Skip to main content
. 2018 Nov 27;9(1):13–19. doi: 10.1534/g3.118.200908

Table 1. The algorithm of OCMA calculates the right outcome. Eigenvectors (or singular vectors) are compared using Infinite norm (*=max{|x1|,...,|xn|}), Taxicab norm (*1=i=1n|xi|), and Euclidean norm (*2=i=1nxi2). We use λocma and Socma to denote the vectors calculated by OCMA and λmatlab and Smatlab to denote the vectors calculated by MATLAB (version 2012b). The comparison for eigen-decomposition is presented in the upper table, and the comparison for singular-value decomposition is presented in the lower one. In the upper table, N denotes the number of individuals. In lower table, N = 1,000,000, and M denotes the number of genetic markers. The configuration of the personal computer: Intel Core i7-6700 CPU (4 cores), Memory = 24GB. Disk = Samsung SSD 850 EVO 250GB. The operating system is Windows 7. Time is measured by wall-clock (instead of CPU time).

N λocmaλmatlab/λmatlab Computation time (s)
* *1 *2 OCMA MATLAB
1000 5.2*10−7 7.6*10−8 1.1*10−7 0.1 0.4
2000 2.8*10−7 8.1*10−8 1.0*10−7 0.5 2.8
5000 4.3*10−7 2.1*10−7 2.4*10−7 6.4 35.5
10000 1.6*10−6 5.7*10−7 6.3*10−7 46.2 294.0
20000 3.3*10−6 4.4*10−6 4.3*10−6 246.4 2905.1
M socmasmatlab/smatlab Computation time (s)
* *1 *2 OCMA MATLAB
100 2.9*10−5 1.2*10−4 8.9*10−5 10.2 12.3
200 2.1*10−5 9.2*10−5 6.6*10−5 14.8 29.6
500 1.9*10−5 7.7*10−5 5.6*10−5 47.5 90.4
1000 1.6*10−5 1.3*10−4 8.5*10−5 89.5 206.4
2000 1.2*10−5 1.1*10−4 7.1*10−5 226.1 726.9