PCA to describe this intermediate-scale
heterogeneity in patterns of relatedness, and apply the method to genomic data from three species, finding in each that the effect of
population structure can vary substantially across only a few megabases. In a global human data set, localized heterogeneity is likely
explained by polymorphic chromosomal inversions. In a range-wide data set of Medicago truncatula, factors that produce heteroge-
neity are shared between chromosomes, correlate with local gene density, and may be caused by linked selection, such as background
selection or local adaptation. In a data set of primarily African Drosophila melanogaster, large-scale heterogeneity across each
chromosome arm is explained by known chromosomal inversions thought to be under recent selection and, after removing samples
carrying inversions, remaining heterogeneity is correlated with recombination rate and gene density, again suggesting a role for linked
selection. The visualization method provides a flexible new way to discover biological drivers of genetic variation, and its application to
data highlights the strong effects that linked selection and chromosomal inversions can have on observed patterns of genetic variation.
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WRIGHT (1949) defined “population structure” to en-
compass “such matters as numbers, composition by

age and sex, and state of subdivision,” where “subdivision”
refers to restricted migration between subpopulations. The
phrase is also commonly used to refer to the genetic patterns
that result from this process, as for instance reduced mean
relatedness between individuals from distinct populations.
However, it is not necessarily clear what aspects of demogra-
phy should be included in the concept. For instance, Blair
(1943) defines population structure to be the sum total of
“such factors as size of breeding populations, periodic fluc-
tuation of population size, sex ratio, activity range, and
differential survival of progeny” (emphasis added). The

definition is similar to Wright’s, but differs in including the
effects of natural selection. On closer examination, incorpo-
rating differential survival or fecundity makes the concept
less clear: should a randomly mating population consisting
of two types that exhibit partial postzygotic reproductive iso-
lation from each other be said to show population structure
or not? Whatever the definition, it is clear that due to natural
selection, the effects of population structure—the realized
patterns of genetic relatedness—differ depending on which
portion of the genome is being considered. For instance,
strongly locally adapted alleles of a gene will be selected
against in migrants to different habitats, increasing genetic
differentiation between populations near to this gene. Simi-
larly, newly adaptive alleles spread first in local populations.
These observations motivate many methods to search for ge-
netic loci under selection, as for example in Huerta-Sánchez
et al. (2013),Martin et al. (2016), andDuforet-Frebourg et al.
(2016).

These realized patterns of genetic relatedness summarize
the shapes of the genealogical trees at each location along the
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genome. Since these trees vary along the genome, so does
relatedness, but averaging over sufficiently many trees we
hope toget a stable estimate thatdoesnotdependmuchon the
genetic markers chosen. This is not guaranteed; for instance,
relatedness on sex chromosomes is expected to differ from the
autosomes, and positive or negative selection on particular
loci can dramatically distort shapes of nearby genealogies
(Charlesworth et al. 1993; Barton 2000; Kim and Stephan
2002). Indeed, many species show chromosome-scale varia-
tion in diversity and divergence (e.g., Langley et al. 2012);
species phylogenies can differ along the genome due to in-
complete lineage sorting, adaptive introgression, and/or lo-
cal adaptation (e.g., Ellegren et al. 2012; Nadeau et al. 2012;
Pease and Hahn 2013; Vernot and Akey 2014; Pool 2015);
and theoretical expectations predict that geographic patterns
of relatedness should depend on selection (Charlesworth
et al. 2003).

Patterns in genome-wide relatedness are often summa-
rized by applying principal component analysis (PCA;
Patterson et al. 2006) to the genotype matrix, as inspired
by the pioneering work of Menozzi et al. (1978). The results
of PCA can be related to the genealogical history of the sam-
ples, such as time to most recent common ancestor and mi-
gration rate between populations (Novembre and Stephens
2008;McVean 2009), and sometimes produce “maps” of pop-
ulation structure that reflect the samples’ geographic origin
distorted by rates of gene flow (Novembre et al. 2008).

Modeling such background kinship between samples is
essential to genome-wide association studies (GWAS; Price
et al. 2006; Astle and Balding 2009), and so understanding
variation in kinship along the genome could lead to more
generally powerful methods and may be essential for doing
GWAS in species with substantial heterogeneity in realized
patterns of mean relatedness along the genome.

Others have applied PCA to windows of the genome. Ma
and Amos (2012) used local PCA much as we do to identify
putative chromosomal inversions. Bryc et al. (2010) and
Brisbin et al. (2012) used PCA to infer tracts of local ancestry
in recently admixed populations, but by projecting each ge-
nomic window onto the axes of a single, globally defined PCA
rather than doing PCA separately on each window.

A note on nomenclature: in thisworkwedescribe variation
in patterns of relatedness using local PCA,where “local” refers
to proximity along the genome. A number of general methods
for dimensionality reduction also use a strategy of “local PCA”
(e.g., Kambhatla and Leen 1997; Roweis and Saul 2000;
Weingessel and Hornik 2000; Manjón et al. 2013), perform-
ing PCA not on the entire data set but instead on subsets of
observations, providing local pictures that are then stitched
back together to give a global picture. At first sight, this dif-
fers from our method in that we restrict to subsets of variables
instead of subsets of observations. However, if we flip per-
spectives and think of each genetic variant as an observation,
our method shares common threads, although our method
does not subsequently use adjacency along the genome, as
we aim to identify similar regions that may be distant.

It is common to describe variation along the genome of
simple statistics such as FST and to interpret the results in
terms of the action of selection (e.g., Turner et al. 2005;
Ellegren et al. 2012). However, a given pattern (e.g., valleys
of FST) can be caused by more than one biological process
(Cruickshank and Hahn 2014; Burri et al. 2015), which in
retrospect is unsurprising given that we are using a single
statistic to describe a complex process. It is also common to
use methods such as PCA to visualize large-scale patterns in
mean genome-wide relatedness. In this paper, we show if and
how patterns of mean relatedness vary systematically along
the genome, in a way particularly suited to large samples
from geographically distributed populations. Geographic
population structure sets the stage by establishing back-
ground patterns of relatedness, our method then describes
how this structure is affected by selection and other factors.
The method is descriptive: it does not aim to identify outlier
loci, but rather to describe larger-scale variation shared by
many parts of the genome and give clues about the source of
this variation.

Materials and Methods

As depicted in Figure 1, the general steps to the method are:
(1) divide the genome into windows, (2) summarize the pat-
terns of relatedness in each window, (3) measure dissimilar-
ity in relatedness between each pair of windows, (4) visualize
the resulting dissimilarity matrix using multidimensional
scaling (MDS), and (5) combine similar windows to more
accurately visualize local effects of population structure using
PCA.

PCA in genomic windows

To begin, we first recoded sampled genotypes as numeric
matrices in the usual manner, by recording the number of
nonreference alleles seen at each locus for each sample.We
then divided the genome into contiguous segments (win-
dows) and applied PCA as described in McVean (2009)
separately to the submatrices that corresponded to each
window. The choice of window length entails a tradeoff
between signal and noise, since shorter windows allow
better resolution along the genome but provide less pre-
cise estimates of relatedness. A method for choosing a
window length to balance these considerations is given
in the Appendix.

Precisely, denote by Z the L3N recoded genotype
matrix for a given window (L is the number of SNPs and
N is the sample size), and by Zs the mean of nonmissing
entries for allele s, so that Zs ¼ 1

ns

P
jZsj; where the sum is

over the ns nonmissing genotypes. We first compute the
mean-centered matrix, X, as Xsi ¼ Zsi 2 Zs; and preserv-
ing missingness (this mean-centering makes the result in-
dependent of the choice of reference allele, exactly if
there is no missing data, and approximately otherwise).
Next, we find the covariance matrix of X, denoted C,
as Cij ¼ 1

mij 2 1

P
sXsiXsj 2 1

mijðmij 2 1Þ
P

sXsi
P

sXsj; where all sums
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are over the mij sites, where both sample i and sample j have
nonmissing genotypes. The principal components (PCs) are
the eigenvectors of C, normalized to have Euclidean length
equal to 1, and ordered by magnitude of the eigenvalues.

The top two-to-five PCs are generally good summaries of
population structure; for ease of visualization we usually only
use the first two (referred to as PC1 and PC2), and check that
results hold using more. The above procedure can be per-
formed on any subset of the data; for future reference, denote
by PC1j and PC2j the result after applying to all SNPs in the jth

window (however, note that our measure of dissimilarity be-
tween windows does not depend on PC ordering).

Similarity of patterns of relatedness between windows

We think of the local effects of population structure as being
summarized by the relative position of the samples in the
space defined by the top PCs. However, we do not compare
patterns of relatedness of different genomic regions by di-
rectly comparing the PCs, since rotations or reflections of
these imply identical patterns of relatedness. Instead, we

compare the low-dimensional approximations of the local
covariance matrices obtained using the top k PCs, which is
invariant under reordering of the PCs, reflections, and rota-
tions, and yet contains all other information about the PCs
(for results shown here, we use k ¼ 2:) Furthermore, to
remove the effect of artifacts such as mutation rate variation,
we also rescale each approximate covariance matrix to be of
similar size (precisely, so that the underlying data matrix has
trace norm equal to 1).

To do this, define theN3 kmatrix VðiÞ so that VðiÞ�ℓ; the ℓth
column of VðiÞ; is equal to the ℓth PC of the ith window, mul-
tiplied by

�
lℓi

.Pk
m¼1lmi;

�
1=2

; where lℓi is the ℓth eigenvalue
of the genetic covariance matrix. Then, the rescaled, rank k
approximate covariance matrix for the ith window is

MðiÞ ¼
Xk
ℓ¼1

VðiÞ�ℓVðiÞT�ℓ : (1)

To measure the similarity of patterns of relatedness for
the ith and jth windows, we then use Euclidean distance Dij

Figure 1 An illustration of the method; see Materials and Methods for details. MDS, multidimensional scaling; PC, principal component; PCA,
PC analysis.
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between the matrices M(i) and M(j), defined by D2
ij ¼P

kℓ

�
MðiÞk;ℓ2MðjÞk;ℓ

�2
:

Thegoalof comparingPCplotsup to rotationandreflection
turned out to be equivalent to comparing rank-k approxima-
tions to local covariance matrices. This suggests instead di-
rectly comparing entire local covariance matrices. However,
with thousands of samples and tens of thousands of windows,
computing the distance matrix would take months of CPU
timewhile, as defined above,D can be computed inminutes us-
ing the following method. Since for square matrices A and B,P

ij

�
Aij2Bij

�2
¼ P

ij

�
A2
ij þ B2

ij

�
2 2  trðATBÞ; then due to the

orthogonality of eigenvectors and the cyclic invariance of trace,
Dij can be computed efficiently as

Dij ¼
Pk

ℓ¼1l
2
ℓi�Pk

ℓ¼1lℓi

�2 þ
Pk

ℓ¼1l
2
ℓj�Pk

ℓ¼1lℓj

�222
Xk
ℓ;m¼1

�
VðiÞTVðjÞ

�2
ℓm

0
B@

1
CA

1=2

:

(2)

Visualization of results

We use MDS to visualize relationships between windows as
summarized by the dissimilaritymatrixD.MDSproduces a set
ofm coordinates for each window that give the arrangement
in m-dimensional space that best recapitulates the original
distance matrix. For results here, we use m ¼ 2 to produce
one- or two-dimensional visualizations of relationships be-
tween windows’ patterns of relatedness.

We then locate variation in patterns of relatedness along the
genome by choosing collections of windows that are nearby in
MDS coordinates and map their positions along the genome. A
visualization of the effects of population structure across the
entire collection is formed by extracting the corresponding
genomic regions and performing PCAon all aggregated regions.

Testing

We tested the method using two types of simulation. First, to
verify expected behavior, we simulated “genomes” as an in-
dependent sequence of correlated Gaussian “genotypes,” us-
ing a different covariance matrix in the first quarter, middle
half, and last quarter of the chromosome. The details of the
simulation, also designed to detect sensitivity to PC switch-
ing, are given in the Appendix. To verify robustness to miss-
ing data, we ran the method after randomly dropping 50% of
the genotypes in the first half of the genome; if the method is
misled by missing data, then it will distinguish the two halves
of the chromosome rather than the segments having different
covariance matrices.

To provide a realistic test, we next used forward-time, indi-
vidual-based simulations, implemented using SLiM v3 (Haller
and Messer 2017), which are described in detail in the Appen-
dix. To provide realistic population structure for PCA to identify,
each simulation had at least 5000 diploid individuals, living
across a continuous square range, with Gaussian dispersal
and local density-dependent competition. Each genome was

modeled on human chromosome 7, which is 1:543 108-bp
long, with an overall recombination rate of 1.6785 crossovers
per chromosome per generation. To improve speed, we used
tskit (Kelleher et al. 2018) to record tree sequences in SLiM
(Haller et al. 2018) and to add neutral mutations afterward, at
a rate of 1029 per bp per generation. Most simulations were
neutral, but we also included linked selection of two types.
First, we introduced selected mutations into two regions,
which extended from one-third to one-half and from five-
sixths to the end of the genome respectively. These had
selection coefficients from a Gamma distribution with shape
2 and mean 0.005 at a rate of 10210 per bp, which were
either beneficial (with probability 1/30) or deleterious (oth-
erwise). Second, to roughly model a recent expansion fol-
lowed by local adaptation, we introduced mutations in the
same manner as above, except that mutations were no
longer unconditionally deleterious or beneficial: each selec-
tion coefficient was multiplied by a factor depending on the
spatial location of the individual being evaluated, varying
linearly from 21 at the left side of the range to +1 at the
right edge. In all simulations, genome-wide PCA displayed a
map of the population range, as expected.

Data sets

We applied the method to genomic data sets with good geo-
graphic sampling: 380 African Drosophila melanogaster from
the Drosophila Genome Nexus (Lack et al. 2015), a world-
wide data set of humans, 3965 humans from several locations
worldwide from the POPRES data set (Nelson et al. 2008),
and 263 Medicago truncatula from 24 countries around the
Mediterranean basin (a range-wide data set of the partially
selfing weedy annual plant from the M. truncatula HapMap
Project) (Tang et al. 2014), as summarized in Table 1.

D. melanogaster: We used whole-genome sequencing data
from the Drosophila Genome Nexus (http://www.johnpool.
net/genomes.html; Lack et al. 2015), consisting of the
Drosophila Population Genomics Project phases 1–3
(Langley et al. 2012; Pool et al. 2012) and additional African
genomes (Lack et al. 2015). After removing 20 genomes
with. 8%missing data, we were left with 380 samples from
16 countries across Africa and Europe. Since the Drosophila
samples are from inbred lines or haploid embryos, we treat
the samples as haploid when recoding: regions with residual
heterozygosity were marked as missing in the original data
set; we also removed positions with . 20% missing data.
Each chromosome arm we investigated (X, 2L, 2R, 3L, and
3R) has 2–3 million SNPs; PCA plots for each arm are shown
in Supplemental Material, Figure S1.

Human: We also used genomic data from the entire POPRES
data set (Nelson et al. 2008), which has array-derived geno-
type information for 447,267 SNPs across the 22 autosomes
of 3965 samples in total: 346 African-Americans, 73 Asians,
3187 Europeans, and 359 Indian Asians. Since these data
derive from genotyping arrays, the SNP density ismuch lower
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than the other data sets, which are each derived from
whole-genome sequencing. We excluded the sex chromo-
somes and the mitochondria. PCA plots for each chromo-
some, separately, are shown in Figure S2.

M. truncatula: Finally, we used whole-genome sequencing
data from the M. truncatula HapMap Project (Tang et al.
2014), which has 263 samples from 24 countries, primarily
distributed around the Mediterranean basin. Each of the
eight chromosomes has 3–5million SNPs; PCA plots for these
are shown in Figure S3. We did not use the mitochondria or
chloroplasts.

Data availability

The methods described here are implemented in an open-
source R package available at https://github.com/petrelharp/
local_pca, as well as scripts to perform all analyses from VCF
files at various parameter settings.

Data sets are available as follows: human (POPRES) at
dbGaP with accession number phs000145.v4.p2, Medicago
at the Medicago HapMap http://www.medicagohapmap.org/,
and Drosophila at the Drosophila Genome Nexus, http://www.
johnpool.net/genomes.html. Supplemental material available
at Figshare: https://doi.org/10.25386/genetics.7324526.

Results

In all three data sets—aworldwide sample of humans, African
D. melanogaster, and a range-wide sample ofM. truncatula—
PCA plots vary along the genome in a systematic way, showing
strong chromosome-scale correlations. This implies that varia-
tion is due to meaningful heterogeneity in a biological process,
since noise due to randomness in choice of local genealogical
trees is not expected to show long-distance correlations. Below,
we discuss the results and likely underlying causes.

Validation

Simple non-population-based simulations with Gaussian ge-
notypes showed that themethodperformsasexpected, clearly
separating regions of the genome with different underlying
covariance matrices without being affected by extreme dif-
ferences in amount of missing data (Figure S4). This simula-
tion also verifies insensitivity to ordering of top PCs, since it
was performed using a covariance matrix with the top two
eigenvalues equal, so that the order of empirical eigenvectors
(PCs) switches randomly.

Individual-based simulations using SLiM (Haller and
Messer 2017) allowed us to test the effects of recombination

and mutation rate variation, as well as linked selection. As
expected, varying recombination rate stepwise by a factor of
64 did not induce patterns in the MDS visualizations corre-
lated with recombination rate (Figure S5). Since varying mu-
tation rate with a fixed recombination map is equivalent to
varying the recombination map and remapping windows,
this also indicates that the method is not misled by variation
in mutation rate. On the other hand, a recombination map
with hotspots [the HapMap human female map for chromo-
some 7 (International Hap Map Consortium et al. 2007)] in-
duced outliers at long regions of low recombination rate (also
as expected).

Simulations with linked selection produced mixed results
(Figure S6). The method strongly identified the distinct re-
gions in the simulationwith spatially varying linked selection.
It also identified the regions (although less unambiguously)
with constant selection and stepwise varying recombination
rate, but did not clearly identify them with constant recom-
bination rate. The differences in power between these three
scenarios are likely explained by varying strength of linked
selection; the simulation with spatially varying selection was
also the case with strongest positive selection, and recombi-
nation rates were overall lower in the simulation with step-
wise varying recombination rate than in the simulation with
constant rate. These tests arenotmeant tobea comprehensive
survey of linked selection, but only to demonstrate that linked
selection can produce signals similar to what we see in real
data.

D. melanogaster

We applied the method to windows of average length 9 kbp
across chromosome arms 2L, 2R, 3L, 3R and X separately. The
first column of Figure 2 is an MDS visualization of the matrix
of dissimilarities between genomic windows: in other words,
genomic windows that are closer to each other in the MDS
plot showmore similar patterns of relatedness. For each chro-
mosome arm, the MDS visualization roughly resembles a tri-
angle, sometimes with additional points. Since the relative
position of each window in this plot shows the similarity be-
tween windows, this suggests that there are at least three
extreme manifestations of population structure typified
by windows found in the “corners” of the figure, and that
other windows’ patterns of relatedness may be a mixture of
those extremes. The next two columns of Figure 2 depict the
two MDS coordinates of each window, plotted against the
window’s position along the genome, to show how the plot
of the first column is laid out along the genome. The patterns
did not depend on the number of PCs used (see Figure S7 for

Table 1 Descriptive statistics for each data set used

Species
Number of SNPs
per window

Mean window
length (bp)

Mean number of windows
per chromosome

Mean % variance
explained by top two
principal components

D. melanogaster 1,000 9,019 2,674 0.53
Human 100 636,494 203 0.55
M. truncatula 10,000 102,580 467 0.50
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the same plot with k ¼ 5 PCs) and are only weakly correlated
with variation in missingness (see Figure S8).

To help visualize how clustered windows with similar
patterns of relatedness are along each chromosome arm,
we selected three extreme windows in the MDS plot and
the 5% of windows that are closest to it in the MDS coordi-
nates, then highlighted these windows’ positions along the
genome, and created PCA plots for the windows, combined.
Representative plots are shown for three groups of windows
on each chromosome arm in Figure 2 (groups are shown in

color) and in Figure S9 (PCA plots). The latter plots are quite
different, showing that genomic windows in different re-
gions of the MDS plot indeed show quite different patterns
of relatedness.

Themost striking variation in patterns of relatedness turns
out to be explained by several large inversions that are poly-
morphic in these samples, as discussed in Corbett-Detig and
Hartl (2012) and Langley et al. (2012). To depict this, Figure
3 shows the PCA plots in Figure S9 recolored by the orienta-
tion of the inversion for each sample. Taking chromosome

Figure 2 Variation in patterns of relatedness for windows across D. melanogaster chromosome arms. In all plots, each point represents one window
along the genome. The first column shows the MDS visualization of relationships between windows, and the second and third columns show the two
MDS coordinates against the midpoint of each window; rows correspond to chromosome arms. Colors are consistent for plots in each row. Vertical lines
show the breakpoints of known polymorphic inversions. Solid black lines are for the inversions we used in Figure 3, while dotted gray lines are for other
known inversions. MDS, multidimensional scaling.
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arm 2L as an example, the two regions of similar, extreme
patterns of relatedness shown in green in the first row of
Figure 2 lie directly around the breakpoints of the inversion
In(2L)t, and the PCA plots in the first rows of Figure 3 show
that patterns of relatedness here are mostly determined by
inversion orientation. The regions shown in purple on chro-
mosome 2L lie near the centromere and have patterns of re-
latedness reflective of two axes of variation, seen in Figure 3

and Figure S9, which correspond roughly to latitude within
Africa and to degree of “cosmopolitan” admixture, respec-
tively [see Lack et al. (2015) for more about admixture in
this sample]. The regions shown in orange on chromosome
2L mostly lie inside the inversion and show patterns of re-
latedness that are a mixture between the other two, as
expected due to recombination within the (long) inversion
(Guerrero et al. 2011). Similar results are found in other

Figure 3 PCA plots for the three sets of genomic windows colored in Figure 2, on each chromosome arm of D. melanogaster. In all plots, each point
represents a sample. The first column shows the combined PCA plot for windows whose points are colored green in Figure 2; the second is for orange
windows; and the third is for purple windows. In each, samples are colored by orientation of the polymorphic inversions In(2L)t, In(2R)NS, In(3L)OK,
In(3R)K, and In(1)A, respectively [data from Lack et al. (2015)]. In each, “INV” denotes an inverted genotype, “ST” denotes the standard orientation, and
“N” denotes unknown. PC, principal component; PCA, PC analysis.
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chromosome arms, albeit complicated by the coexistence of
more than one polymorphic inversion; however, each break-
point visibly affects patterns in the MDS coordinates (see
vertical lines in Figure 2).

To see how patterns of relatedness vary in the absence of
polymorphic inversions, we performed the same analyses
after removing, for each chromosome arm, any samples car-
rying inversions on that arm. In the results, shown in Figure 4
and Figure S10, the striking peaks associated with inversion
breakpoints are gone, and previously smaller-scale variation
now dominates the MDS visualization. For instance, the ma-
jority of the variation along 3L in Figure 2 is on the left end of
the arm, dominated by two large peaks around the inversion
breakpoints; there is also a relatively small dip on the right
end of the arm (near the centromere). In contrast, Figure 4
and Figure S10 show that after removing polymorphic inver-
sions, remaining structure is dominated by the dip near the
centromere. Without inversions, variation in patterns of re-
latedness shown in the MDS plots follows similar patterns to
that previously seen in D. melanogaster recombination rate
and diversity (Langley et al. 2012; Mackay et al. 2012). In-
deed, correlations between the recombination rate in each
window and the position on the first MDS coordinate are
highly significant (Spearman’s r ¼ 0:54; p, 23 10216; Fig-
ure 4 and Figure S11). This is consistent with the hypothesis
that variation is due to selection, since the strength of linked
selection increases with local gene density, measured in units
of recombination distance. The number of genes—measured
as the number of transcription start and end sites within each
window—was not significantly correlated with MDS coordi-
nate ðp ¼ 0:22Þ:

Human

As we did for the Drosophila data, we applied our method
separately to all 22 human autosomes. On each, variation in
patterns of relatedness was dominated by a small number of
windows having similar patterns of relatedness to each other
that differed dramatically from the rest of the chromosome.
These may primarily be inversions: outlying windows coin-
cide with three of the six large polymorphic inversions de-
scribed in Antonacci et al. (2009), notably a particularly
large, polymorphic inversion on 8p23 (Figure 5). Similar
plots for all chromosomes are shown in Figure S12, Figure
S13, and Figure S14. PCA plots of many outlying windows
show a characteristic trimodal shape (shown for chromosome
8 in Figure S15), presumably distinguishing samples having
each of the three diploid genotypes for each inversion orien-
tation (although we do not have data on orientation status).
This trimodal shape has been proposed as a method to iden-
tify inversions (Ma and Amos 2012), but distinguishing this
hypothesis from others, such as regions of low recombination
rate, would require additional data.

We also applied the method on all 22 autosomes together,
and found that, remarkably, the inversion on chromosome
8 is still themost striking outlying signal (Figure S16). Further
investigation with a denser set of SNPs, allowing a finer
genomic resolution, may yield other patterns.

M. truncatula

Unlike the other two species, the method applied separately
on all eight chromosomes of M. truncatula showed similar
patterns of gradual change in patterns of relatedness across

Figure 4 The effects of population structure without inversions is correlated to recombination rate in D. melanogaster. The first plot (in red) shows the
first MDS coordinate along the genome for windows of 10,000 SNPs, obtained after removing samples with inversions (a plot analogous to Figure 2 is
shown in Figure S10). The second plot (in blue) shows local average recombination rates in cM/Mbp, obtained as midpoint estimates for 100-kbp
windows from the Drosophila recombination rate calculator (Fiston-Lavier et al. 2010) release 5, using rates from Comeron et al. (2012). The third plot
(in black) shows the number of genes’ transcription start and end sites within each 100-kbp window, divided by two. Transcription start and end sites
were obtained from the RefGene table from the University of California Santa Cruz browser. The histone gene cluster on chromosome arm 2L is
excluded. chr, chromosome; MDS, multidimensional scaling.
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each chromosome, with no indications of chromosome-
specific patterns. This consistency suggests that the factor
affecting the population structure for each chromosome is the
same, as might be caused by varying strengths of linked se-
lection. To verify that variation in the effects of population
structure is shared across chromosomes, we applied the
method to all chromosomes together. Results for chromo-
some 3 are shown in Figure 6 and other chromosomes are
similar: across chromosomes, the high values of the first MDS
coordinate coincide with the position of the heterochromatic
regions surrounding the centromere, which often have lower
gene density and may therefore be less subject to linked se-
lection. To verify that this is a possible explanation, we
counted the number of genes found in each window using
gene models in Mt4.0 from jcvi.org (Tang et al. 2014), which
are shown juxtaposed with the first MDS coordinate of each
window in Figure 7 and are significantly correlated, as shown
in Figure S17 (values shown are the number of start and end
positions of each predicted mRNA transcript, divided by two,
assigned to the nearest window.) However, other genomic

features, such as distance to centromere, show roughly the
same patterns, so we cannot rule out alternative hypotheses.
In particular, fine-scale recombination rate estimates are not
available in a form mappable to Mt4.0 coordinates [although
those in Paape et al. (2012) appear visually similar].

The results were highly consistent across window sizes,
window types (SNPs or bp), and number of PCs, as shown in
Table S2.

Discussion

Our investigations have found substantial variation in the
patterns of relatedness formed by population structure across
the genomes of three diverse species, revealing distinct bi-
ological processes driving this variation in each species. More
investigation, particularly on more species and data sets, will
help to uncover what aspects of species history can explain
these differences. With growing appreciation of the hetero-
geneous effects of selection across the genome, especially the
importance of adaptive introgression and hybrid speciation

Figure 5 Variation in structure between windows on human chromosomes 8, 15, and 17. Each point in each plot represents a window. The first
column shows the MDS visualization of relationships between windows; the second and third columns show the two MDS coordinates of each window
against its position (midpoint) along the chromosome. Rows, from top to bottom show chromosomes 8, 15, and 17. The vertical red lines show the
breakpoints of known inversions from Antonacci et al. (2009). MDS, multidimensional scaling.

PCA Along the Genome 297



(Fitzpatrick et al. 2010; Staubach et al. 2012; Hufford et al.
2013; Brandvain et al. 2014; Pool 2015), local adaptation
(Lenormand 2002;Wang and Bradburd 2014), and inversion
polymorphisms (Kirkpatrick 2010; Kirkpatrick and Barrett
2015), local PCA may prove to be a useful exploratory tool
to discover important genomic features.

Wenowdiscusspossible implicationsof this variation in the
effects of population structure, the impact of various param-
eter choices in implementing the method, and possible addi-
tional applications.

Chromosomal inversions

Amajordriver of variation inpatternsof relatedness in the two
data sets we examined seems to be inversions. This may be
common, but the example of M. truncatula shows that poly-
morphic inversions are not ubiquitous. PCA has been pro-
posed as a method for discovering inversions (Ma and
Amos 2012); however, the signal left by inversions likely
cannot be distinguished from long haplotypes under balanc-
ing selection or simply regions of reduced recombination
without additional lines of evidence. Inversions show up in
our method because across the inverted region, most gene
trees share a common split that dates back to the origin of the
inversion. However, in many applications, inversions are a

nuisance. For instance, SMARTPCA (Patterson et al. 2006)
reduces their effect on PCA plots by regressing out the effect
of linked SNPs on each other. Removing samples with the less
common orientation of each inversion reduced, but did not
eliminate, the signal of inversions seen in the D. melanogaster
data set, demonstrating that the genomic effects of tran-
siently polymorphic inversions may outlast the inversions
themselves.

Genealogical noise?

The field of phylogenetics has long had to deal with the fact
that there can be a great number of different local phylogenies
along the genome, even between species (Avise et al. 1983;
Pamilo and Nei 1988; Hobolth et al. 2007). The within-
species patterns we observe might contribute to such incom-
plete lineage sorting among future descendant species of a
given population. The neutral distribution of variation in these
patterns has been used to infer demographic history, both be-
tween species (Slatkin and Pollack 2006) and within species
(Beeravolu et al. 2018). If these distinct phylogenies are
merely a result of neutral stochasticity, there is not expected
to be a correlation between local phylogeny and other geno-
mic features. However, in some cases, the local assortment of
ancestral diversity and subsequent introgression between

Figure 6 MDS visualization of patterns of relatedness on M. truncatula chromosome 3, with corresponding PCA plots (upper panels). Each point in the
plot represents a window; the structure revealed by the MDS plot is strongly clustered along the chromosome, with windows in the upper-right corner
of the MDS plot (colored red) clustered around the centromere, windows in the upper-left corner (purple) furthest from the centromere, and the
remaining corner (green) intermediate. Plots for remaining chromosomes are shown in Figure S18. PCA plots for the sets of genomic windows colored
(A) green, (B) orange, and (C) purple in the upper panels (lower panels). Each point corresponds to a sample, colored by country of origin. Plots for
remaining chromosomes are shown in Figure S19. MDS, multidimensional scaling; PC, principal component; PCA, PC analysis.
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sister taxa shows clear signs of selection, as for instance in the
wild tomato clade (Pease et al. 2016).

The effect of selection

Neutral processes are not expected to produce the chromo-
some-scale correlationswesee inpatternsof relatedness in the
M. truncatula and D. melanogaster data sets, because corre-
lations in patterns of relatedness induced by neutral process-
es should extend no further than does linkage disequilibrium
(i.e., much less than a chromosome’s length). This suggests
that they are produced by linked selection, a hypothesis
backed up by correlations with gene density and recombina-
tion rate. We have also shown with simulations that linked
selection can, in at least some circumstances, produce the
sorts of patterns we observe. How might selection cause var-
iation in patterns of relatedness? For instance, background
selection (the effect on linked sites of selection against dele-
terious mutations) (Charlesworth et al. 1993, Charlesworth

2013) can informally be thought of as reducing the number of
potential contributors to the gene pool in regions of the ge-
nome with many possible deleterious mutations (Hudson
and Kaplan 1995). For this reason, if it acts in a spatial con-
text, it is expected to induce samples from nearby locations to
cluster together more frequently. Therefore, regions of the
genome harboring many targets of local adaptation may
show similar patterns, since migrant alleles in these regions
will be selected against, and so locally gene trees will more
closely reflect spatial proximity. Other forms of selection,
such as hard sweeps on new mutations, repeated selection
on standing variation, local adaptation, or temporally fluctu-
ating selection, could clearly lead to variation in geographic
patterns of relatedness in a similar way.

Another possible contributor is recent admixture between
previously separated populations, the effects of which were
not uniform across the genome due to selection. For instance,
it has been hypothesized that large-scale variation in amount

Figure 7 MDS coordinate and gene density for each window in the Medicago genome, for chromosomes 1–8 (numbered above each pair of figures).
For each chromosome, the red plot above is first coordinate of MDS against the middle position of each window along each chromosome. The black
plot below is gene count for each window against the middle position of each window. MDS, multidimensional scaling.
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of introgressed Neanderthal DNA along the genome is due
to selection against Neanderthal genes, leading to greater
introgression in regions of lower gene density (Harris and
Nielsen 2016; Juric et al. 2016). African D. melanogaster
are thought to have a substantial amount of recently intro-
gressed genome from cosmopolitan sources; if selection reg-
ularly favors genes from one origin, this could lead to
substantial variation in patterns of relatedness correlated
with local gene density.

There has been substantial debate over the relative impacts
of different forms of selection (e.g., Charlesworth et al. 1997;
Charlesworth 2012; Hedrick 2013; Pease and Hahn 2013;
Burri et al. 2015; Corbett-Detig et al. 2015; Harris and Niel-
sen 2016; Martin et al. 2016; Phung et al. 2016; Stankowski
et al. 2018). These have been difficult to disentangle in part
because, for the most part, theory makes predictions that are
only strictly valid in randomly mating (i.e., unstructured)
populations, and it is unclear to what extent the spatial struc-
ture observed in most real populations will affect these pre-
dictions. Developing a method to distinguish these forms of
selection from each other and from the effects of demography
is a major challenge to the field. It may be possible to make
progress using statistics that make stronger use of spatial in-
formation, such as the variation in relatedness that we ob-
serve here, similar to the method of Beeravolu et al. (2018).

Parameter choices

There are several choices in the method that may in principle
affect the results. As with whole-genome PCA, the choice of
samples is important, as variation not strongly represented in
the sample will not be discovered. The effects of strongly
imbalanced sampling schemes are often corrected by drop-
ping samples in overrepresented groups; but downweighting
may be a better option that does not discard data. Next, the
choice of window size may be important, although in our
applications, results were not sensitive to this. Finally, which
collections of genomic regions are compared to each other
(steps 3 and 4 in Figure 1), along with the method used to
discover common structure, will affect results. We usedMDS,
applied to either each chromosome separately or to the entire
genome; for instance, human inversions are clearly visible as
outliers when compared to the rest of their chromosomes, but
genome-wide, their signal is obscured by the numerous other
signals of comparable strength.

Besideswindow length, there is also the question of how to
choose windows. In these applications, we have used non-
overlapping windows with equal numbers of polymorphic
sites. However, we found little change in results when using
different window sizes or when measuring windows in phys-
ical distance (in base pairs).

Finally, our software allows different choices for how
many PCs to use in approximating the structure of each win-
dow (k in Equation 1) and howmanyMDS coordinates to use
when describing the distance matrix between windows, but
in our exploration, changing these has not produced dramat-
ically different results. However, this choice could in some

situations be important: for instance, if the kth and ðkþ 1Þst
PCs are sufficiently different but have similar eigenvalues,
then small amounts of noise could cause these to switch,
leading to spuriously inferred differences between windows
in which one or the other was included in the top k PCs. This
does not seem to be a problem in our applications, as chang-
ing the number of PCs did not affect the qualitative results.
These choices are all part of more general techniques in di-
mension reduction and high-dimensional data visualization;
we encourage the user to experiment.

Applications

So-called cryptic relatedness between sampleshasbeenoneof
the major sources of confounding in GWAS, and so methods
must account for it by modeling population structure or kin-
ship (Astle and Balding 2009; Yang et al. 2014). Modern
“mixed model” methods (e.g., Loh et al. 2015) account for
this with either a single, genome-wide kinship matrix or one
constructed using only sites unlinked to the focal SNP. Since
the effects of population structure are not constant along the
genome, this could in principle lead to an inflation of false
positives in parts of the genome with stronger population
structure than the genome-wide average. A method such as
ours might be used to estimate local kinship matrices, thus
providing a more sensitive correction, although doing so
without removing the signal itself could be challenging. For-
tunately, in our human data set this does not seem likely to
have a strong effect: most variation is due to small, indepen-
dent regions, possibly primarily inversions, and so may not
have a major effect on GWAS. In the other species we exam-
ined, particularly D. melanogaster, treating population struc-
ture as a single quantity would entail a substantial loss of
power and could potentially be misleading.
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Appendix

Choosing window length

The choice of window length entails a balance between signal and noise. In very short windows, genealogies of the sampleswill
only be represented by a few trees, so variation between windows represents demographic noise rather than meaningful
variation in patterns of relatedness. Longer windows generally have more distinct trees (and SNPs), allowing for less noisy
estimation of local patterns of relatedness. However, to better resolve meaningful signal, i.e., differences in patterns of
relatedness along the genome, we would like reasonably short windows.

Since we summarize patterns of relatedness using relative positions in the principal componentmaps, we quantify “noise” as
the standard error of a sample’s position on PC1 in a particular window, averaged across windows and samples, and “signal” as
the standard deviation of the sample’s position on PC1 over all windows, averaged over samples. The definition of eigenvectors
does not specify their sign, and so when comparing between windows we choose signs to best match each other: after choosing
PC11, for instance, if u is the first eigenvector obtained from the covariance matrix for window j, then we next choose
PC1j 5 6u, where the sign is chosen according to which of kPC11 2 uk or kPC11 1 uk is smaller.

After doing this, the mean variance across windows is
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where PC1ij is the position of the ith individual on PC1 in window j, and PC1j 5 ð1=NÞP  N
j51PC1ij. We estimate the standard

error for each PC1ij using the block jackknife (Efron, 1982; Busing et al. 1999): we divide the jth window into 10 equal-sized
pieces, and let PC1ij;k denote the first principal component of this region found after removing the kth piece; then the estimate
of the squared standard error is s2
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. Averaging over samples and windows,
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For themain analysis,wedefinedwindows to each consist of the samenumber of neighboringSNPs, and calculateds2
signal and

s2
noise for a range of window sizes (i.e., numbers of SNPs). For our main results we chose the smallest window for which s2

signal
was consistently larger than s2

noise (but checked other sizes); the values for various window sizes across Drosophila chromo-
somes are shown in Table S1. In the cases we examined, we found nearly identical results after varying window size, and
choosing windows to be of the same physical length (in bp) rather than in numbers of SNPs.

Simulations

We implemented two types of simulation:first, simple simulations ofGaussian “genotypes”where the expectation of variation in
“population structure” was clear; and next, individual-based simulations with explicit genomes, using SLiM.

Gaussian simulations
We simulated genotypes at each locus independently, drawing each vector of genotypes from a multivariate Gaussian

distribution with zero mean and covariance matrix S. Sampled individuals came from three populations, and each Sij depends
on which populations the individuals i and j are in, as well as the location along the chromosome. There are three population-
level mean relatedness matrices along the genome, which apply to the first quarter (Sð1Þ), the middle half (Sð2Þ), and the last
quarter (Sð3Þ), respectively:
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If indiviudals i and j are in populations pðiÞ and pðjÞ respectively, then the covariance between their genotypes is
Sij 5 SpðiÞ;pðjÞ, using the appropriate S for that segment of the genome. The variance of individual i’s genotype is
Sii 5 SpðiÞ;pðiÞ 1 0:1.

We first created “genotypes” in this way with fifty individuals from each of the three populations; running our method on a
genome with 99 windows of 400 loci each produced the first plot in Supplementary Figure S4. These matrices are chosen so
that the top two eigenvalues S are the same (both 50.1), and so the ordering of the top two PCs is arbitrary. If our method was
sensitive to PC ordering, then half the windows in each region that have one ordering would cluster with each other, separate
from the other half.

We then marked each genotype in the first half of the chromosome as missing, independently, with probability 1=2 and ran
our method again, producing the second plot of Supplementary Figure S4. If our method was influenced by missing data, we
would expect the first half of the chromosome to separate from the second in the MDS plot.

SLiM simulations
Our SLiM simulations were constructed as follows. Individuals are diploid, and genomes have a length of 153,520,244 bp.

Recombination was either (a) flat, with a constant rate of 1029; (b) according to the human female HapMap map for
chromosome 7; or (c) constant in each of seven equal-sized regions, beginning at 2:043 1028, descending by a factor of four
for three steps, and then ascending by a factor of four for three steps, so that the middle seventh has the lowest recombination
rate, and the outer two sevenths has a rate 64 times higher. Selected mutations are introduced at a rate of 10210 per bp per
individual per generation, and have selection coefficients drawn from a Gamma distribution with mean 0.005 and shape 2;
each coefficient are either positive or negative with probabilities 1=30 and 29=30 respectively. Each simulation was run for
50,000 generations.

Each individual has a spatial position in the two-dimensional square ofwidthW 5 8. Each time step, each individual chooses
the nearest other to mate with, producing a random, Poisson distributed number of offspring with mean 1=3. Offspring are
assigned random spatial locations displaced from their parent’s by a bivariate Gaussian with mean zero and standard deviation
s 5 0:2, reflected to stay within the habitat range.

Each individual survives to the next time step with probability equal to their fitness. Fitness values are determined
multiplicatively by the effects of each mutation, but are multiplied by an additional factor determined by the local density
of individuals. This factor is equal to r=ð11CÞ, where r 5 2pKs2 is the carrying capacity per circle of radius s; K 5 100 is the
mean equilibrium population density; and C is the sum of a Gaussian kernel with standard deviation s 5 0:1 between the focal
individual and all other individuals within distance 3s. To avoid edge effects, fitnesses are further multiplied by minð1; zÞ,
where z is the distance to the nearest boundary. This produces populations that fluctuate at equilibrium around 6,000
individuals in total, fairly evenly spread across the square.

In one additional simulation, we modified fitnesses by multiplying the selective effect of each allele in each individual by
multiplying it by 2x=W2 1, where x is the x coordinate of the individual. This makes the effect of each allele opposite on the left
and on the right, and neutral in the middle, and leads to a moderate number of balanced polymorphisms.
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