Skip to main content
. 2018 Oct 19;34(1):23–36. doi: 10.1007/s10654-018-0447-z

Table 4.

Results of Simulation setting 2 where the multiple imputation by chained equations (MICE) with Bayesian linear regression is used  for a sensitivity analysis

Heterogeneous treatment effect
Propensity matching Propensity weighting
Coefficient Bias MSE Coefficient MSE
Mean SD Mean SD
No adjustment 1.730 0.158 1.410 2.012 1.730 0.158 3.019
After adjustment 0.321 0.096 0.000 0.009 − 0.017 0.156 0.025
No interaction term
Multiple imputation
 With Y 0.304 0.095 − 0.017 0.009 − 0.041 0.170 0.031
 Without Y 0.536 0.101 0.215 0.056 0.292 0.142 0.105
Combined method
 With Y 0.303 0.095 − 0.018 0.009 − 0.042 0.172 0.031
 Without Y 0.537 0.104 0.216 0.058 0.294 0.143 0.107
Interaction terms
 Multiple imputation 0.315 0.094 − 0.006 0.009 − 0.014 0.169 0.029
 Combined method 0.315 0.096 − 0.006 0.009 − 0.015 0.171 0.029
No interaction term
Multiple imputation
 With Y 0.220 0.103 − 0.101 0.021 − 0.116 0.192 0.050
 Without Y 0.568 0.110 0.247 0.073 0.264 0.158 0.095
Combined method
 With Y 0.220 0.101 0.010 − 0.116 0.190 0.049
 Without Y 0.568 0.111 0.248 0.074 0.264 0.157 0.094
Interaction terms
 Multiple imputation 0.330 0.101 0.009 0.010 0.002 0.199 0.040
 Combined method 0.331 0.103 0.010 0.011 0.001 0.198 0.039
No interaction term
Multiple imputation
 With Y 0.102 0.110 − 0.219 0.060 − 0.269 0.213 0.118
 Without Y 0.570 0.110 0.249 0.074 0.325 0.153 0.129
Combined method
 With Y 0.095 0.103 − 0.225 0.061 − 0.275 0.211 0.120
 Without Y 0.537 0.105 0.216 0.058 0.233 0.149 0.076
Interaction terms
 Multiple imputation 0.173 0.101 − 0.147 0.032 − 0.197 0.220 0.087
 Combined method 0.169 0.103 − 0.151 0.034 − 0.206 0.215 0.089