Skip to main content
. 2019 Jan 9;14(1):e0210418. doi: 10.1371/journal.pone.0210418

Table 4. Predicted pain effect values using the multiple linear regression model for significant and non-significant studies.

Intercept FREQUENCY (x/wk) TIME (min/wk) DURATION (wks) Dur*Time Dur*Freq Pain Effect Sig Pain Effect Not Sig
Coefficient 0.374 -0.36 0.01 -0.03 -0.001 0.04 0.743 0
Change FREQ by 1 day
Less 2 day 1 120 15 1800 15 0.307 -0.436
Less 1 day 2 120 15 1800 30 0.547 -0.196
Average Values 3 120 15 1800 45 0.787 0.044
Add 1 day 4 120 15 1800 60 1.027 0.284
Add 2 day 5 120 15 1800 75 1.267 0.524
Add 3 day 6 120 15 1800 90 1.507 0.764
Change TIME by 30 min
Less 1.5 hr 3 30 15 450 45 1.237 0.494
Less 1 hr 3 60 15 900 45 1.087 0.344
Less 0.5 hr 3 90 15 1350 45 0.937 0.194
Average Values 3 120 15 1800 45 0.787 0.044
Add 0.5 hr 3 150 15 2250 45 0.637 -0.106
Add 1 hr 3 180 15 2700 45 0.487 -0.256
Add 1.5 hr 3 210 15 3150 45 0.337 -0.406
Change DURATION by 1 wk
Less 6 wk 3 120 9 1080 27 0.967 0.224
Less 4 wk 3 120 11 1320 33 0.907 0.164
Less 2 wk 3 120 13 1560 39 0.847 0.104
Average Values 3 120 15 1800 45 0.787 0.044
Add 2 wk 3 120 17 2040 51 0.727 -0.016
Add 4 wk 3 120 19 2280 57 0.667 -0.076
Add 6 wk 3 120 21 2520 63 0.607 -0.136

The last two columns show predicted pain effect sizes for significant studies versus non-significant studies as a result of the exercise prescription shown in the second column. The highlighted cells indicate the variables being changed compared to the average values from the included studies.