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Interpreting economic complexity
Penny Mealy1,2,3*, J. Doyne Farmer1,2,5,6,7, Alexander Teytelboym1,2,4

Two network measures known as the economic complexity index (ECI) and product complexity index (PCI) have
provided important insights into patterns of economic development. We show that the ECI and PCI are
equivalent to a spectral clustering algorithm that partitions a similarity graph into two parts. The measures
are also closely related to various dimensionality reduction methods, such as diffusion maps and correspon-
dence analysis. Our results shed new light on the ECI’s empirical success in explaining cross-country differences in
gross domestic product per capita and economic growth, which is often linked to the diversity of country export
baskets. In fact, countries with high (low) ECI tend to specialize in high-PCI (low-PCI) products. We also find that
the ECI and PCI uncover specialization patterns across U.S. states and U.K. regions.
INTRODUCTION
Structural properties of the global trade network can explain differ-
ences in economic development across countries (1–6). A novel pair
of measures known as the economic complexity index (ECI) and the
product complexity index (PCI) were recently introduced to infer
information about countries’ productive capabilities from their export
baskets (2, 3). These measures have been particularly successful in ex-
plaining cross-country differences in gross domestic product (GDP)
per capita and in predicting economic growth. However, the precise
mathematical and economic interpretations of these indices have
been elusive.

Here, we show that the economic complexity measures are mathe-
matically equivalent to a classic spectral clustering algorithm, which
partitions a similarity graph into two balanced components that
are internally similar and externally dissimilar (7). The ECI and
PCI can also be interpreted as dimensionality reduction methods,
which have close connections to diffusion maps (8) and correspondence
analysis (9–14). These approaches have already been used in many dis-
ciplines, including archaeology, ecology, and engineering (15).

We offer two interpretations of the ECI and PCI from a dimension-
ality reduction perspective. First, the ECI and PCImeasures can be seen
as defining a distance between nodes in a graph on the basis of their
similarity. Consequently, when applied to export data, the ECI (PCI)
places countries (products) on a one-dimensional interval such that
countries (products) with similar exports (exporters) are close together
and countries (products) with dissimilar exports (exporters) are far
apart. Second, the ECI and PCI can be interpreted as orderings that
maximize the correlation between two categorical variables.

Our mathematical interpretations contrast previous conceptual
descriptions of the economic complexity measures, which tended to
frame the ECI as being related to the diversity (or number) of products
a country is able to export competitively (2, 3, 16, 17). Not only is the
ECI mathematically orthogonal to diversity (18), but, as we show, it
also captures insightful information that diversity does not make ap-
parent.When applied to export data, the ECI and PCI reveal a striking
pattern of specialization across countries. High-ECI countries (which
tend to be richer) specialize in high-PCI products [which tend to be
more technologically sophisticated (2)]. Countries with low ECI
(which tend to be poorer) specialize in low-PCI products (which tend
to be less technologically sophisticated). Moreover, the export baskets
of high-ECI countries are more homogeneous than the export baskets
of low-ECI countries. Hence, while diversity counts how many
products countries are competitive in, the ECI and PCI help distinguish
products that high- and low-income countries specialize in.

Our results also allow us to extend the ECI and PCI to datasets other
than trade data. We provide an illustration with regional data on
industrial employment concentrations in U.K. local authorities
and occupational employment concentrations in U.S. states.We find
that, remarkably, the ECI for U.K. local authorities and U.S. states is
strongly correlated with regional earnings per capita.We also show that
the ECI and PCI reveal similar patterns of specialization, while diversity
fails to be economically informative.
THE ECI AND PCI
The ECI and PCI measures are calculated using an algorithm that op-
erates on a binary country-product matrix M with elements Mcp, in-
dexed by country c and product p (3). Mcp = 1 if country c has a
revealed comparative advantage (RCA) > 1 in product p, where RCA
is calculated using the Balassa index (19), given by

RCAcp ¼
xcp=Spxcp

S
c
xcp=ScSpxcp

ð1Þ

where xcp is country c’s exports of product p.Mcp = 0 otherwise. IfMcp =
1, we say that country c is competitive in product p.

Summing across the rows and columns ofM gives a country’s di-
versity [denoted kð0Þc ] and product ubiquity [denoted kð0Þp ], defined as

kð0Þc ¼ S
p
Mcp ð2Þ

and

kð0Þp ¼ S
c
Mcp ð3Þ

The ECI and PCI were originally defined through an iterative, self-
referential method of reflections algorithm that first calculates diver-
sity and ubiquity and then recursively uses the information in one to
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correct the other (3). However, it can be shown (1, 20) that themethod
of reflections is equivalent to finding the eigenvalues of a matrix eM ,
whose rows and columns correspond to countries and whose entries
are given by

eMcc′≡S
p

McpMc′p

kð0Þc kð0Þp

¼ 1

kð0Þc

S
p

McpMc′p

kð0Þp

ð4Þ

Equivalently, we can write eM in matrix notation

eM ¼ D�1MU�1M′ ð5Þ

where D is the diagonal matrix formed from the vector of country di-
versity values and U is the diagonal matrix formed from the vector of
product ubiquity values.

When applied to country trade data, one can think of eM as a
diversity-weighted (or normalized) similarity matrix, reflecting how
similar two countries’ export baskets are.

Further, from Eq. 5, we can see that

eM ¼ D�1S ð6Þ

where S = MU−1M′ is a symmetric similarity matrix in which each
element Scc′ represents the products that country c has in common
with country c′, weighted by the inverse of each product’s ubiquity.

Since eM is a row-stochastic matrix (its rows sum to one), its entries
can also be interpreted as conditional transition probabilities in a
Markov transition matrix (3, 18). The ECI is defined as the eigen-
vector associated with the second largest right eigenvalue of eM. This
eigenvector determines a “diffusion distance” between the stationary
probabilities of states reached by a random walk described by this
Markov transition matrix (see the “Diffusion map distance” section
and the Supplementary Materials).

The PCI is symmetrically defined by transposing the country-
product matrix M and finding the eigenvector corresponding to
the second largest right eigenvalue of M̂ , given by

M̂ ¼ U�1M′D�1M ð7Þ

Here, we denote the ECI vector by ~y ½2� and the ECI of country c
is denoted ~y ½2�c . We also denote the diversity vector by d, where
dc ¼ kð0Þc is the diversity of country c. In addition, we note that
the ECI is commonly standardized by subtracting the mean and
dividing the difference by the SD of~y ½2� to allow for comparisons across
years (2, 3). However, for clarity, we use the unstandardized ECI vector
throughout this paper.
RESULTS
The ECI has commonly been described with reference to diversity.
This follows from the hypothesis that originally motivated the mea-
sure’s construction: Prosperous countries are likely to be able to
competitively export a diverse set of products that few other coun-
tries are competitive in (2, 3). Recent papers have since described
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the ECI as an “indicator of diversity” [(17), p. 1] and a “measure
of economic diversity” [(16), p. 1596]. However, the ECI has been
shown to be mathematically orthogonal to diversity (18). That is,
the dot product of the diversity and ECI vectors is zero.

The ECI has also been described as a “standard eigenvalue cen-
trality algorithm” [(17), p. 1]. However, this description is also in-
accurate, as in contrast to the ECI, eigenvector centrality is defined
as the eigenvector corresponding to the largest eigenvalue of a sym-
metric adjacency matrix, such as S. In the case of directed networks
(such as eM), since the right eigenvector corresponding to the
largest eigenvalue is constant, the natural definition would take
the left eigenvector corresponding to the largest eigenvalue of the
adjacency matrix [(21), p. 178]. [Note that, in the exposition of (21),
adjacency matrices are transposed.] Moreover, since the rows ofeM have been normalized by diversity, the leading left eigenvector
(eigenvector centrality) will be proportional to diversity and conse-
quently does not add any information about eM.

Interpretation as spectral clustering
We now show that the ECI is mathematically equivalent to a stan-
dard spectral clustering method for partitioning an undirected
weighted graph, represented by an adjacency matrix S, into two
balanced components (7). Spectral clustering is a widely used tech-
nique for community detection and dimensionality reduction and
has a range of applications including image recognition, web page
ranking, information retrieval, and RNA motif classification. The
goal of one spectral clustering approach is to minimize the sum
of the edge weights cutting across the graph partition, while
making the size (number of nodes) of the two components rela-
tively similar [also known as the normalized cut (Ncut) criterion]
(7). As we discuss below, finding the exact solution to this problem
is NP-hard. However, it is possible to obtain an approximate solu-
tion (7). We demonstrate that the ECI is equivalent to this approx-
imate solution.
The Ncut criterion
Consider an undirected graph G = (V, E) with vertices V and edges
E. We allow the graph G to be weighted with nonnegative weights;
thus, the adjacency matrix entries are Sij ≥ 0, where Sij = Sji. While
the export matrix is one possible example, we can consider S to be
any similarity or affinity matrix with these properties. The degree
of vertex i is defined as

di ¼ S
j∈V

Sij ð8Þ

and the size or “volume” of a set of vertices A ⊆ V can be mea-
sured as

volðAÞ ¼ S
i∈A

di ð9Þ

Our notation is deliberate: As we show in the Supplementary
Materials, if the adjacency matrix S of the similarity graph G coincides
with export similarity matrix S ¼ D eM , then degree di corresponds
precisely to the diversity of a country’s exports.

One way to partition a graph into two disjoint sets is by
solving the cut problem. The objective is to find a partition of V
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into complementary sets A and �A that minimizes the number of links
between the two sets. The cut problem is to find the minimum of

cutðA; �AÞ ¼ S
i∈A;j∈�A

Sij ð10Þ

This objective function has the undesirable property that its
minimum often partitions a single node from the rest of the graph.
To avoid this problem, the Ncut criterion (7) penalizes solutions that
are not properly balanced. The objective is to partition the graph in such
a way that each cluster contains a reasonable number of vertices. This
can be achieved by minimizing the objective function

NcutðA; �AÞ ¼ 1
volðAÞ þ

1
volð�AÞ

� �
S

i∈A;j∈�A
Sij ð11Þ

LetD be the diagonal degreematrix withDii= di andDi ≠ j= 0. Then,
finding the minimum value of Ncut is equivalent to solving the optimi-
zation problem

min
A

NcutðA; �AÞ ¼ min
y

yTðD� SÞy
yTDy

ð12Þ

subject to yi ∈ {1, – vol(A)/vol(�A)} and yTD1 = 0.
Because yi is restricted to one of two possible values, this is not a

simple linear algebra problem, and finding the true minimum of the
Ncut criterion has been shown to be NP-hard (7). However, by letting
yi take on any real value, an approximate solution can be obtained by
finding the eigenvector y[2] corresponding to the second smallest
eigenvalue of the generalized eigenvalue equation

ðD� SÞy ¼ lDy ð13Þ

Recall that LS = D – S is called the Laplacian matrix of S. By making
the substitution

y ¼ D�1=2z ð14Þ

this can be rewritten as a standard eigenvalue equation

D�1
2ðD� SÞD�1

2z ¼ LSz ¼ lz ð15Þ

where LS ¼ D�1
2ðD� SÞD�1

2 is the normalized Laplacian of S. Be-
cause the normalized Laplacian is a stochastic matrix, its smallest
eigenvalue is zero. The eigenvector z[2] associated with the second
smallest eigenvalue of LS is called the normalized Fiedler vector and
is a solution to the standard eigenvalue equation in Eq. 15. Trans-
forming back to y using Eq. 14 to solve the original problem gives
the solution

y½2� ¼ D�1=2z½2� ð16Þ
Mealy et al., Sci. Adv. 2019;5 : eaau1705 9 January 2019
The solution y[2] provides a useful approximate solution tomini-
mizing the Ncut criterion and is equal to a simple transformation of the
normalized Fiedler vector (7).
The relationship between the ECI and the Ncut criterion
Recall that eM is the matrix whose eigenvector corresponding to the
second largest eigenvalue is the ECI. To see the relationship between
spectral clustering and the ECI, note that the similarity matrix S ¼
D eM characterizing country export similarity is in the same form used
to minimize the Ncut criterion. Multiplying both sides of Eq. 15 by
D�1

2 and rearranging terms give

D�1SD�1
2z ¼ ð1� lÞD�1

2z ð17Þ

Substituting eM ¼ D�1S gives

eMD�1
2z ¼ ð1� lÞD�1

2z ð18Þ

The eigenvalue equation for eM is

eM~y ¼ ~l~y ð19Þ

Now, comparing Eqs. 18 and 19, we can see that the eigenvalues
and eigenvectors of eM are related to those of �LS by

~l ¼ 1� l ð20Þ

and

~y ¼ D�1
2z ð21Þ

Thus, the second smallest eigenvalue of �LS corresponds to the sec-
ond largest eigenvalue of eM, and comparison to Eq. 16 makes it clear
that the ECI is equivalent to approximately minimizing the Ncut
criterion, that is

~y ½2� ¼ y½2� ¼ D�1
2z½2� ð22Þ

where ~y ½2� represents the second largest eigenvector of eM.
This implies that the ECI (~y ½2�) is equivalent to the approximate

solution (y [2]) that minimizes the Ncut criterion on the matrix
S. Moreover, the ECI is related to the normalized Fiedler vector
by a simple transformation. In the Supplementary Materials, we
also show how this interpretation can be applied to the PCI and
describe the mathematical relationship between the ECI and PCI.
Applying the spectral clustering interpretation to
economic data
We now demonstrate how the ECI partitions similarity networks in
practice. A visual illustration is shown in Fig. 1A. Here, we have
calculated the ECI for a randomly generated similarity graph with
two clear components. The ECI assigns each node a real number on
an interval with positive and negative values according to their similar-
ity to each other. In Fig. 1A (left), we show the ECI values associated
with each node in ascending order. The graph should be partitioned
where ECI is zero. Nodes with a positive ECI are assigned to one cluster,
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and nodes with a negative ECI go into the other cluster. In this case, the
distinct gap in the ECI values shows that the partition is very clear. In
Fig. 1A (right), we show the network’s adjacency matrix S, where we
have also ordered the rows and columns in accordance with the ascend-
ing ECI values. Here, one can also see how the ECI ordering reveals the
graph’s two clear components.

In Fig. 1B, we show the same for export data (based on HS6 COM-
TRADE data for the year 2013). In Fig. 1B (left), country ECI values
(sorted in ascending order) do not show a clear gap across the zero
threshold. Moreover, Fig. 1B (right) suggests that, while countries
with high ECI values have a high degree of similarity in their exports
(as shown by the higher Sij values), countries with low ECI values ap-
pear to have more varied export portfolios. These plots therefore indi-
cate that the export data do not partition clearly into two components.

In Fig. 1 (C and D), we apply the ECI to two other similarity
networks constructed from regional data for the United Kingdom and
theUnited States. Figure 1C shows a similarity graph constructed on the
basis of regional data from the U.K. Business Register and Employment
Survey (BRES) for the year 2011 (available fromwww.nomisweb.co.uk/).
Here, nodes are U.K. local authorities, which are similar to each other
on the basis of their employment concentrations in different industries
(classified at the three-digit level of granularity). The similarity graph in
Fig. 1D is constructed from regional data sourced from the Integrated
Public Use Microdata Series (IPUMS) (22) for the year 2010 (available
from https://usa.ipums.org/usa/). In this graph, nodes are U.S. states,
and similarity is calculated on the basis of employment concentrations
in different occupations (also classified at the three-digit level of gran-
ularity). More details about the construction of these networks can be
found in Materials and Methods.

In both of these examples, the data do not partition clearly into two
components either (further analysis using the eigengap heuristic can be
Mealy et al., Sci. Adv. 2019;5 : eaau1705 9 January 2019
found in the Supplementary Materials). However, as we show in the
next section, the ECI and PCI nonetheless glean useful information
from economic datasets.

Interpretations as dimensionality reduction tools
In addition to approximating the Ncut criterion, the economic com-
plexity measures can also be interpreted as dimensionality reduction
tools. We discuss two such interpretations.
Diffusion map distance
The first interpretation comes from Shi and Malik’s (7) observation
that the ECI exactly minimizes

Sijðyi � yjÞ2Sij
Siy

2
i di

ð23Þ

subject to the constraint

S
i
yidi ¼ 0 ð24Þ

Here, the objective is to find real numbers yi for each node i that
minimize the sum of the squared distances between nodes, where the
distances are weighted according to the similarity matrix S. The con-
straint ensures that the assigned numbers yi take on positive and nega-
tive values and are reasonably balanced in their distribution above and
below zero. As we will discuss further in the “Revisiting previous inter-
pretations of economic complexity” section, it also hard-wires the or-
thogonality condition between the ECI and diversity vectors.

When applied to export data, we can interpret the ECI as a method
to collapse the high-dimensional space of country-export similarities
A

B

C

D

Fig. 1. Interpreting the ECI as a spectral clustering method. Each panel shows the ECI vector (in ascending order) (left) and the associated similarity matrix S (right),
where rows and columns have been ordered by the ECI and colored by the Sij values. Panels correspond to similarity networks based on (A) randomly generated data
with two clear components, (B) HS6 COMTRADE data for 2013, (C) data on employment concentrations in different industries in U.K. local authorities (LAs), and (D) data
on employment concentrations in different occupations in U.S. states.
4 of 8
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into one dimension. The ECI positions countries on an interval where
similar countries are placed close together and dissimilar countries are
placed far apart. The distance between countries on this line is a special
case of the “diffusionmap distance” (8), which we discuss further in the
Supplementary Materials.

What makes this interpretation interesting from an economic per-
spective is the fact that the ECI correlates strongly with per-capita GDP
(see Fig. 2A) (2, 3). It is not immediately obvious that placing countries
along a monodimensional continuum on the basis of the similarity of
their exports would give such a close association with country incomes.
As we show in Fig. 2 (B and C), similar associations between the ECI
and income are also present in regional settings. Figure 2B shows that
the ECI for U.K. local authorities is correlated with per-capita earnings,
while Fig. 2C shows that the ECI for U.S. states is also correlated with
state-level per-capita GDP. U.K. earnings data are sourced from the U.
K. Office for National Statistics Annual Survey of Hours and Earning,
and U.S. state-level per-capita GDP data are sourced from the U.S. Bu-
reau of Economic Analysis.
Correspondence analysis
A second interpretation as a dimensionality reduction tool, which
connects both the ECI and PCI, relates to correspondence analysis
(9–13). Simple (multiple) correspondence analysis is a multivariate
statisticalmethod for analyzing relationships between two (more than
two) categorical variables. It is frequently used to graphically visualize
the association between row and column categories of a contingency
table in a lower-dimensional space. If one treats the matrixM as a con-
tingency table, then finding the eigenvectors corresponding to the
largest eigenvalues of matrices eM and M̂ (see Eqs. 5 and 7) is exactly
equivalent to performing simple correspondence analysis onM (12, 14).

An alternative technique to implement correspondence analysis is
known as reciprocal averaging (11, 12). This algorithm is equivalent
Mealy et al., Sci. Adv. 2019;5 : eaau1705 9 January 2019
to the method of reflections, which was originally proposed to calculate
the ECI and PCI. As we show in the Supplementary Materials, a coun-
try’s ECI is the average of the PCI of products that it is competitive in
[see also (12)].

Simple correspondence analysis arrives at orderings (given by the
ECI and PCI) that maximize the correlation between two categorical
variables (the rows and columns ofM) (12). We provide an illustration
of these orderings in Fig. 3, which shows theMmatrix for countries and
exports (Fig. 3A), U.K. local authorities and industries (Fig. 3B), and U.S.
states and occupations (Fig. 3C). In all three cases, we sort the country,
region, and state rows according to their corresponding ECI in ascend-
ing order.We also sort the export, industry, and occupation columns by
their corresponding PCI in ascending order.

Putting together the insights from Figs. 2A and 3A, we can see that
there is a systematic pattern of specialization in the export data. Richer
countries with high ECI specialize in a similar set of high-PCI products,
while poorer countries with low ECI tend to specialize in low-PCI
products.

Inspecting the products at either end of the PCI spectrum allows us
to infer information about the products that richer and poorer countries
specialize in. As shown byHausmann et al. (2), high-PCI products tend
to relate to chemical andmachinery exports that require technologically
sophisticated know-how and advanced manufacturing processes, while
low-PCI products tend to correspond to agricultural products or raw
minerals.

The regional datasets also show similar patterns of specialization
and correlation with earnings and income per capita, suggesting that
richer (poorer) regions and states with high (low) ECI specialize in
high-PCI (low-PCI) industries and occupations. In the Supplemen-
tary Materials, we show the top and bottom local authorities and
U.S. states ranked by the ECI, as well as the top and bottom industries
A B C

Fig. 2. ECI versus income per capita. (A) Relationship between the ECI and log GDP per capita for data on countries and exports. (B) Relationship between the ECI and
log per-capita earnings for data on industrial employment concentrations in U.K. local authorities. As the scatterplot is too tightly clustered to show legible local
authority labels, we provide the top and bottom 10 local authorities ranked by their ECI in the Supplementary Materials. (C) Relationship between the ECI and log
GDP per capita for data on occupational employment concentrations in U.S. states.
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and occupations ranked by the PCI. In the United Kingdom, high-ECI
(low-ECI) local authorities tend to be urban (rural) areas specialized in
high-PCI (low-PCI) industries relating to financial and professional
(agricultural and manufacturing) industries. We find similar results
for the U.S. data.

Revisiting previous interpretations of economic complexity
Previous interpretations of the ECI have tended to be cast in terms of
diversity (2, 3, 16, 17), although the ECI and diversity are mathemati-
cally orthogonal [see Eq. 24 and (18)]. However, in the country export
data (see Fig. 4A) and in Chinese regional data (16), diversity and the
ECI turn out to be positively correlated. Recall that orthogonality (hav-
ing a zero dot product) does not imply zero correlation unless themean
of one of the variables is zero.Neither diversity nor the (unstandardized)
ECI has zero means in these data. As we show in Fig. 4 (B and C), the
empirical relationship between the ECI and diversity is different in the
U.K. and U.S. regional data. Despite being positively correlated with re-
gional per-capita earnings (Fig. 2, B and C), the ECI is negatively
correlated with industrial diversity of U.K. local authorities and does
not correlate with occupational diversity of U.S. states.

The mathematical orthogonality between the ECI and diversity in-
dicates that these variables capture different information (18). In partic-
ular, previous work has shown that ordering the rows of matrix M by
country diversity and the columns by product ubiquity reveals a trian-
gular structure (see Fig. 5A) (23). This pattern indicates that more di-
verse countries tend to export less ubiquitous products, while less
diverse countries tend to export more ubiquitous products, in contrast
to traditional theories of comparative advantage (23).

However, in both of our regional examples, diversity and ubiquity
fail to be economically informative. Aswe can see in Fig. 5 (B andC), the
diversity and ubiquity ordering of M matrices constructed from U.S.
and U.K. regional data does not reveal a triangular structure. Moreover,
as shown in Fig. 6, while country diversity is positively correlated with
Mealy et al., Sci. Adv. 2019;5 : eaau1705 9 January 2019
per-capita GDP in the export data (Fig. 6A), there is no positive corre-
lation between diversity and per-capita earnings in theUnitedKingdom
(Fig. 6B) or per-capita state-level GDP in the United States (Fig. 6C).
DISCUSSION
This paper provides a number of mathematical interpretations of the
ECI and PCI and shows how these interpretations offer useful insights
into export and regional data. Our results also cast existing empirical
findings in a new light. Previously, the success of the ECI in explaining
variation in per-capita GDP and future growth rates across countries
was thought to reflect the importance of accumulating a diverse set of
productive capabilities (2, 3, 23). However, bymaking the difference be-
tween the ECI and diversity explicit, we can better understand the dis-
tinct roles that these variables play in the development process.

The relationship between diversification and development is well
established in the economics literature. Countries tend to follow a
U-shaped pattern, whereby they first diversify and then begin to special-
ize relatively late in the development process (24). This pattern aligns
with other empirical studies that have described a positive association
between export diversification and economic growth, which tends to be
stronger for less developed countries (25–27).

In contrast to diversity, the application of the ECI and PCI to export
data sheds light on specialization patterns across countries. High-PCI
(low-PCI) products tend to be exported by richer (poorer), high-ECI
(low-ECI) countries. As high-PCI (low-PCI) products tend to be
more (less) technologically sophisticated (2), this finding underscores
the importance of technological upgrading in the development process.
While the relationship between technological capabilities and develop-
ment has also received significant attention in economics (28–30), our
interpretation of the ECI and PCI as dimensionality reduction tools
offers a useful approach for analyzing the differences in the export
baskets of low- and high-income countries.
A B C

Fig. 4. ECI versus diversity. Relationship between diversity and the ECI for data on (A) countries and exports, (B) U.K. regions and industries, and (C) U.S. states and
occupations.
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The interpretations of the economic complexity measures discussed
in this paper open a door for further applications of dimensionality re-
duction methods to other economic datasets. As we have shown with
our illustration of the U.K. and U.S. employment data, the ECI and PCI
reveal similar patterns of specialization across richer and poorer regions.
Future work could readily extend the economic complexitymeasures to
examine other economic networks, such as production networks con-
structed from country input-output data. Moreover, relationships
between the ECI/PCI, diffusion maps (14, 31), and simple correspon-
dence analysis (12, 32) (some of which are further discussed in the Sup-
plementary Materials) suggest that new insights could be gleaned from
applications of nonlinear diffusion maps and multiple correspondence
analysis to economic data.
MATERIALS AND METHODS
Calculating the ECI for U.K. and U.S. regional
employment data
U.K. local authorities and industries
Using data from the BRES, we constructed a binary region-industry
matrixW on the basis of a region r’s location quotient (LQ) in industry i

LQri ¼
eri=Si eri

Sreri=SrSieri
ð25Þ

where eri is the number of people employed in industry i in region r and
Wri = 1 if LQri > 1 and LQri = 0 otherwise. Note that Eq. 25 is anal-
ogous to Eq. 1. We then constructed a eWmatrix fromW in the same
way as eM was constructed from M (Eq. 5). Last, we calculated the
industry-based ECI for U.K. local authorities by finding the eigenvector
associated with the second largest eigenvalue of eW.
U.S. states and occupations
We applied the same methodology to calculate the occupation-based
ECI for U.S. states. (We also found consistent results using data on
U.S. states and industries.) Drawing on census data for the United
States, which are available from the IPUMS (22), we constructed a
state-occupation matrix using a state’s LQ in occupation i. We then
computed the occupation-based ECI for U.S. states analogously to the
industry-based ECI for U.K. local authorities.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/1/eaau1705/DC1
Section S1. Diversity and degree equivalence
Mealy et al., Sci. Adv. 2019;5 : eaau1705 9 January 2019
Section S2. Relationship between the ECI and PCI
Section S3. Interpretation of ECI as a diffusion map and relationships to correspondence
analysis and kernel principal component analysis
Section S4. ECI and PCI rankings for regional data
Section S5. Eigengap heuristic analysis
Section S6. Robustness of empirical results to alternative RCA thresholds
Fig. S1. Application of diffusion map interpretation to country export data.
Fig. S2. Top largest eigenvalues of the eM matrix for data on exports, U.K. regional industrial
concentrations, and U.S. state occupational concentrations.
Fig. S3. Robustness of ECI versus GDP/cap relationship to varying the RCA export threshold.
Fig. S4. Country-product M matrix with rows sorted by the ECI and columns sorted by the PCI
constructed using different RCA thresholds.
Fig. S5. Robustness of ECI versus GDP/cap relationship to varying the RCA per-capita threshold.
Table S1. Top and bottom 10 U.K. local authorities ranked by ECI.
Table S2. Top and bottom 10 industries ranked by PCI.
Table S3. Top and bottom 10 U.S. states ranked by ECI.
Table S4. Top and bottom 10 occupations ranked by PCI.
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