Skip to main content
. 2018 Oct 19;34(1):23–36. doi: 10.1007/s10654-018-0447-z

Table 1.

Results of treatment effect estimates from propensity matching and propensity weighting when assuming there is a homogeneous treatment effect and no unmeasured confounding. For each missing scenario, missing data are handled with complete case analysis, missing indicator method, multiple imputation, and the combination of multiple imputation and missing indicator (Combined method)

Homogeneous treatment effect
Propensity matching Propensity weighting
Coefficient MSE Coefficient MSE
Mean SD Mean SD
No missing No adjustment 1.298 0.123 1.700 1.298 0.123 1.700
After adjustment 0.044 0.085 0.009 0.006 0.109 0.012
MCAR Complete case analysis 0.043 0.121 0.016 0.014 0.152 0.023
Missing indicator 0.238 0.095 0.066 0.189 0.111 0.048
Multiple imputation
 With Y 0.047 0.086 0.010 0.011 0.113 0.013
 Without Y 0.219 0.087 0.056 0.186 0.110 0.047
Combined method
 With Y 0.048 0.087 0.010 0.011 0.112 0.013
 Without Y 0.218 0.087 0.055 0.187 0.110 0.047
MAR Complete case analysis 0.024 0.128 0.017 0.007 0.165 0.027
Missing indicator 0.259 0.099 0.077 0.172 0.123 0.044
Multiple imputation
 With Y 0.052 0.092 0.011 0.010 0.122 0.015
 Without Y 0.244 0.090 0.068 0.185 0.120 0.049
Combined method
 With Y 0.050 0.092 0.011 0.010 0.122 0.015
 Without Y 0.243 0.090 0.067 0.185 0.120 0.048
MNAR Complete case analysis 0.025 0.129 0.017 0.012 0.166 0.028
Missing indicator 0.231 0.098 0.063 0.149 0.122 0.037
Multiple imputation
 With Y 0.069 0.095 0.014 0.029 0.123 0.016
 Without Y 0.248 0.091 0.070 0.215 0.118 0.060
Combined method
 With Y 0.052 0.093 0.011 0.011 0.122 0.015
 Without Y 0.211 0.088 0.053 0.160 0.119 0.040