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long lag times between predictors and outbreaks of disease. This study expands the
geographical and temporal range of previous studies in Bangladesh of the mosquito-
transmitted viral infection dengue, a major threat to human public health in tropical
and subtropical regions worldwide. The analysis incorporates new compound variables
such as anomalous events, running averages, consecutive days of particular weather

s?é‘g;fgzm e disease characteristics, §easonal variables basgd on tl?e .tradi.tional Bang?a six-season annua! cal-
Climate endar, and lag times of up to one year in predicting either the existence or the magnitude
Data mining of each dengue epidemic. The study takes a novel, comprehensive data mining approach to
Bangladesh show that different variables optimally predict the occurrence and extent of an outbreak.
Dengue The best predictors of an outbreak are the number of rainy days in the preceding two
Long-term predictors months and the average daily minimum temperature one month prior to the outbreak,

while the best predictor of the number of clinical cases is the average humidity six months
prior to the month of outbreak. The magnitude of relationships between humidity 6, 7 and
8 months prior to the outbreak suggests the relationship is multifactorial, not due solely to
the cyclical nature of prevailing weather conditions but likely due also to the immuno-
competence of human hosts.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Vector-borne diseases (VBDs) are typically transmitted by invertebrate arthropods transferring pathogens from reservoirs
to host or from host to host. They are climate-sensitive due to the role of climate in the life cycle of the vector (Hunter, 2003;
Thomson, 2014), as well as the impacts of a region's weather on host behaviour such as climate-related population shifts
(Piguet, 2013). While biting insects provide an essential mode of transmission of an infection, this bridge is vulnerable,
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particularly when it involves small, light vectors, such as mosquitoes, that are relatively easier to disturb than are heavier,
larger more mobile arthropod species (Hassall, Thompson, & Harvey, 2008; Koenraadt & Harrington, 2008).

The Aedes aegypti mosquito, the principal vector involved in the transmission of the debilitating human viral disease
dengue, which sometimes manifests as life-threatening dengue haemorrhagic fever, has an additional climate-related lim-
itation in that it prefers clean water in which to breed. Satisfying this predilection requires either or both exposure to recent
rainfall and close proximity to human habitation (Reiter, 1988). Not surprisingly, in examining the epidemiology of dengue,
most research on this subject focuses on rainfall or humidity. This tendency can be found in relatively early studies, such as by
Moore (Moore, 1985) which showed that both the volume of rain and the persistence of rainfall were good predictors, since
when the tendency for rainfall to offer the most consistent early warning measure has continued (Arcari, Tapper, & Pfueller,
2007).

Due to the complexity of the lives of the mosquito vector and the human host, models of VBD epidemiology that capture a
large proportion of variance tend necessarily to be intricate. One way of increasing the variance captured is to create models
that simply predict prevalence on, for example, an annual frequency or a global scale. By this means, one can estimate with a
statistically, but not necessarily clinically, significant degree of accuracy the mere presence or absence of dengue fever on the
basis of long-term average vapour pressure (Hales, De Wet, Maindonald, & Woodward, 2002). In order to improve public
health relevance, attempts at linking comparatively local-area variables such as rainfall, humidity and temperature to dengue
incidence are thus becoming increasingly common.

The range of variables included in analyses has expanded to include geographical location (Arcari et al., 2007; Promprou,
Jaroensutasinee, & Jaroensutasinee, 2005), peak and trough weather events, such as maximum and minimum temperatures
(Promprou et al., 2005), anomalous climate events (Arcari et al., 2007) and running averages (Schreiber, 2001). It even in-
corporates macro-climatic conditions such as the Southern Oscillation Index, a gauge to measure the difference in air pressure
between Darwin and Tahiti (Arcari et al., 2007; Gagnon, Bush, & Smoyer-Tomic, 2001; Hales, Weinstein, Souares, &
Woodward, 1999). The relations are not always linear. In sub-Saharan Africa, for example, air temperature is significantly
associated with increases in malaria infection, with the incidence curve for clinical cases flattening or dropping as ambient
temperatures rise to extremes (Zhang, Bi, & Hiller, 2008).

Complicating the picture for dengue, as for many VBDs, is the time latency between the appearance of larvae of the vector
(which require the presence of water for survival) and the emergence of symptoms of disease in the host. However, the length
of these lagged relationships do not always correspond to timescales congruent with the lifecycle of the vector. For example,
Bi et al. (Bi, Tong, Donald, Parton, & Hobbs, 2001) observed four month lags in an Australian study, while Arcari et al. (Arcari
et al., 2007) found in Indonesia relationships at up to six months' delay. Another study from the West Indies (Depradine &
Lovell, 2004) reported a lag of just six weeks between vapour pressure and infections, which, considering the short life-
cycle of the vector, is more easily explicable.

The present study is novel in regard to several characteristics. A thorough, reasonably recent review (Zhang et al., 2008)
captured no studies of the dengue-climate relationship in a Bangladeshi context, despite Bangladesh featuring all the
apparent setting conditions for dengue to thrive. Since that appraisal in 2008, there have been two studies that we have been
able to identify which partly address this gap. Choudhury et al. (Choudhury, Banu, & Islam, 2008) constructed models of
Seasonal Autoregressive Integrated Moving Average (SARIMA) only for Dhaka, the capital city of Bangladesh. While this study
claimed to be the first of its kind to be undertaken in the country, it does not take account of climate variables per se, but
instead seasonality, which, axiomatically, inherently captures key climatic variables. In 2012, Karim et al. working on the
Bangladesh case built models that encompassed a range of climatic factors (monthly rainfall, humidity, maximum and
minimum temperature) (Karim, Munshi, Anwar, & Alam, 2012). They found that climatic factors did predict with a significant
level of accuracy monthly dengue occurrence.

The Karim study (Choudhury et al., 2008) produces impressive results but has a number of shortcomings including use of
the same dataset to train their model to validate. The study also uses simple linear regression and Pearson's correlation, the
suitability of which is questionable considering that the dependent variable clearly violated normal distribution. Both the
above reports (Choudhury et al., 2008; Depradine & Lovell, 2004) focused solely on Dhaka.

In addition to addressing the issue of climate predictors of dengue in Bangladesh, the current study also uses an expanded
range of statistical procedures and a longer time series. By way of contrast to the current study, in which lags up to one year
are explored, the study of Colombian data by Eastin et al. (Eastin, Delmelle, Casas, Wexler, & Self, 2014) caps the lag time at 6
months and a greater geographical spread than has been attempted previously. Whereas statistically, most studies appear to
have used either relatively simple correlational approaches (Bi et al., 2001; Depradine & Lovell, 2004; Hales et al., 1999; Karim
et al.,, 2012), or regression modelling or both, e.g. (Arcari et al., 2007; Yi, Zhang, Xu, & Xi, 2003), our analysis takes a near-
exhaustive data mining approach. This creates a large range of variables, including seasonal characteristics, which probe
intuitively probable relationships between objectively measurable climate change and dengue incidence. In this sense, the
study reported addresses in part a call from Zhang et al. (Zhang et al., 2008) for more sophisticated approaches. Our study
includes the concept of ‘streaks’ (sequences of single weather variable events), monthly variables and seasonal variables using
the locally defined six Bangladeshi seasons. The inclusion of these temporal variables allows persistence and intensity of
weather effects to be explored. Vectors may be relatively resilient in the face of acute weather events, but it is reasonable to
expect that more extended weather events may pose a greater threat.
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2. Methods
2.1. Data

The weather variables of temperature, rainfall and humidity were collected for two cities, Dhaka and Chittagong, from the
Bangladesh Meteorological Department (BMD). Maximum and minimum temperature and average daily rainfall and relative
humidity data were obtained for a ten-year period 2000—2009 to coincide with available dengue data. The BMD offers only a
single rainfall, humidity and temperature data point for each city. Daily dengue data were obtained from the Directorate
General of Health Services (DGHS) of the Ministry of Health and Family Welfare. Daily data from 2000 to 2009 were available
for the analysis in both cities. The data reflected the total number of cases on the date a dengue diagnosis was confirmed
(through both laboratory diagnostic testing and clinical examination), not the date of onset of symptoms or the date these
were first reported to the clinic. While these delays may mean that the lag period between a weather event and a case being
recorded was artificially extended, the accuracy of diagnosis was high. During the study period, DGHS refined their system to
ensure reporting of all clinical cases of dengue (both morbidity and mortality). Data were gathered from all hospitals in the
city (both private and public, but with an emphasis on the public sector as these hospitals contain specialist dengue treatment
zones).

While the two cities are separated by only 211 km and have a similarly low elevation above sea level, Chittagong (a coastal
city) and Dhaka (more inland) have very different patterns of temperature, rainfall, humidity and sunlight exposure. Chit-
tagong has an annual precipitation that is around one third higher than that of Dhaka (Shahid et al., 2016). Hence, data from
each location were treated independently rather than be combined. This approach maximised the statistical power of the
study.

3. Analytic approach

In preparing for the analysis, three raw data files for temperature, rainfall and humidity were interrogated using
descriptive summaries. Each file was then compiled into predictors both by characteristics of days (including outliers such as
coldest single day time or night time temperature), month (for example, including averages and peaks) and statistics related
to the six traditional Bangladeshi seasons (Table 1), such as total monsoon rain. Lagged statistics were computed for each
reference month of dengue statistics (DCASE), and for each of the previous seasons. When entering into consideration of the
final model it should be noted that in order to prevent future leak the seasonal weather statistics relating to the current
reference date must be excluded.

The variables assembled included the longest ‘streaks’ (sequences of single weather variable events). The approach offers a
comprehensive yet not exhaustive approach to modelling using the three primary variables of temperature, rainfall and
humidity. Also included were seasonal events (for example, total rain during monsoon season) up to one year in advance of
outbreaks. The approach offers a comprehensive yet not exhaustive approach to modelling using the three primary variables
of temperature, rainfall and humidity.

Initial exploratory model building was conducted using a Zero-Inflated Negative Binomial (ZINB) model that allows for
cases such as that described here in which there are frequent zero-valued observations. This model included a factor that
describes a ‘zero-generating’ process, which improved fit. Zero-inflated negative binomial models are used in count data
where there is a high presence of zero counts, and their purpose is to account for the possibility that observations in a
population may in fact belong to two distinct statistical distributions. Zero Inflated models assume that there are two pro-
cesses at work on the underlying data. One which is binary and accounts for the presence or absence of the event under study.
In the current case this is the presence or absence of any dengue fever—this was named the “Zero Generating Process”. The
second process assumed by inflated models can be used to understand the frequency of outcomes. Generally this can be
described by a Negative Binomial Distribution and is commonly referred to as the “Magnitude” or “Count Generating Process.”

SAS’ PROC GENMOD was used with the optional distribution set to ZINB. The goodness-of-fit statistics and the over-
dispersion parameter were examined and they appeared to indicate that a Zero-Inflated Negative Binomial was a plausible
acceptable distributional assumption, and this lead to the two-stage process being adopted in understanding infection. The
aim here is not to try and quantify dengue processes mathematically, but instead investigate the underlying process and gain
insight into the drivers of dengue outbreaks.

Table 1

Traditional Bangladeshi seasons.
Bangla season Date range Season characteristics
Grishsho 14 April to 15 June Intensely hot
Borsha 16 June to 17 August Monsoon
Shorot 18 August to 17 October Heat tapers off
Hemento 18 October to 16 December Cooler, high evening dew
Sit 17 December to 12 February Coldest period

Boshonto 13 February to 13 April Spring, variable winds
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Next, the variables that included invalid weather readings including missing data and negative rainfall scores, were
removed, resulting in 806 viable candidates. These were further investigated by generating descriptive statistics to get a
feeling for distribution and additional data problems. In the absence of additional data quality issues, visual inspection by
using simple time series plots of each candidate variable and overlaid with the time series of dengue cases was conducted to
inspect for time series effects, including systematic peaks and valleys that could indicate seasonal effects. Histograms were
also constructed, collectively suggesting lagged temporal effects. Simple time series line plots of each candidate predictor
were produced and overlaid with the time series plot of dengue cases. Basic descriptive statistics and histograms were
inspected and distinct lagged effects were observed and noted. On the basis of these observations, the candidates included for
further analysis expanded on variables in the immediately proximal months to include lag times up to 12 months on each
variable. Bivariate analysis indicated high correlations between individual predictor variables lagged at seven months prior to
the outbreak of dengue. For example, the second highest Spearman's rank correlation positive coefficient was between
dengue outbreaks and the percentage of humidity readings between 30 and 39% during the month seven months prior to the
outbreak (p = 0.63). Similarly, the highest negative correlation between a weather variable and dengue outbreak was again
humidity seven months prior, in this case the simple average humidity reading for the predictor month (p = —0.64).

Initial model building was conducted using a Zero-Inflated Negative Binomial (ZINB) model that allows for cases such as
that described here in which there are frequent zero-valued observations. This model included a factor that describes a ‘zero-
generating’ process, which improved fit. In order to further enhance understanding of the potential usefulness of all the
candidate variables, exploratory Decision Tree models were also created and Variable Importance Statistics were captured.
Variable Importance Statistics describe which variables are likely to be most informative, and here they suggested different
significant candidate predictors than those that emerged using parametric statistical methods. Ultimately, a data mining
approach was preferred, as it yields a more explicit understanding of the two separate processes at work rather than aiming to
fit the data into a single closed mathematical form. The evidence suggested that there were two separate processes driving
the dengue transmission cycle: one that determined whether or not there will be any dengue at all; and the other

90
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predictors

Zero-Generating Model Magnitude Model

Predicting the number of cases

| |

Predicting an outbreak
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Fig. 1. Overview of two complementary statistical approaches for predicting dengue cases.
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determining the number of dengue cases that occurred (one or above). To that end, two explanatory models were developed,
as summarized in Fig. 1.

4. Results
4.1. Predicting an outbreak of dengue using a zero-generating model

Since normality was not assumed in the 806 candidates, the non-parametric Wilcoxon-Mann-Whitney test was chosen
and run in the Statistical Analysis Software (SAS) package. Next, 201 chosen candidate predictors (see Fig. 1) were selected
randomly ten at a time to be entered into the decision tree algorithm, which was run for 1000 iterations. The Decision Tree
node in SAS Enterprise Miner was used with classification and regression tree (CART)-like settings. Conceptually, if one runs a
sufficient number of decision trees with randomly chosen predictor variables and observations in each iteration, the more
viable variables should be revealed. During each of the 1000 iterations, new training and validation subsets were created. In
selecting 20 of the 201 candidates used in the ‘random forest’ described above, the following parameters were followed:
always or very frequently found to be significant when selected to enter the model; responsible for at least 50 splits; high
average variable importance; and consistently showing a ratio of training variable importance close to 1 and having 95%
confidence intervals that include one. The candidates selected in this decision tree round of variable selection are shown in
Table 2.

The next step in the process was to reduce the set of candidates. Again, an iterative approach was taken but not the largely
discredited stepwise procedure (Whittingham, Stephens, Bradbury, & Freckleton, 2006). An algorithm was created to ensure
the best predictors that are not collinear are extracted. In a loop of 137,979 iterations the following approach was taken: the
data were split randomly into sample and validation sets, each containing 50% of observations; variables were selected
randomly to create a predictive model using the logistic regression algorithm available in the SAS Proc Logistic model. Custom
SAS code was written to exploit SAS' Group Processing Node which allowed for relatively quick looping. During iterations
1-20, only one candidate predictor was used to generate the model. During iterations 21—210, 190 possible combinations of
two variables were used, with only two candidates selected randomly to be modeled and with each possible combination
being modeled one at a time. This pattern continued so that in turn each possible one-variable model was evaluated, each
possible two-variable model was evaluated, each possible three-variable model was evaluated and so on, up to a maximum of
seven (77,520 possible combinations of seven variables) variables. In this way every possible combination of 1—7 candidate
predictor variables for evaluation was captured. This process enabled a review of the parameter estimates in order to
investigate the effect of the presence or absence of other candidate predictors.

Good candidate predictors should have consistent parameter estimates. If variables are highly correlated with each other,
when entered simultaneously into a model they tend to mutually reduce their impact. Thus, ideally the parameter estimate
should fluctuate when other collinear variables are removed, indicative of a unique, independent impact.

In each iteration, the model created with the training sets was then used to score the validation set. The misclassification
rate (% of cases for which the prediction was incorrect in the validation set) was captured. Validation sets should represent an
honest assessment of the newly created candidate model and therefore the misclassification rate from the validation set was
used to evaluate each candidate model. Further, the trained parameter estimates were examined for the presence of inter-
action effects and for collinearity. Variables that have consistent parameter estimates across the many regression models are

Table 2
20 strongest predictive candidate variables of a dengue outbreak.

Predictor candidate

2 months prior, number of days with rain

8 months prior, minimum temperature between 15 and 19.9°C
8 months prior, mean minimum temperature

8 months prior, % of days with humidity between 30 & 40%

2 months prior, mean minimum temperature

1 month prior, lowest minimum temperature recorded

8 months prior, highest minimum temperature recorded

7 months prior, minimum humidity recorded

2 months prior, longest streak of consecutive dry days

2 months prior, lowest minimum temperature recorded

8 months prior, standard deviation of humidity

2 months prior, highest minimum temperature recorded

2 months prior, mean minimum temperature between 15 and 19.9°C
7 months prior, lowest minimum temperature recorded

2 months prior, longest streak of consecutive wet days

1 month prior, mean minimum temperature

7 months prior, mean humidity

1 month prior, mean humidity

1 month prior, longest streak of consecutive dry days

1 month prior, minimum humidity recorded
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Table 3
Final parameter estimates of the zero-generating model.
Variable Parameter Std. Wald Chi- Pr > Chi- 0dds Lower 95% Confidence Upper 95% Confidence
Estimate Error  Square Square Ratio Limit Limit
2 months prior, number of days with 0.16 0.03 27.44 <.0001 117 1.10 1.24
rain
1 month prior, mean minimum 0.21 0.08 7.26 0.0071 1.23 1.06 1.43
temperature

those that are minimally collinear, that have minimal interaction effects and which therefore could be considered to exhibit
stable main effects. As a final step, the best performing predictors were deployed in a logistic regression model using the full
sample set. The inputs of this final best performing group were suggested by the analysis of the aggregation of all the vali-
dation samples captured by the iterative process described above. These aggregated validation results suggested there were
two variables that were regularly very significant, having consistent parameter estimates and low misclassification rates.
These two variables were entered into the ‘best predictor’ zero-generating model, shown in Section 3. This model has a C
statistic of 0.881, which means that it is considered to discriminate between months with and without the incidence of
dengue to a high degree of accuracy.

Thus, given that the value of the mean minimum daily temperature in the month previous to an outbreak is held constant,
for each single day increase in the number of rainy days the odds of at least one case of dengue occurring two months later
will be increased by about 1.17, or 17%. Further, if the value of the number of rainy days in the two months prior to an outbreak
is held constant, for each single degree temperature increase in the average minimum daily temperature the odds of at least
one case of dengue occurring in the following month will increase by about 1.23, or a remarkable 23% increase (Table 3).

In summary, this stage of the analysis suggests that proximal rain and temperature factors seem to be more predictive of
the presence or absence of at least a single case of dengue than are distal factors. Interestingly, humidity factors per se were
not consistently predictive of the presence or absence of dengue, even though humidity is closely related to temperature and
to rainfall. Temperature and rainfall are thus uniquely predictive of the appearance of a dengue outbreak.

4.2. Predicting the magnitude of an outbreak of dengue

The analysis focused only on those months, 90 in total, in which at least one case of dengue occurred. Since the normality
assumption was not considered appropriate, Spearman's rank correlational coefficient was analyzed using the SAS package.
The 50 variables, each exhibiting either the highest positive correlation or the lowest negative correlations with dengue cases,
were extracted. For the magnitude model only 100 candidate predictors were chosen, instead of 200 used previously, as the
sample of months with any recorded cases of dengue was much more constrained. With a smaller sample size, more iter-
ations would be required to produce stable results. So in order to reduce the complexity, an arbitrary limit of 100 was set.

These 100 candidate predictors were selected randomly five at a time to be entered into the decision tree algorithm, which
was run for 2000 iterations (a larger number of iterations in order to account for the increased instability issuing from the
smaller sample size). Again, the Decision Tree node in SAS Enterprise Miner was used, but this time using Chi-square
automatic interaction detection (CHAID)-like settings. During each iteration, the sample was partitioned into 50% training
and 50% validation sets, as described previously. The same summary statistics from the random forest were chosen: number
of times selected; number of times found to be significant (at any level) by the decision tree; significance percent; total
number of splits; average validation importance; average ratio of training importance to validation importance; and standard
deviation of the ratio.

Seven of the 100 candidates used in the random forest described above were selected on the basis that they exhibited the
following parameters: were always or very frequently found to be significant when selected to enter the model; were
responsible for at least 50 splits; and consistently showed a ratio of training variable importance/validation variable
importance close to one. Also, with the aim of using linear regression modelling, only variables exhibiting normal distribution
were selected. The candidates selected in this decision tree round of variable selection are shown in Table 4.

In order to reduce further the set of candidates, the data were randomly split into sample and validation sets, each
containing 50% of the observations. This once again guaranteed that each set was distinct, allowing cross validation. Variables
were then selected randomly to create predictive models using the linear regression algorithm available in the SAS Proc
Regression model. During iterations 1—7 only one variable was used to generate a model. During iterations 8—28 all possible
two variable models were created. Finally, during iterations 29—63 all possible three variable models were created. The
process was restricted to three variables because it was judged that the sample size is likely to be too small to support valid
models with more than three predictors.

The model created with the training set was then used to score the validation set and the residual (actual number of
dengue cases minus the predicted number) was captured. The residual was utilized in two ways: to assess the normality
assumption required by Ordinary Least Squares (OLS) regression (the residual should be normally distributed around zero);
and to calculate the Root Mean Squared Error (RMSE), which allows an ‘honest’ assessment of the newly created candidate
model. Finally, the trained parameter estimates were examined for consistency.
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Table 4
Seven variables predicting magnitude of dengue outbreaks in the random forest.

Predictor candidate

6 months prior, mean of humidity

8 months prior, highest maximum temperature recorded

Previous Boshonto (spring) season, mean of humidity

Previous Boshonto (spring) season, % of days with humidity between 10 and 20%
8 months prior, mean maximum temperature

5 months prior, maximum humidity

Population of the city in which the number of Dengue cases is measured.

Despite extended regression modelling with multiple arrangements of the predictors found during the decision tree
round, none of the potential predictors strongly out-performed the others. Furthermore, when more than one predictor was
evaluated model results were very inconsistent. Regardless of which predictor was used RMSE values were consistently in the
range of 280—310, meaning that on average the model will predict 280 to 310 more or less cases of dengue than actually
occurred, which in public health or epidemiological terms has little value. Moreover, it was noted that during cross-validation
the parameter estimates showed substantial variability, meaning that each predictor was somewhat inconsistent in its
predictive power. The one variable that showed the greatest stability in the regression modelling, and had residuals closest to
being normally distributed when applied to the entire sample, was the average humidity reading six months prior to the
reference month of dengue outbreak (F=16.76, <0.0001). The parameter estimate for this variable was —24.2612, with
standard error of 422.6387, t = —4.09 (p < 0.0001). Fig. 2 shows this variable charted against dengue frequency (DCASE).

The parameter estimate of —24.2612 indicates a negative relationship between humidity and dengue frequency. Hence, as
average humidity six months ago increases, the number of dengue cases will decrease in the current month. In formulaic
terms, the expected number of dengue cases will equal 1977.85 + the mean humidity six months prior to the outbreak
multiplied by —24.3. In addition, the value of adjusted R-squared noted on the fit plot indicates that 15% of the variance in the
number of dengue cases can be accounted for by average humidity six months previously. None of the multitude of rival
candidate models exceeded that adjusted R-squared value.

4.3. Integrated model of predicting dengue outbreaks

Using both the first and second stage models, the final predictive model becomes:

Let Prediction 1 =[(e"(—7.15 + 0.16 X number of rainy days 2 months prior + 0.21 x average daily minimum temperature 1
month prior)]/1 + [(€(-7.1543 + 0.16 x number of rainy days 2 months prior + 0.21 x average daily minimum temperature 1
month prior)]

If Prediction 1 < 0.5 then STAGE 1=0;

If Prediction 1>=0.5 then STAGE 1=1;

Final Prediction = (Stage 1) x (1977.85 + average humidity reading six months prior to month of dengue outbreak x —24.26).

The first model predicts the likelihood of any dengue occurring. However, if the probability is less than 50%, for the sake of
simplicity the model predicts that no dengue will occur, and thus the final prediction is for zero cases of dengue. However, if

3000 4

2000

Observations 90

L T Parameters 2

° FERELS L o o Error DF 88

1000 4 - MSE 174794
R-Square 0.18

AdjR-Square 0.1504

-1000

60 70 80
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— Fit O 95% Confidence Limits - ----- 95% Prediction Limits

Fig. 2. Relationship between number of dengue cases and mean humidity in the month six months prior to outbreak.
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the first model predicts a likelihood of greater than 50%, the final projected number of dengue cases can be estimated through
the second model.

5. Discussion

Relatively simple bivariate analyses are frequently and effectively used in longitudinal studies in order to show weather
variables predicting outbreaks of VBDs (Arcari et al., 2007; Hales et al., 2002; Moore, 1985) well in advance. In this study, two
of the three strongest bivariate predictors of dengue incidence were humidity levels seven months prior to an outbreak, each
capturing around 40% of variance. The distal nature of these predictors is remarkable considering that the principal vector of
dengue transmission in Bangladesh and worldwide, the adult female Ae. aegypti mosquito, has a life span of only between 2
and 4 weeks, depending on environmental conditions. The bivariate associations commonly found between weather events
and outbreaks of VBDs, the US Centers for Disease Control and Prevention (CDC) states “do not describe the occurrence every
few years of major epidemics ... suggesting that long-term climate variability does not regulate long-term patterns in
transmission” (engue and Climate., 2010). The present investigation takes a data mining approach, separately analysing an
initial outbreak of dengue and addressing the issue the CDC raise, namely the magnitude of that outbreak (i.e. total number of
recorded clinical cases).

The two best predictors of a dengue outbreak that emerge are relatively proximal: mean monthly minimum temperature
one month prior or the number of rainy days in a row (a streak of rainy days) two months prior. If the mean minimum
temperature a month prior to an outbreak was held constant, for each single day increase in the number of rainy days the
odds of at least one case of dengue occurring two months later increased by 17%. If the number of rainy days a month prior
was held constant, for each single degree temperature increase in the average minimum daily temperature, the odds of at
least one case of dengue occurring in the following month increased by 23%. These are extremely powerful predictors, with
real and recognisable implications for vector-borne disease control and public health care provision in Bangladesh and other
tropical developing countries.

When considering the scale of the outbreak, however, a different and weaker pattern occurred. From a list of 806 candidate
predictors, six of the top ten candidates showing the strongest absolute bivariate relationship with the magnitude of dengue
outbreak were humidity events at least half a year previously. The mean humidity six months prior to the reference month of
the dengue outbreak proved to be the most stable predictor in regression modelling, but in a negative direction. This finding
could be regarded as counterintuitive in terms of the lifecycle of the vector, but in terms of the lifecycle of the host, possibly
less so. The time from planting to harvest of the staple rice crop is measured in months, and planting is determined by the
arrival of the monsoon (Ahmed & Karmakar, 1993). The success of the harvest determines the market price of rice and thus its
availability to the impoverished. Scholars working in the Bangladeshi context have pointed to the seasonal variation in
birthweight as an indicator of population vulnerability (Hort, 1987). There is also great disparity in the housing quality
(including provision of mosquito prevention measures) in both Chittagong and Dhaka, which makes families living at sub-
sistence level particularly vulnerable. Eastin and colleagues have made a similar point regarding the interaction between the
lifecycle of mosquito vectors and the ‘lifecycle’ (and living arrangements) of the human hosts (Eastin et al., 2014).

A relatively less plausible explanation of the long lag times observed is reporting error. The integrity of the data used
depends on reporting at a local clinic level, as well as an individual patient's ability to recognise symptoms and their will-
ingness to report to a clinic with an allopathic orientation. In developing world settings, delays in diagnosis can result in a
systemic overestimation of lag effects between contact with the vector and an outbreak of the disease, but are unlikely to
cause the very long lags observed here.

A further important outcome is the evidence of the importance of streaks of days with a particular weather characteristic
in determining outcomes. This century there has been increased interest in indigenous weather knowledge (Peppler, 2011),
and it is interesting to note that two of the six weather variables that emerged as best single predictors of the magnitude of
dengue outbreaks were characteristics of the previous Bangladeshi boshonto or equivalent of ‘spring’. It is possible that vector
populations as a whole are vulnerable to (or benefit from) the persistence of a particular weather characteristic as much as
from its intensity.

An acknowledged limitation of the present study is that the patient data accessed do not identify the serotype of dengue
virus with which each person was infected. In treating clinical cases of dengue in public hospitals in Bangladesh, currently it is
not standard practice for the attending physician to request serotype determination upon admission. This might occur only if
the patient shows severe complications of disease, indicative of antibody-dependent enhancement of infection, in which case
evidence of seroconversion (indicative of previous infection) is suspected. Even then, this serological analysis is usually
performed by an enzyme-linked immunosorbent assay using a ‘pan-serotype’ virus-specific IgG antibody (as recently indi-
cated by Dhar-Chowdhury et al. (Dhar-Chowdhury et al., 2017)). Therefore, while it is difficult to draw conclusions regarding
the prevalence of a particular serotype one can comment on the overall prevalence of infection caused by dengue virus, for
which a spatial and temporal variation in abundance is apparent. A strength of this study is that it made use of data that were
verified both clinically and in the laboratory. However, due to the nature of the Bangladeshi context, counterintuitively this
methodological robustness may in fact be a perceived as a weakness when lag effects are taken into consideration. This is
because the time between the initial infection and symptoms being diagnosed may conceivably be in the order of weeks
rather than days.
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An additional weakness of the otherwise near-exhaustive approach taken in this study is that it does not capture potential
curvilinear relationships. Work on malaria prediction does suggest a curvilinear relationship between rainfall and outbreak.
However, particularly in relation to outbreaks (as opposed to scale) the model is sufficiently strong to indicate a linear
relationship. The field of numerical weather prediction suggests that weather events are predictable well in advance with
increasingly high levels of accuracy. In this light, the long lag effects that emerge in this study may be purely a function of
weather patterns being set well in advance. Taking account of regional differences in meteorological patterns it is interesting
to consider this specifically in a Bangladeshi context. Rahman et al. (Rahman, Rafiuddin, & Alam, 2013) examined a range of
predictors of Bangladesh summer monsoon rainfall, noting that later in their sample, a time which overlaps with our sam-
pling period, the correlations appeared to be increasing — but they did not reach the strength obtained herein even when
using much shorter lead times. Thus, the findings suggest that the conditions for breeding of the Ae. aegypti mosquito may
have much earlier antecedents than are suggested by the short duration of its lifecycle or, alternatively, that host vulnerability
needs to be explored further. However, perhaps most importantly, the findings suggest that it is possible to predict the
occurrence of an outbreak with a much higher degree of accuracy than the scale of the outbreak. In turn, this implies that the
delivery of public education programs in Dhaka and Chittagong on preventing the spread of dengue is having an impact: the
communities' response to risk would inevitably blunt the precision of models that predict the scale of outbreak.
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