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Abstract 

Background:  Genetic modification of plant cell walls has been implemented to reduce lignocellulosic recalcitrance 
for biofuel production. Plant glycoside hydrolase family 9 (GH9) comprises endo-β-1,4-glucanase in plants. Few 
studies have examined the roles of GH9 in cell wall modification. In this study, we independently overexpressed two 
genes from GH9B subclasses (OsGH9B1 and OsGH9B3) and examined cell wall features and biomass saccharification in 
transgenic rice plants.

Results:  Compared with the wild type (WT, Nipponbare), the OsGH9B1 and OsGH9B3 transgenic rice plants, respec‑
tively, contained much higher OsGH9B1 and OsGH9B3 protein levels and both proteins were observed in situ with 
nonspecific distribution in the plant cells. The transgenic lines exhibited significantly increased cellulase activity 
in vitro than the WT. The OsGH9B1 and OsGH9B3 transgenic plants showed a slight alteration in three wall polymer 
compositions (cellulose, hemicelluloses, and lignin), in their stem mechanical strength and biomass yield, but were 
significantly decreased in the cellulose degree of polymerization (DP) and lignocellulose crystalline index (CrI) by 
21–22%. Notably, the crude cellulose substrates of the transgenic lines were more efficiently digested by cellobiohy‑
drolase (CBHI) than those of the WT, indicating the significantly increased amounts of reducing ends of β-1,4-glucans 
in cellulose microfibrils. Finally, the engineered lines generated high sugar yields after mild alkali pretreatments and 
subsequent enzymatic hydrolysis, resulting in the high bioethanol yields obtained at 22.5% of dry matter.

Conclusions:  Overproduction of OsGH9B1/B3 enzymes should have specific activity in the postmodification of 
cellulose microfibrils. The increased reducing ends of β-1,4-glucan chains for reduced cellulose DP and CrI positively 
affected biomass enzymatic saccharification. Our results demonstrate a potential strategy for genetic modification of 
cellulose microfibrils in bioenergy crops.
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Background
Rice is a staple food crop around the world, providing 
approximately 800 million metric tons of lignocellulose-
based straw annually for potential production of biofu-
els, feeds and chemicals [1]. Lignocellulosic ethanol is 
increasingly considered a partial replacement for fossil 
energy for the purposes of low carbon release and envi-
ronmental care. The biochemical conversion of ligno-
cellulose involves three major steps: initial physical and 
chemical pretreatments for wall polymer deconstruc-
tion, sequential enzymatic hydrolysis for sugar release, 
and final yeast fermentation for bioethanol production 
[2]. Due to lignocellulose recalcitrance, however, the cur-
rent biomass process for bioethanol production requires 
a strong pretreatment and expensive enzyme loading [3]. 
Hence, genetic modification of plant cell walls has been 
raised as a promising solution to the recalcitrance in 
transgenic crops [4–6].

Lignocellulose recalcitrance is principally determined 
by the compositions, structures and interlinkages of wall 
polymers. Plant cell walls are composed mainly of cel-
lulose, hemicelluloses and lignin with small amounts of 
pectin and wall proteins. As plant cell walls determine 
cell size and shape and provide mechanical support 
and protection against environmental stresses, genetic 
modification of plant cell walls may affect plant’s normal 
growth and mechanical strength [7]. Slightly altering cell 
wall composition and structure and specially improving 
major wall polymer properties were proposed as feasible 
approaches for enhanced biomass saccharification and 
biofuel production [4].

As the most abundant biomass on the earth, cellulose 
provides the largest source of fermentable glucose for 
bioethanol production. Cellulose is composed of β-1,4-
linked glucan chains that form crystalline microfibrils by 
intra- and intermolecular hydrogen bonds. The crystal-
linity index (CrI) was characterized by a comparison of 
the intensities of the X-rays scattered into the reflections 
representing the crystalline part and into the background 
representing the noncrystalline part of cellulosic mate-
rials [8]. The cellulose CrI has been reported to affect 
biomass enzymatic saccharification negatively in vari-
ous biomass residues [9–12]. In addition, the degree of 
polymerization (DP) of the β-1,4-linked glucans, another 
important cellulose feature, has also been shown to affect 
biomass enzymatic hydrolysis negatively [12–15]. It was 
reported that the conserved-site mutation of cellulose 
synthase 9 (OsCESA9) could reduce both cellulose DP 
and CrI in the rice Osfc16 mutant plant [16]. The Osfc16 
plant displays normal growth and development, while 
largely enhanced biomass enzymatic saccharification and 
bioethanol production were achieved. The results suggest 
that minor alteration of cellulose features may be efficient 

for cell wall modification that is beneficial for biomass 
conversion.

Endo-β-1,4-glucanases (EGases, EC3.2.1.4) have been 
found in both prokaryotic and eukaryotic organisms. 
Plant EGases belong to subgroup E2 of glycoside hydro-
lase family 9 (GH9) with three subclasses (A, B, C) [17, 
18]. In plants, the EGases were proposed to distinctively 
cleave the internal β-1,4-glycosidic bonds between two 
glucose moieties in the center of a polysaccharide chain 
[17, 19]. It is hypothesized that the cellulase from the 
GH9 family participates primarily in repairing or arrang-
ing cellulose microfibrils during cellulose biosynthesis 
in plants [20]. Among the three subclasses of GH9 fam-
ily, GH9A is comprised of membrane anchored pro-
teins, GH9B proteins are secreted with only one catalytic 
domain, and the GH9C class of proteins has a distinct 
C-terminal extended cellulose-binding domain [21, 22]. 
GH9A (KOR) has been characterized as an important 
member of the cellulose synthase complex for cellulose 
biosynthesis in Arabidopsis [23, 24]. Overexpression of 
the PtCel9A1(PtKOR) gene in Arabidopsis or overex-
pression of AtKOR in Populus both lead to an increase of 
noncrystalline cellulose level in transgenic plants [25, 26]. 
However, downregulation of the KOR gene significantly 
affects cellulose ultrastructure and plant growth in the 
poplar [25]. OsGHB1, 3 and 16 were recently proposed 
to have enzymatic activity for reducing cellulose crystal-
linity in rice plants [27, 28], but the direct genetic and 
biochemical evidence about their detailed roles in cellu-
lose modification are still lacking. This would necessitate 
exploring postsynthesis modification of cellulose micro-
fibrils by genetic engineering of these endogenous cellu-
lose degradation enzymes in plants.

In this study, we showed that overexpression of two 
genes from the glycoside hydrolase 9B family (OsGH9B1 
and OsGH9B3) significantly increased reducing ends of 
β-1,4-glucan chains and reduced cellulose DP and CrI in 
transgenic rice plants. Moreover, the straw of both trans-
genic lines exhibited largely enhanced saccharification 
efficiency and increased bioethanol production after mild 
alkali pretreatment.

Results
Phylogenetic analysis and expression profiling of OsGH9B1 
and OsGH9B3
In rice, a total of 25 OsGH9s proteins were predicated as 
comprising the typical endo-β-1,4-glucanases (EGases, 
EC3.2.1.4), and these proteins have been classified into 
three subgroups (A, B and C) in a previous study [28]. 
In this study, a total of 17 GH9B members were further 
identified based on the phylogenetic analysis (Fig.  1a). 
OsGH9B1 and OsGH9B3 were closest in protein simi-
larity among the OsGH9B members, sharing 89% amino 
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acid identity (Fig. 1a, Additional file  1: Figure S1). Using 
the public expression profile data obtained from the 
CREP database (http://crep.ncpgr​.cn) [29], we found 
that OsGH9B1 and OsGH9B3 were coexpressed with 
each other during the growth stages covering almost 
the entire life cycle of rice (r = 0.805) (Fig.  1b). In addi-
tion, both OsGH9B1 and OsGH9B3 genes were pref-
erentially expressed in developing young panicles, but 
the expression was almost undetectable in the stem and 
old sheath tissues (Fig. 1b). Since rice straws are rich in 
secondary cell walls and have the potential to provide 
major lignocellulose residues for biofuels, it is of inter-
est to explore roles of OsGH9B1 and OsGH9B3 enzymes 
in plant strength, cellulose modification, and biomass 
saccharification.

Selection of the transgenic rice plants overproducing 
OsGH9B1/B3 proteins with high cellulase activity
To obtain transgenic rice lines, gene fragments for 
OsGH9B1 and OsGH9B3 were separately cloned into the 
vectors driven by green tissue-specific promoter rbcS 
and an eGFP tag linked to the C-terminal of the genes 
(Fig.  2a). Both independent transgenic lines for each of 
the vectors (#1-1 and #1-2 for rbcS::OsGH9B1, while #3-1 

and #3-2 were for rbcs::OsGH9B3) were generated by 
Agrobacterium-mediated transformation of rice embryo-
genic calli (Fig. 2b). Compared with WT, the expression 
levels of OsGH9B1 and OsGH9B3 were found to be much 
higher in their respective transgenic lines (Fig. 2b). West-
ern blotting analysis showed that the two independent 
transgenic lines from rbcS::OsGH9B1 (#1-1 and #1-2) 
exhibited 82  kDa protein bands, while the other two 
independent lines from rbcS::OsGH9B3 (#3-1 and #3-2) 
exhibited 81  kDa bands. The sizes of the two different 
bands corresponded to the expected sizes of OsGH9B1-
eGFP and OsGH9B3-eGFP proteins, indicating that 
these two proteins were fully translated (Fig.  2c). Pro-
tein subcellular distribution analysis indicated that the 
OsGH9B1 and OsGH9B3 proteins were both located in 
soluble fractions and plasma membrane fractions in vitro 
(Fig. 2d). In addition, the fused-eGFP distribution analy-
sis in  situ indicated nonspecific distribution of fluores-
cence (OsGH9B1-eGFP and OsGH9B3-eGFP) in the cells 
of transgenic plants (Fig.  2e). Using the fluorescent cel-
lulase assay in vitro [30], we found that all four transgenic 
lines showed significantly higher cellulase activities than 
those of the WT (Fig. 2f ). Taken together, overexpression 
of OsGH9B1 and OsGH9B3 could largely increase their 
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protein levels and significantly enhance cellulase activi-
ties in the transgenic plants.

Largely enhanced biomass saccharification and bioethanol 
production in the OsGH9B1/B3 transgenic plants
To characterize biomass enzymatic saccharification 
(digestibility), this study measured both hexoses (% 
total hexoses in crude cell walls) and total sugar yields 
(% crude cell walls) released from commercial mixed-
cellulase enzymatic hydrolysis (Fig.  3). Without any 

pretreatment, all OsGH9B1 and OsGH9B3 transgenic 
lines exhibited significantly enhanced hexoses and 
total sugar yields after enzymatic hydrolysis, com-
pared with WT (Fig.  3a, d). Under 0.5% H2SO4 pre-
treatments, the OsGH9B1 and OsGH9B3 transgenic 
lines had much higher hexoses and total sugar yields 
than those of the WT (Fig. 3b, e). Notably, upon 0.5% 
NaOH pretreatment, the transgenic lines had either 
yielded more than 70% hexoses or the total sugar 
yields of close to 68% after 12 h enzymatic hydrolysis, 
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whereas those of WT were both less than 43% (Fig. 3c, 
f ). Hence, these results clearly demonstrate that 
the OsGH9B1 and OsGH9B3 transgenic rice lines 
showed a consistently enhanced biomass enzymatic 
saccharification.

Given that the mild alkali pretreatment is superior 
to acid pretreatment for higher hexose yields in this 
study, 0.5% NaOH pretreatment of rice straw was used 
for subsequent enzymatic hydrolysis and final yeast 
fermentation into bioethanol production (Fig.  4). By 
comparison, the transgenic lines exhibited 21–26% 
ethanol yield per gram of dry matter higher than the 
yield of the WT (Fig.  4a). However, all transgenic 
lines and WT showed a similar sugar–ethanol conver-
sion rate at 75% (Fig.  4b). Notably, the ethanol yields 
obtained from OsGH9B1 to OsGH9B3 transgenic 
lines could reach 21.9% and 22.5% (g/g, % dry matter), 
respectively, much higher than those in previous stud-
ies (Table 1).
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Slightly affected plant growth and unaltered mechanical 
strength in transgenic plants
In the 2-year field experiments, we observed small 
changes in plant growth and development in all trans-
genic lines, with the two representative plants shown in 
Fig.  5a. Compared with WT, the OsGH9B1 transgenic 
plants were slightly shorter, while the plant height of the 
OsGH9B3 transgenic lines remained unchanged (Fig. 5b). 
The breaking force and extension force are two major typ-
ical parameters accounting for plant mechanical strength 
[31–33]. The breaking and extension forces of OsGH9B1 
and OsGH9B3 transgenic plants were found to be similar 
to those of WT (Fig. 5c). Meanwhile, the total dry weight 
of the transgenic rice plants showed no significant dif-
ference from the WT, except the line #1-2 of OsGH9B1 
transgenic plant showed a slight reduction (Fig.  5d). 
Hence, overexpressions of OsGH9B1 and OsGH9B3 only 
resulted in a slight impact on plant growth and mechani-
cal strength in the transgenic rice plants.

Table 1  Bioethanol production in rice

Pretreatments Ethanol production 
(% dry biomass)

References

rbcS::OsGH9B1 0.5% NaOH 50 °C for 
2 h + 1% tween-80

21.9 This study

rbcS::OsGH9B3 0.5% NaOH 50 °C for 
2 h + 1% tween-80

22.5 This study

1% H2SO4 121 °C for 15 min + ultra‑
sound: 40 W 50 °C for 10 min

11 [61]

0.65% HNO3, 158.8 °C for 5.86 min 14.5 [62]

Torrefaction 220 °C for 40 min 15 [63]

1% maleic acid 190 °C for 3 min 16.9 [64]

Popping pretreatment (dry sample 
20 °C/min to 220 °C, 1.96 MPa)

17.2 [65]

2% Lime 120 °C for 60 min + CO2 
neutralization

19.1 [66]

Transgenic plant: 1% sodium 
hydroxide + 1% Tween-80

21 [67]

21% aqueous-ammonia 69 °C for 
10 h + initial loading 3% glucan

21.1 [68]
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Small impact on cell wall contents and morphology 
in transgenic lines
Using calcofluor white staining with the vein tissues at 
the seedling stage, the representative transgenic lines 
of OsGH9B1 and OsGH9B3 exhibited typical cell wall 
morphology similar to the cell wall morphology of WT 

(Fig.  6a). Meanwhile, this study applied transmission 
electron microscopy to observe primary and secondary 
cell walls of the sclerenchyma cells. Again, the wall mor-
phology was not altered in the transgenic lines (Fig. 6b).

Furthermore, this study determined the contents of 
three major cell wall polymers of the mature stem tissues 
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in the transgenic rice plants. Compared with WT, the 
OsGH9B1 transgenic line #1-2 showed similar levels 
of all three wall polymers, whereas line #1-1 showed a 
moderate difference in the content of hemicelluloses. By 
comparison, the OsGH9B3 transgenic line #3-1 had a 
relatively lower lignin level than the WT by 8%, whereas 
the line #3-2 had three wall polymer contents similar to 
the WT (Fig.  6c). Taken together, overexpressions of 
OsGH9B1 and OsGH9B3 genes had little impact on wall 
polymer content and morphology in the transgenic plants, 

consistent with the observations of the normal mechani-
cal strength detected in the transgenic plants (Fig. 6).

Remarkably reduced cellulose DP and CrI and increased 
CBHI enzymatic hydrolysis of cellulose substrate
This study detected degree of polymerization (DP) of 
β-1,4-glucans and cellulose crystallinity index (CrI) in 
the transgenic plants using the crude cellulose sam-
ples after removal of hemicellulose and lignin (Fig.  7a). 
All OsGH9B1 and OsGH9B3 transgenic lines showed 
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significantly reduced cellulose DP by 17–23%, com-
pared with WT (Fig.  7b). Meanwhile, cellulose CrI was 
decreased by 11–22% in transgenic lines (Fig.  7c). Fur-
thermore, those two cellulose parameters (DP and CrI) 
were found to be negatively correlated with the cellulase 
activities in the transgenic plants with the r values at 
-0.901 and -0.841, respectively (n = 15) (Fig. 7d), suggest-
ing the potential roles of OsGH9B1 and OsGH9B3 pro-
teins in determining cellulose features.

Moreover, using GC/MS analysis, this study investigated 
the dynamic profiling of cellobiose releases (calculated as 
glucose releases) from crude cellulose of the mature stem 
tissues during cellobiohydrolase (CBHI; E.C. 3.2.1.91) 
hydrolysis. All OsGH9B1 and OsGH9B3 transgenic lines 
showed much higher glucose yields than those of the WT 
in three time points during CBHI hydrolysis (Fig.  7e). 
The glucose yields of CBHI hydrolysis were significantly 
and negatively correlated with both DP and CrI of crude 
cellulose (n = 15) (Fig.  7f ). Since the CBHI enzyme has 
been known to specifically attack the reducing ends of 
β-1,4-glucan chains, the increased glucose yield is most 
likely due to the increased short β-1,4-glucan chains in 
the transgenic plants, which were accountable for the 
reduction of cellulose DP and CrI. More important, the 
glucose yields of CBHI hydrolysis were significantly and 
positively correlated with the cellulase activities detected 
in the stem of the transgenic pants with r value at − 0.707 
(n = 15) (Fig. 7g). Therefore, the multiple results suggested 
that the OsGH9B1 and OsGH9B3 proteins should have 
cellulase activities for the modification of cellulose micro-
fibrils in the transgenic plants.

Mechanism of the overproduced OsGH9B1 and OsGH9B3 
for enhancing lignocellulose saccharification and ethanol 
production
To understand the mechanism that the overexpressed 
OsGH9B1 and OsGH9B3 enhanced both lignocellulose 
saccharification and the subsequent bioethanol produc-
tion, we performed a correlation analysis between bio-
mass saccharification efficiency and cellulose features. 
Both cellulose DP and CrI values were negatively cor-
related with the hexose yields released from enzymatic 
hydrolysis either with or without pretreatments at p < 0.01 
and 0.05 levels (n = 15) (Fig. 8), consistent with our previ-
ous findings that cellulose DP and CrI are the key param-
eters that negatively affect lignocellulose enzymatic 
hydrolysis in various plant species examined [12, 34–40]. 
Moreover, this study found that the glucose released by 
CBHI hydrolysis from the cellulose reducing ends was 
positively correlated with lignocellulose saccharification 
under various conditions (p < 0.01, n = 15) (Fig.  8). It is 
rational that the increased number of reducing ends in 

cellulose chains could fundamentally enhance the bio-
mass saccharification in the transgenic plants. Taken 
together, we concluded that the increased reducing ends 
of the cellulose microfibrils, consistent with the reduced 
cellulose DP and CrI, should be the major causes for the 
largely enhanced biomass saccharification and bioethanol 
production in the transgenic plants.

Discussion
Genetic modification of plant cell walls has been impli-
cated in the largely enhanced lignocellulose enzymatic 
saccharification and biofuel production in transgenic 
crops. However, because plant cell walls have extremely 
complicated structures and diverse biological functions, 
large modifications of cell walls may affect plant growth 
and development. Hence, the selected transgenic crops 
should not only have largely increased biomass sacchari-
fication, but also need to maintain a normal plant growth 
and mechanical strength. Over the past years, attempts 
have been made to enhance lignocellulose enzymatic 
hydrolysis by altering hemicellulose features or reducing 
lignin contents [37, 38, 41–46], but most of the transgenic 
plants displayed defects in growth and strength or lim-
ited enhancement of biomass saccharification. This study 
has indicated that the minor modifications of cellulose 
microfibrils could have a large impact on the enhance-
ment of biomass enzymatic hydrolysis with only slightly 
altered plant growth by overexpressing OsGH9B1/B3 
genes in the transgenic rice crops, providing a powerful 
genetic engineering strategy for selection of bioenergy 
rice and other energy crops.

Although the members of the OsGH9B subclass have 
been proposed to have cellulase activities in rice [27, 28], 
their roles in plant cell wall remodeling remain largely 
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unknown. We generated overexpressing OsGH9B1 or 
OsGH9B3 transgenic lines and investigated their abun-
dance, subcellular distribution, and cellulase activity. We 
then systematically conducted an analysis of plant phe-
notypes, mechanical strength, biomass yield, polymer 
content, wall morphology, reducing ends of cellulose, DP 
and CrI of crude cellulose. Furthermore, the sugar yields 
and subsequent ethanol yield after pretreatments and 

bioprocessing were determined. These results together 
with association analysis allowed us to get a compre-
hensive understanding of the genetic and biochemical 
function of the OsGH9B1 or OsGH9B3 in cell wall modi-
fication. The major conclusions of this study were (1) 
the transgenic lines OsGH9B1/B3 consistently exhibited 
high cellulase enzymatic activity and improved cellulose 
features and biomass digestibility with little impact on 
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the entire cell walls and mechanical strength, indicating 
the modification was specific in cellulose microfibrils; 
(2) the remarkable changes in reducing ends of β-1,4-
glucan chains, cellulose DP and CrI were probably due 
to the cleavage of cellulose microfibrils (post modifica-
tion), as we found that the mutation of cellulose syn-
thase 9 will decrease both cellulose level and mechanical 
strength in addition to the reduced DP and CrI due to 
early termination of β-1,4-glucan chain elongation [16]. 
Taken together, this study proposed a model highlight-
ing that the overproductions of OsGH9B1 and OsGH9B3 
enzymes could increase reducing ends in the β-1,4-
glucan chain, leading to largely reduced cellulose DP and 
CrI probably by specific postmodification of cellulose 
microfibrils in the transgenic rice plants (Fig. 9).

The cellulose DP and CrI are the key parameters that 
are negatively associated with lignocellulose enzymatic 
hydrolysis under various pretreatments in many bio-
mass residues examined [9, 10, 12–15, 34, 35, 37–39]. 
Although the cellulose CrI value is in part associated 
with cellulose DP, it is also affected by the levels of wall 
polymers and their crosslinks [11, 40, 47, 48]. However, 
the finding that there was little change in the contents of 
three major wall polymers implied that reduction of cel-
lulose CrI was due to the decreased DP in OsGH9B1/B3 
transgenic lines in this study.

One of the advantages of this study is that we indepen-
dently introduced two members of the OsGH9B gene 
family (OsGH9B1 and OsGH9B3) into rice plants. The 
transgenic lines exhibited similar alterations in cellulose 
properties, indicating the similar roles of OsGH9B1 and 
OsGH9B3 in postmodification of cellulose microfibrils. 
In Arabidopsis and Populus, several genes have been 
identified to be close to OsGH9B1 and OsGH9B3 based 
on phylogenetic analysis of the GH9 family in a previous 
study [49], yet their functions remain to be explored. It 
is of interest to test whether these members have similar 
cellulase activities specific for cellulose modification and 
for genetic improvement of biofuel plants in the future.

Experimental procedures
Phylogenetic analysis
The Neighbor-Joining method was used for phyloge-
netic tree analysis [50], and the optimal tree was plotted 
with the sum of branch length at 4.47282155. The tree 
is drawn to scale, with branch lengths in the same units 
as those of the evolutionary distances used to infer the 
phylogenetic tree. The evolutionary distances were com-
puted using the Poisson correction method [51] in the 
units of the number of amino acid substitutions per site. 
The phylogenetic analysis involves a total of 17 amino 

acid sequences, and all positions containing gaps and 
missing data were eliminated. Evolutionary analyses were 
conducted in MEGA6 [52].

Plasmid vector construction and transgenic line selection
The full-length cDNA of OsGH9B1 and OsGH9B3 were, 
respectively, amplified from young panicle of rice cul-
tivar “Nipponbare” (a japonica variety) using prim-
ers as shown in Additional file  1: Table  S1. OsGH9B1 
and OsGH9B3 were separately inserted into the modi-
fied plant binary vector pCAMBIAI1300 driven by the 
rubisco small subunit (rbcS) promoter. Meanwhile, the 
eGFP gene was constructed to fuse with C-terminal of 
these genes. These two constructs were independently 
transferred into “Nipponbare” by Agrobacterium-medi-
ated transformation with the “EHA105” strain. The 
homozygous transgenic lines were identified based on 
the hygromycin B screening for 3-4 generations, double 
checked by PCR analysis and verified by qRT-PCR and 
Western analysis as described below.

Total RNA isolation and qRT‑PCR analysis
Total RNA was extracted from the second internodes 
of stem tissues at heading stage using the Trizol reagent 
(Invitrogen). cDNA was synthesized with the GoScript™ 
Reverse Transcription System (Promega, USA). Quanti-
tative real time-PCR (qRT-PCR) was performed in tripli-
cate using the SYBR Green PCR Master Mixture (ZF101, 
ZOMANBIO). A rice polyubiquitin gene (OsUBQ1) was 
used as the internal control. All primers used for qRT-
PCR were listed in Additional file 1: Table S1.

Protein preparation and Western blot analysis
Total proteins were collected from the supernatants 
extracted from the second internodes of stem tissues at 
heading stage. The proteins were centrifuged at 100,000g 
for 1 h at 4 °C to collect the residues as the plasma mem-
brane proteins as described by Li et al. [16]. The superna-
tants were precipitated with acetone (3:1, v/v) at − 20 °C 
for 12 h to collect soluble proteins. The protein samples 
were loaded into 12% SDS-PAGE gel for protein sepa-
ration, and the Western blot analysis was conducted as 
described by Li et al. [16]. The commercial GFP antibody 
was used as the primary antibody reaction at 1:1000 dilu-
tions and the affinity-purified phosphatase-labeled goat 
antirabbit IgG was applied as secondary antibody reac-
tion at 1:5000. Protein bands were detected by the ECL 
Plus Western Blotting Detection, and scanned under a 
GeneGnome XRQ (Syngene Inc., Maryland, US).
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GFP fluorescence observation
The protoplasts were obtained from the stem tissues of 
2-week-old seedlings of rice as described by Yoo et  al. 
[53]. CLSM imaging via a Leica TCS SP8 confocal laser 
scanning system (Leica Microsystems, Wetzlar, Ger-
many) was performed for GFP fluorescence observation.

Cellulase activity assay in vitro
The second internodes of rice stem tissues were ground 
into the powders by liquid nitrogen, and extracted with 
100 mM sodium acetate trihydrate buffer (pH 5.5). After 
centrifugation at 12,000g for 10  min at 4  °C, the super-
natants were collected for cellulase activity assay as 
described by Dai et al. [30]. A total of 50 μL supernatant 
proteins were incubated with 50 μL 0.5 mM 4-methylum-
belliferyl β-D-cellobioside (Sigma-Aldrich, USA) at 55 °C 
for 30  min and stopped by adding 30  μL 0.2  M sodium 
carbonate. The fluorescence intensity was recorded using 
a Spectrum  Microplate Spectrophotometer (Tecan Infi-
nite M200 PRO, Switzerland) at the excitation wavelength 
of 365 nm and emission wavelength of 480 nm. The pro-
tein concentration was determined by Bradford method 
[54] using BSA as the standard. All cellulase activity 
assays were independently conducted in triplicate.

Determination of the mechanical strength in the rice stem
The breaking and extension forces were detected in 
the stem tissues at the milk maturity stages of rice as 
described by [34, 35]. Totally 45, 43 and 27 individual 
plants of WT, transgenic lines OsGH9B1 and OsGH9B3 
were, respectively, used for breaking forces examination. 
Total 38, 41 and 26 individual plants of WT, transgenic 
lines OsGH9B1 and OsGH9B3 were measured for exten-
sion forces, respectively.

Fluorescence microscopy and transmission electron 
microscopy analyses
The third leaf veins of three-leaved old seedlings were 
used for observation of cell wall morphology under 
fluorescence microscopy and transmission electron 
microscopy.

For fluorescence microscopic observation, the samples 
were fixed with 4% (w/v) paraformaldehyde, and dehy-
drated through an ethanol gradient (30%, 50%, 70%, 90% 
and 100%, each for 30  min), and then embedded in the 
paraplast plus. The sections (of 8 μm thickness) were cut 
using a microtome (RM2265 Leica Microsystems, Leica, 
Nussloch, Germany) and placed on lysine-treated slides 
which were dried for 2 days at 37 °C, and dewaxed with 
xylene and hydrated through an ethanol series (100–0%). 
The sections were stained with calcofluor white fluo-
rochrome (Calcofluor White Stain; Fluka), and imaged 

using a microscope (Olympus BX-61, Olympus, Tokyo, 
Japan). For transmission electron microscopic observa-
tion, the samples were prepared as previously described 
by Fan et al. [34, 35]. The samples were postfixed in 2% 
(w/v) OsO4 for 1 h after extensively washing in the PBS 
buffer and embedded with Suprr Kit (Sigma-Aldrich, 
St. Louis, MO, USA). Sample sections were cut with an 
Ultracut E ultrami-crotome (Leica) and picked up on 
formvar-coated copper grids. After poststaining with 
uranyl acetate and lead citrate, the specimen was viewed 
under a Hitachi H7650 (Hitachi Ltd., Tokyo, Japan) trans-
mission electron microscope.

Extraction of crude cell walls and cellulose samples
The homozygous transgenic rice plants and the wild type 
(Nipponbare) were grown in the experimental field of 
Huazhong Agricultural University, Wuhan, China. The 
mature stem tissues were dried, ground into powder 
through 40 mesh (0.425  mm × 0.425  mm) , and stored 
in a dry container. The powder samples were extracted 
with ddH2O at 25 °C for 2 h to remove soluble sugar, fol-
lowed by chloroform: methanol (1:1) at 25 °C for 1 h and 
then methanol to remove lipids. The residues were then 
extracted with 70% (v/v) ethanol at 25  °C for 12  h, and 
washed two times with 70% (v/v) ethanol. The remaining 
residues were washed two times with acetone and dried 
under vacuum to obtain the final crude cell wall sam-
ple. The crude cell walls were further extracted with 4 M 
KOH (containing 1.0  mg/mL sodium borohydride) at 
25 °C for 2 h to remove hemicellulose, and the remaining 
pellet was washed five times with ddH2O and extracted 
with 8% (w/v) sodium chlorate (containing 1.5% acetic 
acid, v/v) at 25 °C for 48 h to remove lignin. The remain-
ing pellet was washed six to eight times with ddH2O and 
dried under vacuum to obtain the final crude cellulose 
sample.

Hemicellulose and cellulose extraction and determination
The crude cell wall samples from the above described 
extraction, were used for further extraction of hemicellu-
loses and cellulose fractions as described by Fan et al. [34, 
35]. Total hexoses and pentoses released from 4 M KOH 
extraction and the pentoses released from 67% (v/v) 
H2SO4 hydrolysis were summed for determining the total 
hemicellulose content. Cellulose was estimated by calcu-
lating total hexoses from 67% (v/v) H2SO4 hydrolysis. The 
anthrone/H2SO4 method [55] and orcinol/HCl method 
[56] were applied for the hexoses and pentoses assay. 
d-glucose and d-xylose were prepared to plot stand-
ard curves, and the deduction from pentoses reading at 
660 nm was carried out for calculation of final hexoses in 
order to eliminate the interference of pentose on hexose 
reading at 620 nm.
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Lignin determination
Total lignin was assayed using a two-step acid hydroly-
sis method according to the Laboratory Analytical Pro-
cedure of the National Renewable Energy Laboratory 
[57]. The crude cell wall samples were hydrolyzed with 
67% (v/v) H2SO4 at 25 °C for 90 min with a gentle shak-
ing at 115 rpm, and subsequently diluted to 3.97% (w/w) 
with distilled water and heated at 115 °C for 60 min. The 
supernatant liquids were read at 205 nm for acid soluble 
lignin, and the remaining residues were placed in a muf-
fle furnace at 575 °C ± 25 °C for 4 h for the acid insoluble 
lignin assay.

Detection of cellulose features (DP, CrI)
The crude cellulose DP assay was performed using vis-
cosity method as previously described by Zhang et  al. 
[12]. Cellulose CrI was detected using X-ray diffraction 
(XRD) method (Rigaku-D/MAX instrument, Uitima III, 
Japan) as described by Segal et al. [58].

Crude cellulose hydrolysis by β‑1,4‑exoglucanase 
(cellobiohydrolase‑CBHI)
CBHI enzyme hydrolysis assay was performed using 
crude cellulose samples. The crude cellulose samples 
(10 mg) were incubated with 0.5 U CBHI (E.C. 3.2.1.91; 
Megazyme, USA) at 50 °C for a time course of reactions 
at 30 min, 3 h, and 14 h. After centrifugation at 3000g, the 
supernatants were collected and treated with 2  M TFA 
at 120 °C for 1 h, and Myo-inositol (20 μg) was added as 
the internal standard. The supernatants were then dried 
under vacuum to remove TFA. Distilled water (200  μL) 
and freshly prepared solution of sodium borohydride 
(100 μL, 100 mg/mL in 6.5 M aqueous NH3) were added 
to each sample, incubated at 40 °C for 1 h, and the excess 
sodium borohydride was decomposed by adding acetic 
acid (200 μL). The sample was transferred into a 25-mL 
glass tube, and 1-methylimidazole (600 μL) and the ace-
tic anhydride (4 mL) were added and mixed well to per-
form an acetylation reaction at 25  °C for 30  min. The 
excess acetic anhydride was decomposed by adding dis-
tilled water (10 mL). Dichloromethane (3 mL) was added, 
mixed gently, and left standing for phase separation. The 
collected lower phase was dehydrated by adding anhy-
drous sodium sulfate and analyzed using GC–MS (SHI-
MADZU GCMS-QP2010 Plus) as described by Li et  al. 
[47].

Chemical pretreatments and biomass enzymatic 
saccharification
Alkali pretreatment: The crude cell wall samples were 
incubated with 6  mL 0.5% NaOH (w/v) and shaken at 
150 rpm for 2 h at 50 °C. After centrifugation at 3000g for 
5 min, the supernatants were collected for determination 

of hexoses and pentoses released from alkali pretreat-
ment. The remaining pellets were subsequently washed 
five times with 10  mL of distilled water for sequential 
enzymatic hydrolysis.

Acid pretreatment: The crude cell wall samples were 
incubated with 6  mL of 0.5% H2SO4 (v/v) at 121  °C for 
20 min in an autoclave (15 psi). The samples in tubes were 
then shaken at 150 rpm for 2 h at 50 °C. After centrifuga-
tion at 3000g for 5 min, the supernatants were collected 
for the determination of hexoses and pentoses released 
from the acid pretreatment, and the pellets were washed 
five times with 10  mL of distilled water for sequential 
enzymatic hydrolysis.

Enzymatic hydrolysis: The remaining residues obtained 
from alkali or acid pretreatment were washed with 6 mL 
of mixed-cellulase reaction buffer (0.2  M acetic acid–
sodium acetate, pH 4.8), then incubated with 0.16% (w/v) 
mixed cellulases (Imperial Jade Biotechnology Co., Ltd. 
Ningxia 750002, China) with the final concentrations 
of cellulase at 10.60 FPU/g biomass, and xylanase at 
6.72 U/g biomass. The measurement of mixed-cellulase 
activity was based on the filter paper assay according to 
the International Union of Pure and Applied Chemis-
try (IUPAC) guidelines, 1 FPU = 1  μmol/min of glucose 
formed during the hydrolysis reaction. The measure-
ment of xylanase activity used 1% (w/v) xylan (Sigma-
Aldrich Co. LLC, California, USA), as the substrate, 1 
U = 1 μmol/min of xylose, formed during the hydrolysis 
reaction. The samples were shaken at 150  rpm at 50  °C 
with a time course hydrolysis for 12  h, 24  h, and 48  h. 
After centrifugation at 3000g for 10  min, the superna-
tants were collected for hexoses and pentoses assay.

Yeast fermentation and bioethanol measurement
The biomass powders were incubated with 6  mL 0.5% 
NaOH (w/v), shaken at 150 r/min for 2 h at 50 °C. After 
pretreatments, the biomass residues and supernatants 
were neutralized to pH 4.8 using appropriate amounts 
of H2SO4. Then, mixed cellulases were added to the final 
enzyme concentration at 1.6  g/L cosupplied with 1% 
Tween-80, and incubated at 150  rpm for 48  h at 50  °C. 
After enzymatic hydrolysis, the supernatants were col-
lected for yeast fermentation. Yeast fermentation and 
ethanol measurement were performed as previously 
described by Jin et  al. [59] and Zahoor et  al. [60] by 
means of Saccharomyces cerevisiae (Angel yeast Co., Ltd., 
Yichang, China) and the dichromate oxidation method.

Data collection and statistical analysis
Biological triplicate samples were collected for each 
transgenic line selection, and chemical analysis was 
performed in technical triplicates. The SPSS statis-
tical software was used for data analysis. Prior to 
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statistical analysis, all data were analyzed by a Kolmog-
orov–Smirnov test to check for normal distribution of 
samples. Pearson correlation analysis was performed for 
correlation coefficients calculation, and Student’s t test 
was used for comparison analysis.
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Additional file 1: Figure S1. Alignment between OsGH9B1 and 
OsGH9B3. Table S1. The primers used for gene cloning and expression 
analysis in this study.
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