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Abstract

Background: Observational burden of illness studies are used in pharmacoepidemiology to address a variety of
objectives, including contextualizing the current treatment setting, identifying important treatment gaps, and
providing estimates to parameterize economic models. Methodologies such as retrospective chart review may be
utilized in settings for which existing datasets are not available or do not include sufficient clinical detail. While
specifying the number of charts to be extracted and/or determining whether the number that can feasibly
extracted will be clinically meaningful is an important study design consideration, there is a lack of rigorous
methods available for sample size calculation in this setting. The objective of this study was to develop
recommended sample size calculations for use in such studies.

Methods: Calculations for identifying the optimal feasible sample size calculations were derived, for studies
characterizing treatment patterns and medical costs, based on the ability to comprehensively observe treatments
and maximize precision of resulting 95% confidence intervals. For cost outcomes, if the standard deviation is not
known, the coefficient of variation cv can be used as an alternative. A case study of a chart review of advanced
melanoma (MELODY) was used to characterize plausible values for cv in a real-world example.

Results: Across sample sizes, any treatment given with greater than 1% frequency has a high likelihood of being
observed. For a sample of size 200, and a treatment given to 5% of the population, the precision of a 95%
confidence interval (CI) is expected to be ±0.03. For cost outcomes, for the median cv value observed in the
MELODY study (0.72), a sample size of approximately 200 would be required to generate a 95% CI precise to
within ±10% of the mean.

Conclusion: This study presents a formal guidance on sample size calculations for retrospective burden of illness
studies. The approach presented here is methodologically rigorous and designed for practical application in
real-world retrospective chart review studies.
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Background
Observational burden of illness studies are widely used
to characterize treatment patterns, resource utilization,
costs, and clinical outcomes associated with a disease. In
pharmacoepidemiology, burden of illness studies can
contextualize the current treatment setting, identify im-
portant treatment gaps and their associated consequences,

characterize the potential benefits of a new therapy,
and provide estimates to parameterize economic
models [1–3].
With the increased availability of “big data”, methodo-

logical considerations for observational research often
focus on the use of large databases – while challenges
remain in this setting, available sample size and power
do not tend to be problematic given the large pool of
individuals from which to draw [4]. However, such
databases are not able to answer all burden of illness
research questions, due to insufficient clinical detail
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being recorded, the rarity of the condition, or an appro-
priate database not being available for a jurisdiction of
interest. In this setting, chart review remains a powerful
methodology for accessing comprehensive data directly
from de-identified patient charts – allowing for
real-world burden of illness parameters to be assessed,
for example, for individuals with a particular range of
laboratory measures or a specific genetic biomarker.
An important limitation to chart review is feasibility of

achieving a sufficiently large sample at a reasonable cost.
Depending on the setting, charts may not be centrally
linked, requiring engagement of individual clinicians to
obtain chart access; and if detailed medical data are
required to meet study objectives, data extraction may
involve several hours per chart. Thus, in the context of a
retrospective chart review, a critical a priori consider-
ation is the number of charts that are required to mean-
ingfully address research questions, and the feasibility of
identifying and extracting this number of charts.
Conversely, researchers may know at the outset how
many charts are available to be extracted, and must
consider the expected value of the information, before
deciding whether to perform chart extraction.
While methodological guidance for conducting retro-

spective chart reviews has been previously described,
formal guidance on sample size calculations is not avail-
able [5, 6]. Commonly-used sample size calculations are
typically based on a hypothesis-testing framework. Since
the outcomes of burden of illness studies tend to be
descriptive rather than inferential, such calculations are
not aligned with burden of illness objectives, and have
limited relevance in this setting. For a burden of illness
study the aim of sample size calculation is to ensure suf-
ficient precision in descriptive outcomes, e.g. character-
ized by the width of 95% confidence intervals (CIs).
Given the absence of validated methods for a priori sam-
ple size estimates in the context of retrospective chart
review studies, the aim of this article was to develop and
present rigorous approaches for sample size calculation
using a real-world case study.

Methods
Sample size formulae are presented for parameters that
are of frequent interest in the context of a burden of
illness study. This includes summarizing treatment pat-
terns (such as the proportion receiving each treatment,
and a comprehensive list of therapies used for a condi-
tion, including rare therapies), presence of comorbidities,
clinical outcomes such as laboratory measures or calcu-
lated disease scores, and resource utilization and cost
outcomes (including results stratified by subgroup). In
practice, multiple outcomes are often of interest and
sample size calculations will generate different projec-
tions across outcomes; sample size considerations can be

focussed on the outcomes of greatest interest, and/or
those that generate the largest sample size requirement.
The methods described here are generally applicable to
categorical (treatment patterns, comorbidity proportion)
and continuous outcomes (costs, continuous clinical
measures); treatment patterns and costs, respectively,
are used as illustrative examples.

Sample size calculations for categorical outcomes
(e.g. treatment patterns)
When considering treatment distributions in a popula-
tion, assuming a binomial distribution (n, p) for receiv-
ing a particular treatment, in which the n represents the
sample size and p represents the probability of receiving
the treatment, the following are direct results of the
binomial distribution:
Expected number of observed patients receiving the

treatment is:

n � p ð1Þ

The width of the 95% CI for estimating p is:

�1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þ

n

r
ð2Þ

The probability of not receiving the treatment is
(1 − p), and therefore the probability of all n patients
not receiving the treatment is (1 − p)n, such that the
probability of observing at least one patient receiving
the treatment is:

1− 1−pð Þn ð3Þ

These formulae can be used to define a sample size
that ensures all key treatments will be observed, and that
the proportions can be estimated within desired preci-
sion. To utilize them to generate sample size require-
ments, limited a priori data are required;. n can be
selected to yield acceptable values for both quantities.
Because the required sample size n increases as p moves
further from 0.50, p can be defined to be the most
extreme proportion that would be of interest (e.g. a rare
treatment given to 1% of the population). Alternatively,
sample size requirements can be determined for a range
of values of p, or, in situations where the maximum sam-
ple size is fixed due to other constraints, the correspond-
ing minimum treatment frequency can be calculated.

Sample size calculations for continuous outcomes
(e.g. costs)
When considering medical costs, assuming a normal
distribution for mean costs μ and standard deviation σ,
precision associated with a particular sample size can be
characterized by the width W of the 95% CI:
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W ¼ 1:96 � σffiffiffi
n

p ð4Þ

If an estimate of σ is available, e.g. based on published
evidence for another jurisdiction or a similar indication,
then the width of the CI can be expressed for the
maximum feasible sample size n. Alternatively, Eq. (4)
can be rearranged so that the required n can be calcu-
lated to obtain 95% CIs for a desired width ±W:

n ¼ 1:962σ

W2 ð5Þ

Frequently, estimates of σ aren’t available, making
sample size calculations challenging – a challenge com-
mon across a variety of contexts when estimating sample
size. In the absence of such data, one option is to con-
sider the coefficient of variation cv, defined as σ

μ . Based

on this, σ can be expressed as cv × μ, and for assumed
values of cv and μ, n can be estimated without specific
estimates for σ. Replacing σ in Eq. (4), the width of a
95% CI can be expressed as:

�1:96 � cv � μffiffiffi
n

p ð6Þ

Via this formula, required sample size n can be calcu-
lated for a desired with W based on rearranging Eq. (6).
If an estimate of μ is available, n can therefore be
presented for a desired absolute CI width W Eq. (7).
Otherwise, if μ is unknown, the desired width could in-
stead be expressed as a desired percentage of the mean,
e.g. it is desired to estimate mean cost with a 95% confi-
dence interval precise to within +/− V% of the mean.
This is equivalent to saying that V ¼ W

μ , which can be in-

corporated into Eq. (7); doing this allows for calculation
of n without knowing μ or σ Eq. (8). If V is set equal to
100%, the width of the CI would be equal to μ so that
the lower bound of the CI for costs would be 0. Smaller
values of V, are associated with narrower CIs, entirely
above 0.
Expressed with respect to absolute width W, the

required sample size is:

1:96� cv � μ
V

� �2

ð7Þ

Expressed with respect to width V defined as percentage
of the mean, the required sample size is:

1:96� cv
V

� �2

ð8Þ

A real-world case study is presented below, to describe
the precision achieved for a retrospective chart review of
burden of illness including treatment patterns and costs

in advanced melanoma (the MELODY study) [7], with a
total sample size of 655 patients across the United King-
dom (UK), Italy, and France. Costs were presented both
per individual overall, as well as per user of specific
utilization categories (e.g. hospitalization costs amongst
the subgroup with non-zero hospitalization). The range
of cv ratios observed in the MELODY study are
presented to provide plausible values for future studies.
A sample size calculator based on the formulas

presented is available as supplementary material (see
Additional file 1).

Results
Based on Eqs. (1–3), Table 1 presents calculated rela-
tionships between sample sizes and the expected num-
ber of cases to be observed, the probability of observing
a treatment in practice, and expected precision, for a
range of treatment probabilities. Across sample sizes,
any treatment given with greater than 1% frequency has
a high likelihood of being observed. For a sample of size
200, and a treatment given to 5% of the population, the
precision of a 95% CI is expected to be ±0.03; i.e. the
expected 95% CI would be (0.02–0.08). Generally, with
respect to characterizing treatment patterns, sample
sizes above 200 are only required for treatments given to
1% of the population or less, or if particularly narrow
precision estimates are needed. The information in Table
1 can be used to identify the optimal sample size based
on a treatment pattern-related research question, or, in
the case of a fixed sample size, to identify the level of
detail that can be described.
For cost estimation, based on Eqs. (7) and (8), assum-

ing that an estimate for the standard deviation is not
available, an estimate of cv can instead be used.
Observed data from the MELODY study are presented
in Table 2 to describe a range of cv observed in practice.
Trends in observed cv values included higher values typ-
ically observed for hospice and hospital costs relative to
outpatient costs, and higher when considering the full
population of included patients vs. the subset with
non-zero use of a particular category of utilization.
Across all categories considered, values for cv ranged
from 0.26 to 4.30, with a median value of 0.72. In prac-
tice, a range of possible values for can be considered,
based on any a priori knowledge regarding heterogeneity
in the population with respect to health resource
utilization and cost outcomes of interest, e.g. the
expected range of disease severity, and the anticipated
distribution of costs with respect to routine maintenance
and care vs. high cost acute treatment such as inpatient
stays.
Required sample sizes based on Eq. (8) are presented

in Fig. 1. Figure 1a displays sample size requirement for
the full range of values for cv observed in the MELODY
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study, while Fig. 1b only considers values for cv between
0 and 1. For the median cv value of 0.72 from the MEL-
ODY study, a sample size of approximately 200 would
be required to generate a 95% CI precise to within ±10%
of the mean. For a cv of 4.5, more than 8000 individuals
would be required to estimate a 95% CI precise to
within ±10% of the mean. Thus, in situations where
large variability is anticipated, e.g. a sample ranging
from zero costs to long and costly hospitalizations, the
required sample size may be prohibitively large for a
chart review or prospective study, requiring access to
an administrative or other large database.
When determining optimal sample size, it is important

to consider any subgroups of interest, and either target
such subgroups directly in sampling strategy or account
for expected sample size needs if only the overall popu-
lation is to be sampled. For example, if descriptive cost
analyses are to be conducted for a sample that is
estimated to be 20% of the overall population, and a
required sample size is identified based on required
precision for this subgroup, the full sample will need to
be 1/20% = 5x the required sample size identified by the
subgroup.

Discussion
Chart reviews are commonly used to assess clinical
outcomes, treatment patterns, and healthcare resource
use and costs for more rare health conditions, for very

specific indications, or in cases where the required
parameters are not captured in large datasets. Despite
their ubiquity, methodologic guidance on how to con-
duct rigorous chart reviews, particularly with respect to
selecting appropriate sample sizes, are few. Even the
existing methodologic guidance on how to conduct chart
reviews provide little direction in this area; suggesting it
is beyond the scope of the guidance [6], or assuming a
randomized trial-like, hypothesis testing framework [5],
rather than methods appropriate for the descriptive
objectives that often frame chart reviews. We therefore
aimed to fill this gap by providing a framework for
estimating appropriate sample sizes for study designs
that aim to precisely estimate treatment patterns or re-
source use parameters, rather than comparing outcomes
between groups. These can be especially relevant for sit-
uations where the availability of patient charts is limited
by time, budget, or the available population size.
We found that for objectives around summarizing cat-

egorical and continuous, sample sizes of 100 patients
and greater are in most cases sufficient; although larger
samples may be required to characterize cost outcomes
and/or examine subgroups. For objectives around cost
estimation, greater sample sizes are required, particularly
if relatively precise estimation is desired, and/or if results
specific to particular subgroups are of interest. If 200 to
400 patient charts is the maximum feasible sample size,
as is often the case in practice, it can be expected that

Table 1 Expected number of observed cases; probability and expected precision of observing a treatment in practice

Expected number of individuals receiving treatment; (Probability of observing treatment at least once) ± Expected 95% confidence interval
width for proportion receiving treatment

n = 50 n = 100 n = 200 n = 300 n = 500 n = 1000

p = 0.01 1 (0.39); ±0.03 1 (0.63); ±0.02 2 (0.87); ±0.01 3 (0.95); ±0.01 5 (0.99); ±0.01 10 (1.00); ±0.01

p = 0.05 3 (0.92) ±0.06 5 (0.99) ±0.04 10 (1.00) ±0.03 15 (1.00) ±0.02 25 (1.00) ±0.02 50 (1.00) ±0.01

p = 0.10 5 (0.99) ±0.08 10 (1.00) ±0.06 20 (1.00) ±0.04 30 (1.00) ±0.03 50 (1.00) ±0.03 100 (1.00) ±0.02

p = 0.25 13 (1.00) ±0.12 25 (1.00) ±0.08 50 (1.00) ±0.06 75 (1.00) ±0.05 125 (1.00) ±0.04 250 (1.00) ±0.03

p = 0.50 25 (1.00) ±0.14 50 (1.00) ±0.10 100 (1.00) ±0.07 150 (1.00) ±0.06 250 (1.00) ±0.04 500 (1.00) ±0.03

p = 0.75 28 (1.00) ±0.12 75 (1.00) ±0.08 150 (1.00) ±0.06 225 (1.00) ±0.05 375 (1.00) ±0.04 750 (1.00) ±0.03

Table 2 Observed values of coefficient of variation cv from the MELODY study

United Kingdom Italy France

Mean SD Cv Mean SD Cv Mean SD Cv

Costs per person

Hospitalization 3225 7132 2.21 2486 10,689 4.3 6262 6553 1.05

Hospice 2394 4247 1.77 185 396 2.14 298 511 1.72

Outpatient 587 275 0.47 29 15 0.51 28 31 1.11

Costs per user

Hospitalization 11,437 13,432 1.17 3306 2209 0.67 11,469 8859 0.77

Hospice 10,363 5103 0.49 185 94 0.51 3429 2079 0.61

Outpatient 782 314 0.4 72 28 0.39 59 15 0.26
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cost estimate 95% confidence intervals will be precise to
within 5–15% of the mean, depending on the ratio of
standard deviation to mean costs.
These sample size formulae can be used in two

distinct ways. First, if study resources are flexible and
desired precision is known, formulae can be used to
guide sample size selection. Second, if study resources or
available sample size is fixed, formulae can be used to
generate anticipated values of precision. We have vali-
dated the use of these formulae in a number of other
chart review studies [8–10]; and have provided this cal-
culator available online for others to use going forward.
This methodological study addresses an important

knowledge gap, as sample sizes are frequently deter-
mined using ad-hoc approaches and/or based only on

feasibility considerations. Indeed, a non-systematic
review of ten recently-published chart reviews focusing
on assessing treatment patterns and costs revealed that
no studies presented a rationale for their chosen sample
size [11–20]. One rule of thumb that has been suggested
[6], that is analogous to sample size considerations for
regression analyses, is that a minimum of 5–10 charts
per variable is required to obtain results that are likely
to be both true and clinically useful [21, 22]. However,
the number and complexity of outcomes that tend to be
considered within a chart review may ultimately limit
the utility of this rule in these circumstances, compared
to a regression model evaluating the association between
a set of independent variables and one dependent
variable.

Fig. 1 Sample size required across values for coefficient of variation from (a) 0–4.5 and (b) 0–1.0

Johnston et al. BMC Medical Research Methodology            (2019) 19:9 Page 5 of 7



While the methods presented here are broadly applic-
able to categorical and continuous variables, this does not
span the full range of potential outcomes in descriptive
burden of illness studies, as resource utilization variables
may be analyzed as count data. While a future extension
of this work could include formulae based on appropriate
distributions (Poisson, negative binomial), the formulas
presented for continuous outcomes can be used to gener-
ate approximate results based on a normal approximation
to the Poisson distribution. For cost data, skewness due to
large numbers of zero responses and a few large outlying
values may limit the appropriateness of normality assump-
tion; in practice, methods such as two-stage models and/
or functional transformations may be undertaken when
analyzing data [23]. In sample size estimation, while the
assumption of normality for potentially non-normal data
is a limitation, using cv values taken from actual cost data
will reflect the full scope of variability when such outliers
are included and as such are not expected to underesti-
mate required sample size. If doing so yields an infeasibly
large sample size, and if statistical techniques are expected
to be undertaken at the analysis stage, then this can be
incorporated into sample size estimation, e.g. by estimat-
ing cv based on a sample with zero-value data points
excluded, and/or based on log-transformed data.
The strength of this approach is that it presents a

simple, straightforward, validated method for estimating
sample size for retrospective studies focusing on
multiple descriptive outcomes. In chart reviews, these
calculations can be useful during the study design phase,
to understand the trade- offs between the expenses in
time and money from collecting data from additional
charts, versus the additional precision around the
estimates that can be obtained. This can be particularly
important when considering chart review data as inputs
for economic models, where the variability around the
estimate can have a major impact. As is the case with
estimating sample size a priori for any type of outcome,
the applicability of these formulas is limited by the
availability of useful preliminary data to use as the basis
for the calculations.
A priori estimates of sample size are required when

designing chart reviews and other retrospective studies
with study objectives that focus on describing treatment
patterns, resource use, and costs. However, validated and
easily-implemented methods to estimate sample size in
this situation are not readily available, or frequently
used. The approach presented here is methodologically
rigorous and designed for practical application in
real-world retrospective chart review studies.

Conclusion
This study presents a formal guidance on sample size
calculations for retrospective burden of illness studies.

The approach presented here is methodologically
rigorous and designed for practical application in
real-world retrospective chart review studies and can be
used in two distinct ways; where [1] the study resources
are flexible and desired precision is known, formulas can
be used to guide sample size selection, or [2] if study
resources or available sample size is fixed, formulas can
be used to generate anticipated values of precision.

Additional file

Additional file 1: Sample size calculator. The authors have provided an
Excel sample size calculator as supplementary material (Additional file 1)
to help guide editors and reviewers through the approach presented. If
the article is published, the authors are interested in expanding the Excel
calculator to an interactive website to facilitate use of the methods by
other researchers. (XLSX 15 kb)
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