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Abstract

Vitronectin (VTN) is a glycoprotein in the blood and affects hemostasis. VTN is also present in 

the extracellular matrix of various organs but little is known about its function in healthy adult 

tissues. We show, in adult mice, that VTN is uniquely expressed by approximately half of the 

pericytes of subventricular zone (SVZ) where neurogenesis continues throughout life. 

Intracerebral VTN antibody injection or VTN knockout reduced neurogenesis as well as 

expression of pro-neurogenic CNTF, and anti-neurogenic LIF and IL-6. Conversely, injections of 

VTN, or plasma from VTN+/+, but not VTN−/− mice, increased these cytokines. VTN promoted 

SVZ neurogenesis when LIF and IL-6 were suppressed by co-administration of a gp130 inhibitor. 

Unexpectedly, VTN inhibited FAK signaling and VTN−/− mice had increased FAK signaling in 

the SVZ. Further, an FAK inhibitor or VTN increased CNTF expression, but not in conditional 

astrocytic FAK knockout mice, suggesting that VTN increases CNTF through FAK inhibition in 

astrocytes. These results identify a novel role of pericyte-derived VTN in the brain, where it 

regulates SVZ neurogenesis through co-expression of CNTF, LIF and IL-6. VTN-integrin-FAK 

and gp130 signaling may provide novel targets to induce neurogenesis for cell replacement 

therapies.
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Introduction

Vitronectin (VTN) is a glycoprotein thought to be mainly produced by hepatocytes in the 

liver (Seiffert et al., 1991) and is present at high levels in the blood where it affects 
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thrombosis, and inhibits complement-mediated cell lysis and fibrinolysis (Bergmann et al., 

2009; Eberhard and Ullberg, 2002; Hallstrom et al., 2006; Preissner and Seiffert, 1998; 

Tomasini and Mosher, 1991; Wei et al., 1994; Zhou et al., 2003). VTN is also present at the 

cell surface and binds to extracellular matrix molecules in various organs (Hayman et al., 

1983; Seiffert et al., 1996; van Aken et al., 1997). VTN binds integrin receptors to regulate 

cell attachment, proliferation, differentiation and migration in cultured cells, during 

development and in tissue remodeling after injury and in cancer (Milner et al., 2007; 

Preissner and Reuning, 2011; Preissner and Seiffert, 1998). VTN can promote inflammation 

by activating α5β1, αvβ5 and αvβ3 integrin (Bae et al., 2012; Dufourcq et al., 2002; 

Edwards et al., 2006; Milner et al., 2007). However, the role of VTN in healthy adult tissues 

is unclear (Leavesley et al., 2013).

VTN mRNA levels in the brain is lower compared to liver but VTN gene expression appears 

similar to those of hepatocytes in a subset of cells in the vicinity of brain capillaries (Seiffert 

et al., 1996; Seiffert et al., 1995b; Seiffert et al., 1991). A recent transcriptome study 

identified VTN as a potential marker for adult mouse brain pericytes (He et al., 2016). The 

role of perivascular pericytes in the naïve brain is unclear but may include blood-brain 

barrier maintenance and regulation of blood flow (Hall et al., 2014; Liu et al., 2012; Winkler 

et al., 2011). VTN integrin receptors are expressed by astrocytes (Bello et al., 2001; Herrera- 

Molina et al., 2012). We have demonstrated that VTN inhibits CNTF expression in cultured 

astroglioma C6 cells via integrins (Keasey et al., 2013). Integrins activate intracellular 

signaling molecules via mediators such as focal adhesion kinase (FAK) (Giancotti and 

Ruoslahti, 1999; Hunter and Eckhart, 2004; Staquicini et al., 2009). Little is known about 

VTN functions in the healthy adult brain.

The subventricular zone (SVZ) of the adult mammalian brain, including that of humans, 

continues to produce new neurons (Ernst et al., 2014; Hagg, 2009; Ming and Song, 2011; 

Ponti et al., 2013a). In the SVZ, neural stem cells generate rapidly proliferating progenitors 

which differentiate into neuroblasts (Doetsch et al., 1999; Ponti et al., 2013a; Ponti et al., 

2013b). The adult SVZ has a distinct vascular niche with an extensive microvasculature 

network and densely packed astrocytes (Shen et al., 2008; Tavazoie et al., 2008; Yang et al., 

2008), which produce CNTF to promote neurogenesis (Yang et al., 2008). Astrocyte end- 

feet contact the extracellular matrix molecule (ECM)-rich basement membranes around 

endothelial cells, which regulate neurogenesis via neurotrophins and growth factors (Crouch 

et al., 2015; Delgado et al., 2014; Emanueli et al., 2003; Harris et al., 2017). Pericytes may 

contribute to this neurogenic niche with growth factors that promote progenitor proliferation 

and neuronal differentiation (Choi et al., 2016; Crouch et al., 2015; Trost et al., 2016). 

Basement membranes modulate cytokines and growth factors, perhaps thereby maintaining 

SVZ neurogenesis (Acevedo et al., 2015; Alvarez-Buylla and Lim, 2004; Mercier et al., 

2002; Soleman et al., 2013). ECM molecules like laminin and heparan sulfate proteoglycan 

regulate SVZ neurogenesis and migration (Douet et al., 2012; Emsley and Hagg, 2003a; 

Shen et al., 2008) but nothing is known about the role of ECM VTN.

Endogenous CNTF promotes adult SVZ and hippocampal neurogenesis (Emsley and Hagg, 

2003b; Yang et al., 2008), possibly through expression of FGF2 (Kang et al., 2013a), which 

stimulates progenitor production (Aberg et al., 2003; Ip et al., 1994; Kitchens et al., 1994; 
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Kuhn et al., 1997; Li et al., 2008). CNTF, together with LIF and IL-6, activates the gp130 

receptor signaling (Zigmond, 2011). LIF inhibits the production of progenitor by promoting 

stem cell self-renewal (Gregg and Weiss, 2005; Pitman et al., 2004; Shimazaki et al., 2001) 

in the SVZ (Bauer and Patterson, 2006). IL-6 promotes neural stem cell self-renewal (Storer 

et al., 2018) and counteracts progenitor proliferation and neuronal differentiation (Bowen et 

al., 2011; Covey et al., 2011). Inhibition of ECM molecule-integrin signaling by FAK 

inhibitors induces CNTF and neurogenesis (Keasey et al., 2013) but regulation of LIF and 

IL-6 in the SVZ are unknown.

Here, we investigated the localization and role of VTN in the regulation of CNTF, LIF, IL-6 

and neurogenesis through FAK in the adult mouse SVZ. Identifying such mechanisms may 

help to develop pharmacological treatments to promote CNS neurogenesis for cell 

replacement therapies in neurological disorders.

Materials and methods

Animals

A total of 281 mice were used. Adult male C57BL/6 (8–10 weeks old, JAX Stock 000664), 

VTN transgenic mice (JAX Stock 004371) and GFAP-cre mice (B6.Cg-Tg(GFAP- cre/

ERT2)505Fmv/J, JAX Stock 012849) were purchased from Jackson Laboratory. FAK- flox 

mice (B6; 129X1 -Ptk2tm1Lfr/Mmucd, RRID:MMRRC_009967-UCD) were purchased from 

MMRRC at University of California at Davis. To produce experimental VTN+/+ and VTN−/

− littermates, heterozygous mice were bred and genotyping was performed using tail snips 

and protocols provided by the suppliers. For inducible conditional astrocytic FAK knockout 

mice, GFAP-cre mice were bred with FAK-flox mice to generate hemizygous mice who 

were further backcrossed with FAK-flox mice to produce FAK-flox GFAP-cre mice 

(FAKfl/fl- GFAPcre) and FAK-flox (FAKfl/fl, used as control) littermates. The Ai6 mice 

(B6.Cg- Gt(ROSA)26Sor tm6(CAG-ZsGreen 1)Hze, JAX Stock 007906) were obtained from Dr. 

Diego Rodriguez-Gil’s laboratory at ETSU. Homozygous Ai6 mice were bred with GFAP-

cre mice to produce GFAP-cre-ZsGreen reporter (GFAPcre-ZsGreen) and Ai6 heterozygous 

(used as control) mice. Tamoxifen (i.p., 100 mg/kg, twice a day for 5 days, T5648, Sigma-

Aldrich) was used to induce Cre recombinase-mediated excision of LoxP sites. Experiments 

included both male and female mice at 8–12 weeks of age and no sex difference was 

detected in any of experiments. All procedures were approved by our University Committee 

on Animal Care and were in compliance with the NIH Guide on Care and Use of Animals.

Intrastriatal stereotactic injections

Intrastriatal injections next to the SVZ were performed as before (Kang et al., 2012). Briefly, 

1 μl of test drug was injected into the middle of the striatum in one or both sides of the brain 

at coordinates −1 mm rostrocaudal, 1.5 mm lateral from bregma and 3.5 mm dorsoventral 

from the dura. The injected drugs included PBS, vehicle (1% DMSO), rabbit IgG (AP160-

KC, Millipore), rabbit anti- mouse VTN antibody (8.2 μg/μl, Ab62769, Abcam, 

RRID:AB_956454), recombinant human VTN (rhVTN, 1 μg/μl, Sigma, SRP3186), rhVTN

+SC144 (3.6 ng/μl, #4963) or FAK14 (2.4 μg/μl, Tocris Bioscience, #3414). The SVZ was 

collected 3 or 24 h later and stored at −80 degree for mRNA and protein extraction. SC144 

Jia et al. Page 3

Exp Neurol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has been identified as a selective gp130 inhibitor by directly binding to the gp130 receptor, 

causing its Ser782 phosphorylation and deglycosylation, and subsequent degradation. This 

reduces downstream intracellular activation of STAT3 and Akt by the gp130 ligands, IL-6 

and LIF (Grande et al., 2016; Xu et al., 2013a). However, SC144 has no effect on activation 

of STAT3 and Akt caused by non-gp130 cytokines, interferon Y and stromal cell-derived 

factor 1a, and platelet-derived growth factor (Xu et al., 2013a), suggesting it is selective for 

gp130 over other types of receptors tested. Those investigators suggested that it can bind to 

and stabilize IL-24, resulting in cell cycle arrest and apoptosis of cancer cells (Xu et al., 

2013b). However, IL-24 is undetectable by in situ hybridization in the brain, including the 

SVZ (Allen Brain Atlas), and SC144 alone did not affect SVZ cell proliferation or 

neuroblast numbers in mice (Fig. 5). To label proliferating cells in naïve mice or following 

intrastriatal injections, mice were injected with BrdU (i.p.) at 50 mg/kg twice a day for 3 

days and perfused with ice- cold PBS and 4% PFA 2 h after last injection. In the SC144 

experiment they were injected with BrdU at 144 mg/kg at 21, 24 and 27 h and perfused at 48 

h.

Immunohistochemistry

Coronal sections (30 μm) through the brain, and sections through the heart and liver were 

stained with the rabbit anti-mouse vitronectin antibody (1:1000, ab62769, Abcam) alone or 

together with one of the following: goat anti-DCX (1:500, SC-8066, Santa Cruz, 

RRID:AB_2088494), mouse anti-GFAP (1:1000, MAB3402, Millipore, RRID:AB_94844), 

rat anti-CD31 (1:500, #550274, BD Pharmingen, RRID:AB_393571), Goat anti-CD13 

(1:50, AF2335, R&D Systems, RRID:AB_2227288) or rat anti-PDGFRβ (1:500, #14–

1402-82, Invitrogen, RRID:AB_467493) antibody, and followed by Alex Fluor 488-

conjugated donkey anti-rabbit and Alex Fluor 594-conjugated donkey anti-goat, mouse or rat 

secondary antibody (all from Invitrogen) to visualize the positive immunofluorescent 

staining. The nuclei were counterstained with Hoechst. The specificity of the VTN antibody 

was validated by detecting no staining in tissue from VTN−/− mice stained with primary and 

secondary antibody, and wildtype tissue stained with purified IgG instead of primary 

antibody or staining with primary or secondary antibody alone. We also tested a number of 

other commercially available VTN antibodies. R&D MAB38751 (RRID:AB_2216439) and 

Santa Cruz SC74484 (RRID:AB_1131298) did not show any staining in brain tissue. Abcam 

ab28023 (RRID:AB_778869), Abcam ab45139 (RRID:AB_778872), and Molecular 

Innovations ASMVN, lightly stained SVZ processes in both VTN+/+ and VTN−/− brain 

tissue sections. ASMVN also revealed small striatal neurons in both genotypes. Only the 

Abcam ab62769 antibody (RRID:AB_956454) showed specific staining (in pericytes) and 

revealed no immunoreactivity in KO tissue, validating it as specific. Finally, to confirm cre 

activity in the cre-lox mice, we used rabbit anti-ZsGreen 1 (1:1000, #632474, Clontech 

Laboratories, RRID:AB_2491179) antibody followed by donkey anti-rabbit secondary 

conjugated to Alex Fluor 488 to visualized ZsGreen 1 protein expression in brain sections.

Unbiased and stereological analysis for BrdU-positive nuclei

Every sixth 30 μm thick coronal section through the SVZ along rostrocaudal axis (total six 

sections/brain) were stained with BrdU using rat anti-BrdU antibody (1:1000, ab6326, 

Abcam RRID:AB_305426) or stained with BrdU and DCX using rat anti-BrdU antibody 
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and goat anti- DCX antibody as described previously (Jia and Hegg, 2015). Unbiased 

stereological analysis of BrdU-positive cells in the SVZ was performed using a motorized 

Leica DMIRE2 microscope and an optical fractionator stereological method (Stereologer, 

System Planning and Analysis, Alexandria, VA) by researchers blinded to the treatment 

(Kang et al., 2013a). The numbers of DCX-positive and DCX-BrdU co-labeled neuroblasts 

in the most populated dorsolateral part of SVZ (640 μm x 480 μm) in every sixth section 

through SVZ were also counted by researchers blinded to the treatments. The DCX-positive 

cells were defined by their DCX-positive cytoplasm surrounding Hoechst-labeled or BrdU-

labeled nuclei. The quantification of VTN-positive cells in the dorsolateral SVZ and medial 

striatum, and PDGFRβ-VTN co-labeled or CD13-VTN co-labeled cells in the dorsolateral 

SVZ was performed in the z-stacks of confocal pictures with an area of 465 μm x 465 μm (3 

sections each mouse and two images including left and right side each section).

Protein and mRNA analyses

The CNTF, pFAK, FAK, pPyk2, Pyk2, pILK, ILK, pERK, ERK and a-tubulin proteins in the 

SVZ were detected with western blotting as described previously (Keasey et al., 2013) with 

the following antibodies: CNTF (1:500, MAB338, RRID:AB_2083064), pFAK (1:1000, 

#3283, RRID:AB_10327658), FAK (1:1000, #3285,RRID:AB_2269034), pPyk2 (1:1000, 

#3291,RRID:AB_2300530), Pyk2 antibody (1:1000, #3480,RRID:AB_2174093), pILK 

(1:1000, AB1076,RRID:AB_10807157), ILK (1:1000, 04–1149,RRID:AB_1977290), 

pERK (1:2000, #9106,RRID:AB_331768), ERK (1:2000, #9102,RRID:AB_330744) and α-

tubulin (1:2000, #2125,RRID:AB 2619646). The levels of pFAK and α-tubulin were also 

quantitatively measured by WES Quantitative Capillary Electrophoresis according to the 

manufacturer’s protocol (ProteinSimple, PS-MK01) as described previously (Keasey et al., 

2018; Visavadiya et al., 2016). Briefly, tissue homogenates (1 μg protein, 0.2 μg/μl) mixed 

with fluorescent molecular weight markers were loaded into 24 single designated wells 

followed by antibody diluent, mixture primary antibodies (1:25, pFAK and 1:200, a tubulin, 

in antibody diluent), anti-rabbit HRP-conjugated secondary antibody and luminol-peroxide 

mixture and wash buffer loaded into different wells aligned with tissue samples. Plates were 

loaded into the automated ProteinSimple Wes for electrophoresis and fluorescence imaged 

in real time by a CCD camera. Data was expressed as peak intensity or synthetic bands.

The quantification was performed by normalizing the area under pFAK peak to α-tubulin 

loading control in each capillary and then the values were normalized to the average of PBS. 

IL-6 and LIF protein levels in the SVZ were measured using ELISA according to 

manufacturer’s protocols (R & D system, IL-6, M6000B, LIF, MLF00). Briefly, 25 μg total 

protein from SVZ tissue homogenate in 50 ^l was run together with standard curve in 

duplications.

The mRNA levels of CNTF, LIF and IL-6 in the SVZ were measured by RT-qPCR as 

described previously (Kang et al., 2013a). To detect differences in the low basal levels of 

CNTF, LIF and IL-6 in the SVZ between VTN+/+ and VTN−/− mice we used semi-nested 

RT- qPCR following a previously described method (Pasternak et al., 2008) with 

modifications. Briefly, cDNA was reverse transcribed from 20 ng SVZ RNA was PCR 

amplified for 5, 10, 15 or 20 cycles to test the optimal cycle numbers for pre-amplification. 
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Primers for CNTF (Mm00446373_m1), IL-6 (Mm00446190_m1) and LIF 

(Mm00434762_g1) were from Life Technologies. We chose 20 cycles since the 

amplification curve displayed an exponential phase for all genes at 20 cycles. PCR 

conditions for pre-amplification were 20 s at 95 °C (ramp rate 1.9 °C/s) for initial 

denaturation and then 20 cycles of 1 s at 95 °C (1.9 °C/s ramp rate) followed by 20 s at 

60 °C (ramp rate 1.6 °C/s) for amplification. The pre-amplification of cDNA was performed 

in duplicates on a QuantStudio 6 Flex (Applied Biosystems) in total 5 μl reaction per well of 

384 well plate. The PCR products from pre-amplification were pooled for each sample and 1 

μl of pre-amplification product was used for semi-nested, real-time qPCR as described 

previously (Keasey et al., 2018).

Statistical analyses.

Statistical analyses were performed using graphpad Prism (version 7). A value of p ≤ 0.05 

was considered to be statistically significant. A one-way ANOVA with Bonferroni post hoc 
multiple comparisons was applied when there were three or more groups with testing for one 

factor. A two-way ANOVA with post hoc Tukey multiple comparisons was used when the 

groups were four or more and there were two factors to be tested, such as genotypes and 

treatments. If only two groups were compared, a Student’s t-test was used.

Results

VTN protein is uniquely expressed in the pericytes of the adult SVZ

In the adult mouse SVZ (Fig. 1A,E,F) and striatum (Fig. 1B,D), VTN immunostaining was 

present in cells located alongside and very close to blood vessels. Their processes often 

appeared to surround the entire vessel (insets in Fig. 1B). Specificity of the antibody was 

shown by the lack of any staining in the SVZ of VTN−/− mice (Fig. 1C). The number of 

VTN- positive cells in the dorsolateral part of SVZ was more than double that seen in the 

striatum (215 ± 56 vs. 82 ± 7 per mm2, p=0.039, student’s t test, n=3 mice each). SVZ VTN-

positive cells were apposed to microvessels, especially at points of bifurcations, which were 

particularly noticeable in the striatum (Fig. 1D) where the microvascular network is not as 

dense as in the SVZ. We observed the same staining patterns in the cerebral cortex (not 

shown). VTN expression did not co-localize with vascular endothelial cells stained for CD31 

(Fig. 1E,F) but the VTN-positive cells appeared to be in direct contact with the endothelial 

cells. Neuroblasts travel along microvessels but VTN did not co-localize with the neuroblast 

marker doublecortin (Fig. 1G-I). A search of VTN mRNA expression in the Allen mouse 

brain atlas (http://mouse.brain-map.org) identified a peri-vascular pattern of cells resembling 

that of PDGFRβ mRNA in the dorsolateral SVZ and elsewhere in the brain. PDGFRβ has 

been used as a pericyte marker (Sato et al., 2016; Sweeney et al., 2016). VTN was clearly 

colocalized with PDGFRp (Fig. 2A-C,J) and with CD13 (Fig. 2D-F,K), which is also 

expressed by pericytes (Sato et al., 2016; Sweeney et al., 2016). These data indicate that 

VTN is uniquely expressed in pericytes of adult mouse SVZ. Not all PDGFRβ or CD13-

positive pericytes had overt VTN staining. In the SVZ, 53 ± 6% of PDGFRβ-positive cells 

were VTN- positive and 40 ± 7% of CD13-positive cells expressed VTN. These data suggest 

that a substantial sub-population of pericytes produce most of the VTN in the brain. 

Interestingly, we observed that VTN-positive cells often were in direct contact with GFAP-
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positive astrocyte processes, which sometimes enveloped the pericyte cell body (Fig. 2G-

I,L,M). This raises the possibility that pericytes can affect the function of astrocytes in the 

SVZ through VTN-mediated integrin signaling.

Given the abundant expression of VTN in the liver, we also investigated the localization of 

VTN. Immunostaining was present around the portal area and the central veins, and along 

the sinusoids between them (Suppl. Fig. 1A,B). VTN staining was most prominent in the 

periportal area followed by that around the peri-central vein. Surprisingly, the hepatocytes 

had little or no positive staining. VTN-positive cells were located on the abluminal side of 

the vascular endothelial cells (Suppl. Fig. 1,a,b,b’), and in the space of Disse, the 

perisinusoidal space between sinusoidal endothelial cells and hepatic cells (Suppl. Fig. 1b’’). 

VTN was highly co-localized with CD13 (Suppl. Fig. 1C-E,e, e’), indicating that VTN is 

expressed in the liver pericytes which are liver-specific mesenchymal cells also known as 

stellate cells (Di Matteo et al., 2011; Hellerbrand, 2013; Huang et al., 2016). VTN has also 

been found in the heart, and VTN staining was located around blood vessels (Suppl. Fig. 1F-

H) and no staining was observed in cardiomyocytes. VTN was not co-localized with the 

endothelial cell marker CD31 (Suppl. Fig. 1h), but co-localized with CD13 (Suppl. Fig. 1I-

K,k), indicating that pericytes produce VTN in the heart.

VTN promotes CNTF, IL-6 and LIF expression and SVZ neurogenesis

To determine whether pericyte VTN affects expression of cytokines that regulate 

neurogenesis, the same validated VTN antibody was injected into the striatum next to the 

SVZ of C57BL/6 mice. After 24 h, the antibody caused a reduction in CNTF (−46%), IL-6 

(−33%) and LIF (−19%) mRNA expression in the SVZ compared to the isotype control IgG 

(Fig. 3A). Moreover, naive adult VTN−/− mice had reduced expression of CNTF (−26%), 

IL-6 (−31%) and LIF (−38%) mRNA in the SVZ compared to naïve VTN+/+ littermate mice 

(Fig. 3B).

In concert, cell proliferation and SVZ neurogenesis in the SVZ was reduced in VTN−/− 

mice as measured by the numbers of cells labeled with BrdU (Fig. 3C,D, −18%), the 

neuroblasts labeled by DCX (Fig. 3E,F, −24%) as well as co-labeled with BrdU and DCX 

(Fig. 3G,H, - 63%).

As a gain-of-function experiment, we injected rhVTN protein in the striatum next to the 

SVZ. We used wildtype VTN+/+ mice, but also VTN−/− littermates, to circumvent any 

potential confounding effects of blood VTN leaking into the injection site. At 24 h, in both 

VTN+/+ and VTN−/− mice, rhVTN substantially increased mRNA levels of CNTF (Fig. 

4A), IL-6 (Fig. 4B), and LIF (Fig. 4C) compared to control PBS injections. The expression 

levels in PBS- or rhVTN-injected VTN+/+ and VTN−/− mice were comparable and not 

significantly different, ruling out the potential contribution of leaked blood VTN. This seems 

to be in apparent contradiction to reduced cytokine expression in the SVZ of naïve VTN−/− 

mice (Fig. 3B). Previously, intrastriatal injection of PBS slightly increased IL-6 and LIF in 

the SVZ (Jia et al., 2018), raising the possibility that VTN−/− mice are more sensitive to 

intrastriatal injections than their wild type littermates. Intrastriatal injection of rhVTN also 

increased CNTF (Fig. 4D,E), IL-6 (Fig. 4F) and LIF (Fig. 4G) protein expression in the 

SVZ, as measured by western blot and ELISA. The levels of VTN-induced protein 
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expression were not different between the two genotypes. This suggests that the knockout 

mice did not undergo developmental adaptive compensation, such as expression of integrins 

which bind to VTN to regulate these cytokines. This was confirmed by similar mRNA levels 

of the αv, β3 and β5 integrin receptor subunits in the SVZ of VTN+/+ and VTN−/− mice 

(data not shown).

Blood contains very high concentrations of VTN (around 300 μg/ml), representing ~1% of 

plasma protein (Hogasen et al., 1993; Seiffert et al., 1991; Shaffer et al., 1984). By 

comparing the effects of plasma from VTN+/+ and VTN−/− mice we could test whether 

native endogenous mouse VTN had similar activities as the rhVTN and the unique role of 

VTN among other plasma proteins or factors that might affect cytokine production and 

neurogenesis (Lin et al., 2018). We again also used VTN−/− mice to rule out effects of 

leaked plasma due to the injection. At 24 h after intrastriatal injection, VTN+/+ plasma 

substantially increased SVZ CNTF (Fig. 4H), IL-6 (Fig. 4I) and LIF (Fig. 4J) expression in 

both VTN+/+ and VTN−/− mice. Strikingly, VTN−/− plasma did not significantly alter 

expression of these cytokines. These data suggest that VTN is a major and possibly unique 

ECM protein regulating CNTF, LIF and IL-6 in the brain.

Exogenous VTN increases neurogenesis when IL-6 and LIF are reduced by gp130 
inhibition

Previously, we found that intrastriatal injection of IL-6 stimulates CNTF, LIF and IL-6 in 

adult mouse SVZ (Kang et al., 2013b) which can bind to their common gp130 receptor 

(Zigmond, 2012). To test whether VTN-stimulated CNTF, LIF or IL-6 expression induces a 

gp130- mediated feedforward mechanism, we injected rhVTN with or without the gp130 

inhibitor, SC144, into striatum next to the SVZ of C57BL/6 mice. Consistent with the results 

in Fig. 4, at 24 h, VTN increased all three cytokines in the SVZ (Fig. 5A-C). SC144 alone 

did not alter the basal expression levels. Co-injection of SC144 with rhVTN did not alter 

VTN-induced CNTF (Fig. 5A) but reduced IL-6 (Fig. 5B) and LIF (Fig. 5C) by 40–50%. 

This suggests that VTN-induced LIF and IL-6 involve a gp130-mediated feed-forward 

mechanism, and that blocking it shifts the balance of cytokine expression in favor of pro-

neurogenic CNTF. Expression of FGF2, which promotes formation of progenitors (Aberg et 

al., 2003; Kuhn et al., 1997; Li et al., 2008), was increased in the SVZ by both VTN and 

VTN+SC144 (Fig. 5D). However, only VTN+SC144 increased the expression of EGFR 

(Fig. 5E), a marker for these progenitors (Doetsch et al., 2002). Next, SVZ neurogenesis was 

quantified at 48 h after the intrastriatal injection, with BrdU being injected i.p. at 21, 24 and 

27 h. Intrastriatal injection of VTN+SC144, but not VTN or SC144 alone, substantially 

increased the number of BrdU- positive nuclei (Fig. 5F,G), DCX-positive neuroblasts (Fig. 

5H,I) and BrdU-DCX co-labeled neuroblasts (Fig. 5J,K) in the SVZ. These data suggest that 

VTN rapidly increases neurogenesis when the balance of cytokine expression favors CNTF-

induced progenitor proliferation, perhaps also including effects on FGF2 expression, as we 

have suggested before (Kang et al., 2013a).

VTN induces CNTF, LIF and IL-6 via FAK inhibition

VTN binds to integrins which are well-known to activate downstream FAK 
signaling.—Wildtype VTN+/+ mice were injected with PBS or rhVTN and SVZ tissue 
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collected at 3 h. Surprisingly, the levels of phospho-FAK (pFAK) appeared to be decreased 

by injected VTN in most mice compared to PBS (Fig.6A). Quantitative capillary western 

analysis showed that VTN inhibited FAK phosphorylation by ~37% in the SVZ (Fig. 6B-D). 

In C57BL/6 mice, intrastriatal injection of rhVTN also led to a reduction in pFAK in the 

SVZ compared to PBS at 3 h (Fig. 6E). Activation of another major signaling molecule 

downstream of integrins, Pyk2 (Mitra et al., 2005; Sulzmaier et al., 2014), was also inhibited 

in the SVZ of the VTN+/+ mice by intrastriatal injection of rhVTN (Fig. 6F). Conversely, 

activation of downstream ILK (Widmaier et al., 2012) was increased in the SVZ 3 h after 

intrastriatal injection of rhVTN (Fig. 6G). VTN also reduced the level of pERK, which is 

downstream of FAK, in the SVZ at 3 h (Fig. 6H). At 24 h, pFAK was not different between 

intrastriatal rhVTN and PBS injected mice (data not shown). Consistent with VTN-inhibited 

pFAK, the levels of pFAK in the SVZ of VTN−/− mice were significantly increased 

compared to those in VTN+/+ mice (Fig. 6I,J), suggesting the decreases of CNTF, LIF and 

IL-6 in VTN−/− mice may be due to higher levels of pFAK.

Next, we determined whether astrocytes, which produce CNTF, are involved in FAK 

inhibitor-and VTN-induced expression of CNTF, IL-6 and LIF in the SVZ. We cross-bred 

existing mouse lines to produce tamoxifen-inducible conditional deletion of FAK in adult 

GFAP-positive astrocytes (Sup. Fig. 2A). Successful cre-mediated recombination was 

confirmed by PCR of DNA from the SVZ of tamoxifen-treated FAKfl/fl-GFAPCre mice (data 

not shown). Tamoxifen-induced Cre activity in astrocytes was shown by co-localization of 

ZsGreen protein with GFAP in tamoxifen-treated GFAPcre-ZsGreen reporter mice (Sup. Fig. 

2B-E). Two weeks after the last tamoxifen injection the mice received intrastriatal injections 

and were analyzed 24 h later. CNTF expression in the SVZ was increased in the PBS-

injected FAKfl/fl-GFAPCre mice (Fig. 6K,N) compared to PBS-injected control FAKfl/fl 

mice, suggesting that knockout of FAK in astrocytes increases CNTF expression. As 

expected, the FAK inhibitor FAK14 or VTN increased CNTF in FAKfl/fl control but not in 

the FAKfl/fl-GFAPCre mice (Fig. 6K,N), indicating that FAK14 or VTN acts entirely by 

inhibiting astrocytic FAK. The levels of IL-6 were not affected by the conditional FAK 

knockout in the astrocytes and FAK14- or VTN-induced IL-6 expression was not different 

between FAKfl/fl and FAKfl/fl- GFAPCre mice (Fig. 6L,O), suggesting that FAK14- or VTN-

induced IL-6 is produced by other cells. LIF expression was not affected by the conditional 

FAK knockout (Fig. 6M,P), but FAK14-induced LIF expression was lower in FAKfl/fl-

GFAPCre than the control FAKfl/fl mice (Fig. 6M), suggesting that astrocyte FAK mediates 

some of the FAK14 effects on LIF expression. The levels of VTN-induced LIF expression 

were comparable in control FAKfl/fl and FAKfl/fl-GFAPCre mice (Fig. 6P).

Astrocyte-specific knockout of FAK increases SVZ neurogenesis—In order to 

test whether astrocyte-specific knockout of FAK increases SVZ neurogenesis, we quantified 

the numbers of BrdU-positive nuclei in the SVZ of FAKfl/fl and FAKfl/fl-GFAPCre mice 

following 3 days of BrdU injection using unbiased stereology. Compared to FAKfl/fl mice, 

FAKfl/fl-GFAPCre mice had a 27% increase in BrdU-positive nuclei in the SVZ (Fig. 7A,B). 

We also measured the numbers of BrdU-DCX- co-labeled neuroblasts in the dorsolateral 

SVZ to confirm that increased proliferation (BrdU) leads to more neurogenesis. Compared 

to FAKfl/fl mice, FAKfl/fl-GFAPCre mice had a 2-fold increase in BrdU-DCX-positive cells 
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(Fig. 7C,D). The mRNA expression levels of VTN in the SVZ of FAKfl/fl-GFAPCre mice 

were not different from the FAKfl/fl mice (0.93 ± 0.08 vs. 1.0 ± 0.03, calculated as a fold of 

FAKfl/fl, n= 4 and 7 mice, p=0.21, Student’s t test), confirming that the effects of the FAK 

deletion were not due to changes in the endogenous VTN expression. These data indicate 

that knockout of FAK in the astrocytes increases SVZ neurogenesis, possibly through CNTF.

Discussion

We identified VTN as being uniquely expressed by brain pericytes and as a novel regulator 

of normal adult forebrain neurogenesis through cytokine expression and highlight the role of 

microvascular pericytes. VTN−/− mice have a subtle phenotype, including an increased rate 

of thrombosis after vascular injury and reduced angiogenesis after tissue injury (Eitzman et 

al., 2000; Jang et al., 2000). In the cerebellum of VTN−/− mice, the granule cell precursors 

have dysfunctional initial differentiation during development (Hashimoto et al., 2016). Little 

was known about the role of VTN in healthy adult tissues (Leavesley et al., 2013; Preissner 

and Reuning, 2011) and this study adds important new insight for its normal function in the 

brain and points to the potential to utilize its activities to regulate cytokine expression and 

increase neurogenesis. Our data suggest that VTN has rapid actions in the adult brain where 

SVZ neurogenesis was substantially increased as early as 48 h. This suggests that it has a 

dynamic function, which is not expected of ECM molecules in the tissue basement 

membranes, but is consistent with its functions as a soluble molecule, in the same way as it 

does in blood.

In the forebrain, we detected VTN staining with a validated antibody exclusively in pericytes 

and their processes around the microvasculature. A recent transcriptome study of normal 

mouse brain tissue identified VTN as a potential marker for pericytes (He et al., 2016).

Others reported VTN mRNA in endothelial cells around blood vessels in the developing 

mouse brain using in radioactive situ hybridization (Seiffert et al., 1995a) but the pattern of 

staining is consistent with pericytes. We also find that abundant VTN seems to be present in 

pericytes of the liver (also named stellate cells) and heart. The fibrous pattern of staining in 

skeletal muscle, lung, kidney and skin shown in the study describing the discovery of VTN 

(Hayman et al., 1983) is also consistent with pericytes. Our finding that hepatocytes have 

very little detectable VTN is consistent with previous reports of strong perivascular and 

sinusoidal VTN staining (Edwards et al., 2006; Kobayashi et al., 1994), but apparently 

discrepant with the reports that hepatocytes are the main producers of VTN (Kobayashi et 

al., 1994; Seiffert et al., 1991). Others have suggested that the low abundance of VTN in 

hepatocytes is due to their rapid release into the blood stream as is also true for other blood 

proteins such as albumin (Inuzuka et al., 1992; Kobayashi et al., 1994). The relative 

contribution of hepatocytes and pericytes, and by pericytes of different organs, to blood 

VTN remains to be determined.

Pericytes are embedded in a common basement membrane with endothelial cells (Dore- 

Duffy and Cleary, 2011). The brain has the highest pericyte density and microvascular 

coverage among organs, having up to 3:1 ratios over endothelial cells (Armulik et al., 2011; 

Frank et al., 1990). Pericytes are uniquely positioned in the neurovascular unit between 
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endothelial cells, glial cells and neurons. They integrate signals from these cells to maintain 

brain functions in health and disease, including blood-brain barrier permeability, 

angiogenesis, blood flow regulation and repair (Choi et al., 2016; Sweeney et al., 2016; 

Trost et al., 2016). Pericytes play a role as inflammatory mediators (Rustenhoven et al., 

2017). Our results suggest that their production and release of VTN contribute to these roles. 

VTN mRNA was abundantly expressed in the adult mouse SVZ (qPCR Ct values of ~22) 

and protein staining was abundant in a subpopulation of pericytes located at bifurcations of 

microvessels. This suggests that VTN is constantly produced, which would be consistent 

with a dynamic function, e.g., as a regulator of gene expression.

The novel role of pericyte VTN in regulating cytokine expression and neurogenesis is 

consistent with the reported interplay between pericytes and endothelial cells, which 

regulates SVZ neurogenesis (Crouch et al., 2015), with pericytes releasing diffusible signals 

in vitro. Brain pericytes release molecules such as TGFβ and BMPs to regulate proliferation 

and migration of CNS progenitor cells (Choe et al., 2014; Maki et al., 2015). VTN is known 

to promote endothelial cell survival, probably through αvβ3 integrin (Franco et al., 2011; 

Isik et al., 1998), and endothelial cells also promote neurogenesis, possibly through VEGF 

(Sun et al., 2010). We found that VTN-positive pericytes were ensheathed by astrocyte 

processes. VTN is an adhesion molecule for astrocytes, binding αvβ5 integrin (Gladson et 

al., 2000). Moreover, astrocytes can translate transcripts in their peripheral processes (Sakers 

et al., 2017), raising the possibility that pericytes affect astrocyte protein expression locally, 

in addition to retrograde signaling to their nuclei, in order to regulate neurogenesis. Clearly, 

there is a special relationship between pericytes, endothelial cells and astrocytes in which 

VTN could play an important role. It remains to be determined which cell types in the SVZ 

respond directly to VTN to produce CNTF, LIF and IL-6. Astrocytes and microglia are most 

likely responders, since both cell types express αvβ3 and/or αvβ5 integrin (Milner, 2009; 

Herrera-Molina et al., 2012; Tawil et al., 1994). Both cells produce LIF and IL-6, and 

astrocytes produce CNTF after injury (Kang et al., 2013a; Kang et al., 2012; Keasey et al., 

2013; Milner et al., 2007; Van Wagoner and Benveniste, 1999; Van Wagoner et al., 1999; 

Yang et al., 2008). Our data with inducible conditional FAK knockout mice suggest that 

VTN induces CNTF expression in the astrocytes, VTN-induced IL-6 is not from astrocytes 

and VTN-induced LIF regulation may include multiple cell types.

Our results indicate that VTN regulates neurogenesis by inducing pro-neurogenic CNTF as 

well as LIF and IL-6, which stimulate neural stem cell self-renew at the expense of rapidly 

proliferating C-cell progenitors and neuroblast formation in the SVZ (Bauer and Patterson, 

2006; Bowen et al., 2011; Buono et al., 2012; Covey et al., 2011; Storer et al., 2018). LIF 

and IL-6 counteract CNTF functions in promoting neurogenesis after stroke (Kang et al., 

2013a). The finely tuned balance between stem cell proliferation and neurogenesis can be 

modified by reducing LIF and IL-6, but not CNTF, expression with the gp130 inhibitor 

SC144, leading to an increase in progenitor proliferation and neuroblast formation. This is 

supported by systemic FAK14 injections, which only induces CNTF and increases 

neurogenesis (Jia et al., unpublished data). These data identify gp130 as a potentially novel 

therapeutic target to induce neurogenesis, e.g., by combining SC144 with small integrin 

agonist peptides which mimic VTN. Injection of VTN alone did not change neurogenesis 

but increased FGF2 in the SVZ, suggesting that LIF and IL-6 act to reduce formation of 

Jia et al. Page 11

Exp Neurol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



progenitors that can respond to the increased FGF2. Interestingly, IL-6 can stimulate VTN 

expression in the liver (Seiffert et al., 1995a), raising the possibility that a feedforward 

mechanism might exist in the SVZ. Perhaps, co-expression of CNTF prevents excessive IL- 

6 expression, as suggested by our findings in CNTF−/− mice after stroke (Kang et al., 

unpublished). How the balances of these cytokines change over time and affects individual 

cells are unclear, but most likely involves many additional molecular regulators of stem 

cells, progenitors and neuroblasts. All these cells are needed to enable production of new 

neurons throughout life.

LIF and IL-6 are expressed at very low levels in the brain under physiological conditions and 

rapidly increase upon injuries (Kang et al., 2013a; Quintana et al., 2008; Sriram et al., 2004). 

The mechanisms that regulate these cytokines under naïve and injury conditions are unclear 

but our results suggest that they include VTN. The finding that gp130 regulates VTN- 

induced LIF and IL-6, but not CNTF, expression is unexpected because CNTF can be 

regulated by the gp130-JAK-STAT pathway (Ip et al., 1992). The gp130 ligand IL-6 

stimulates p705 STAT3 (Keasey et al., 2013), the CNTF promoter binds STAT3 (Keasey et 

al., 2013), and stimulates CNTF expression (Kang et al., 2012; Shuto et al., 2001). It is 

possible that this apparent discrepancy is caused by additional VTN signaling properties, 

e.g., through its binding to uPAR (Ferraris et al., 2014; Madsen et al., 2007). Collectively, 

our data reveal a surprising differential regulation mechanisms of these closely related 

cytokines by VTN, and may provide opportunities to individually regulate them. It remains 

to be determined whether VTN also regulates hippocampal neurogenesis through these 

pathways and whether they contribute to age- and disease-related changes in neurogenesis.

Integrin-binding ECM molecules like VTN activate FAK through phosphorylation in vitro 

(Hecker et al., 2004). Here, intracerebral VTN injections caused a reduction in pFAK and 

the closely related PYK2 at 3 h, while activating ILK. Moreover, the SVZ of VTN−/− mice 

had higher levels of pFAK compared to VTN+/+ mice. Also, intracerebral injection of FAK 

inhibitor caused the same increase in cytokine expression as did VTN injections, and 

increased CNTF and LIF through astroglial FAK as shown in the GFAP-cre-FAK-lox mice. 

Future studies will have to determine the mechanisms underlying this unexpected finding. It 

is possible that the acutely reduced ERK phosphorylation we observed (Fig. 7H) resulted in 

a subsequent reduction of ERK-dependent FAK phosphorylation (Zheng et al., 2009), as a 

feedback mechanism. The VTN effects may be cell context-dependent as is seen with EGF, 

which can rapidly suppress phosphorylation of FAK Y397 in cultured keratinocytes with 

high pFAK but stimulates it in those with low pFAK (Kim and Kim, 2008). Our finding that 

VTN had the opposite effects on pILK than pFAK has also been described for another 

integrin ligand, osteopontin (Li et al., 2007).

Conclusion

These data identify a novel role of VTN uniquely produced by brain pericytes on cytokine 

expression and neurogenesis in the SVZ (Fig. 8). VTN induces co-expression of pro- 

neurogenic CNTF, and LIF and IL-6, known to promote neural stem cell renewal and inhibit 

progenitor formation. Importantly, pharmacological inhibition of the IL-6-gp130 receptor, 

dampened VTN-induced LIF and IL-6, but not CNTF expression, and rapidly increased 
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neurogenesis. Also, VTN induces these cytokines through inhibiting FAK and specific FAK 

inhibition in astrocytes promotes CNTF expression. This study identifies potentially new 

therapeutic targets to promote neurogenesis for cell replacement in the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation:

VTN vitronectin

rhVTN recombinant human vitronectin

CNTF ciliary neurotrophic factor

LIF leukemia inhibitory factor

IL-6 interleukin-6

SVZ subventricular zone

FAK focal adhesion kinase

ECM extracellular matrix molecule

CD13 alanine aminopeptidase

CD31 platelet endothelial cell adhesion mocleular-1

PDGFRβ platelet derived growth factor receptor beta

DCX doublecortin

GFAP glial fibrillary acidic protein

FGF2 fibroblast growth factor 2

Pyk2 protein tyrosine kinase 2-beta

ILK integrin-linked protein kinase

ERK extracellular signal regulated kinase
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Highlights

• Vitronectin is uniquely expressed in perivascular pericytes of the brain where 

they interact with astrocytes.

• Vitronectin promotes cytokine expression to regulate neurogenesis in the 

adult subventricular zone, identifying an important role within healthy tissues.

• Vitronectin increases CNTF to promote neurogenesis when IL-6 and LIF are 

reduced by gp130 inhibition.

• Vitronectin stimulates CNTF expression entirely through inhibition of focal 

adhesion kinase in astrocytes.

• Vitronectin-integrin-FAK and gp130 signaling provide novel targets to 

promote neurogenesis with implications for cell replacement therapies.
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Figure 1. VTN is expressed in perivascular cells of the adult mouse brain.
Confocal images show VTN immunostaining in the SVZ (A) and striatum (B). Arrows 

indicate examples of VTN-positive cells. Nuclei were stained with DAPI (blue). Inset in (A) 

shows the locations of SVZ (i) and striatum (ii) images in a coronal section. Two insets in 

(B) show VTN-positive cells around two microvessels in the striatum. LV=lateral 

ventricular, BV=blood vessel. Scale bars are as indicated. C) No VTN-positive staining was 

present in VTN−/− mice, validating the specificity of the antibody. D) VTN-positive cells 

were located at bifurcation points of striatal blood vessels identified by the endothelial 

marker CD31. E) VTN-positive cells in the SVZ are tightly apposed to endothelial cells as 

shown by lack of colocalization with CD31 in (F). G-I) VTN-positive cells in the SVZ were 

not co-localized with doublecortin (DCX)-positive neuroblasts. The VTN-positive cells 

indicated by arrows in (G,H) are shown in one 1 μm thick section of a confocal z-stack (I).
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Figure 2. VTN is uniquely expressed in pericytes of the adult mouse SVZ.
VTN was colocalized with the pericyte markers, PDGFRβ A-C) and CD13 D-F) as shown 

in confocal images of SVZ. The arrows indicated in (C,F) are shown at higher magnification 

in J) and K). VTN-positive cells were closely apposed to GFAP-positive astrocytes G-I). 

The cells indicated by the arrows are shown at higher magnification in L) and M). The inset 

in (A) shows the location of the SVZ images in this figure. LV =lateral ventricle. Scale bars 

are as indicated.
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Figure 3. VTN inhibition or deletion reduces expression of CNTF, LIF and IL-6 and cell 
proliferation in the SVZ.
A) Intrastriatal injection of a VTN antibody reduced CNTF, IL-6 and LIF mRNA in the 

neighboring SVZ of C57BL/6 mice at 24 h later. Data are mean +SEM and calculated as 

fold change of IgG (n=5 and 5 mice, * p<0.05, ** p<0.01, Student’s t test). B) VTN−/− mice 

had lower mRNA levels of CNTF, IL-6 and LIF in the SVZ compared to VTN+/+ mice as 

measured by seminested RT-qPCR. Data are mean + SEM and calculated as fold change of 

the VTN+/+ mice (n=5 and 9 mice, * p<0.05, ** p<0.01, Student’s t test). C) Representative 
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images of BrdU immunostaining in coronal sections through the SVZ of adult VTN+/+ and 

VTN−/− mice following 3 daily BrdU injections show a decrease in proliferation in the SVZ 

of VTN−/− mice. LV=lateral ventricle, STR=striatum and CC=corpus callosum. D) 

Unbiased stereological counting of BrdU-positive nuclei in the SVZ confirmed that VTN−/− 

mice had ~18% less cell proliferation than VTN+/+ mice (n=4 and 5 mice, * p<0.05, 

student’s t test). E) Representative images of DCX (red) immunostaining in the dorsolateral 

SVZ of adult mice show a decrease in neuroblasts in the SVZ of VTN−/− compared to VTN

+/+ mice. Nuclei were stained with Hoechst (blue). F) Quantification of DCX-positive cells 

in the SVZ confirmed that VTN−/− mice had ~24% fewer neuroblasts than VTN+/+ mice 

(n=4 and 5 mice, * p<0.05, student’s t test). G) Representative images of DCX (red) and 

BrdU (green) immunostaining in the dorsolateral SVZ show a decrease in BrdU-labeled 

neuroblasts in the SVZ of VTN−/− mice. High magnification of BrdU-DCX co-labeled cells 

(arrows in G) in VTN+/+ H-J) and VTN−/− K-M) mice show examples of counted cells. N) 

Quantification of BrdU--DCX co-labeled cells in the SVZ confirmed that VTN−/− mice had 

~63% less neurogenesis than VTN+/+ mice (n=4 and 5 mice, *** p<0.001, student’s t test).
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Figure 4. VTN injection increases CNTF, LIF and IL6 expression in the SVZ.
Intrastriatal injection of rhVTN increased A) CNTF, B) Il-6 and C) LIF mRNA in the SVZ 

of both VTN+/+ and VTN−/− mice at 24 h later. Data are mean + SEM and calculated as 

fold change of the group average of the PBS VTN+/+ mice. VTN also increased CNTF 

protein levels in the same mice, as shown by western blot (D) and densitometry 

quantification (E). IL-6 F) and LIF G) protein levels were increased in the same mice as 

shown by ELISA (n=5, 5, 4 and 5 per group. * p<0.05, ** p<0.01, *** p<0.001, Two-way 

ANOVA followed by post hoc Tukey multiple comparison test). In separate mice, 

intrastriatal injection of plasma collected from VTN+/+, but not VTN−/−, mice increased 

CNTF (H), IL-6 (I) and LIF (J) mRNA expression in the SVZ of VTN+/+ and VTN−/− 

mice at 24 h. Data are mean + SEM and calculated as fold change of the group average of 

the PBS VTN+/+ mice (n=8, 7 and 8 VTN+/+ mice/group and n = 5, 3 and 6 VTN−/− mice/

group. * or # p<0.05, ** or ## p<0.01, *** or ### p<0.001, Two-way ANOVA followed by 

post hoc T ukey multiple comparison test).
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Figure 5. VTN increases SVZ neurogenesis when LIF and IL-6 expression is inhibited by a gp130 
inhibitor.
Intrastriatal injection of both rhVTN and the gp130 receptor inhibitor, SC144, did not affect 

A) VTN-induced CNTF expression in the SVZ of C57BL/6 mice, but suppressed VTN-

induced B) IL-6 and C) LIF. Data are mean + SEM and calculated as a fold change over the 

vehicle (Veh, 1% DMSO) group average (n=9, 7, 5 and 6 mice/group. *** p<0.001, **** 

p<0.0001, Two-way ANOVA followed by post hoc Tukey multiple comparison test). D) 

VTN increased FGF2, known to promote progenitor formation, but not the progenitor 

marker EGFR (E), but increased both in the presence of SC144, as shown in the same SVZ 

samples as (A-C). F) Representative images of BrdU immunostaining in coronal sections 

through the dorsolateral SVZ of adult C57BL/6 mice at 48 h following intrastriatal injection 

show an increase in proliferation in the VTN plus SC144 (VTN/SC144) group compared to 

the others. LV=lateral ventricle and CC=corpus callosum. G) Unbiased stereological counts 

of BrdU-positive nuclei in the SVZ confirmed that co-administration of SC144 enables VTN 

to induce proliferation. Data are mean + SEM, with the vehicle group set at 100% (n=6, 5, 5 

and 5 mice/group. * p<0.05, Two-way ANOVA followed by post hoc Tukey multiple 
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comparison test). H) Representative confocal images of DCX (red) immunostaining in 

coronal sections through SVZ of the same groups of adult C57BL/6 mice. Nuclei were 

stained with Hoechst (blue). I) Cell counts in the SVZ confirmed that VTN/SC144 increased 

the number of DCX-positive neuroblasts (*** p<0.001, Two-way ANOVA followed by post 

hoc Tukey multiple comparison test). J) Representative confocal images of DCX (red) and 

BrdU (green) immunostaining in the dorsolateral SVZ of the same adult C57BL/6 mice. K) 

Quantification of BrdU--DCX co-labeled cells in the SVZ confirmed that VTN/SC144 

increased neurogenesis (*** p<0.001, Two-way ANOVA followed by post hoc Tukey 

multiple comparison test).

Jia et al. Page 27

Exp Neurol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. VTN induces CNTF, IL-6 and LIF expression through FAK inhibition.
A) Intrastriatal injection of rhVTN in VTN+/+ wildtype mice reduced pFAK in the SVZ 3 h 

later as shown by Western blot (Representative of 3 independent blots). B) Quantitative 

capillary westerns document the decreases in pFAK as shown in synthetic computer-

generated bands and by C) chemiluminescence traces of individual mice. D) pFAK/α-

tubulin ratios were measured by the areas under curve. Data are mean + SEM, with PBS set 

at 100% (n=4 mice/group. * p<0.05, Student’s t test). E) Representative western blot 

showing that intrastriatal injection of rhVTN also reduced pFAK at 3 h in the SVZ of 
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C57BL/6 mice. Injection of rhVTN decreased pPyk2 (F), increased pILK (G) and reduced 

pERK (H) in the SVZ of VTN+/+ mice at 3 h. I-J) Representative western blot and 

densitometry quantification showing that VTN−/− mice have increased pFAK in the SVZ 

(n=7 and 5 mice, * p<0.05, Student’s t test). Astrocyte-specific genetic deletion of FAK 

(FAKfl/fl-GFAPcre mice) increased mRNA levels of CNTF (K), but not IL-6 (L) or LIF (M) 

in the SVZ (compare the intrastriatal PBS-injected groups). Intrastriatal injection of FAK 

inhibitor, FAK14, increased CNTF, IL-6 and LIF mRNA in the SVZ of control FAKfl/fl mice 

at 24 h. However, FAK14 had no effect on CNTF (K) in the SVZ of FAKfl/fl-GFAPcre mice, 

indicating that it acts via FAK to induce CNTF. FAK14 induced IL-6 to the same extent in 

control and cre-lox mice (L) and had less effect on LIF in the FAKfl/fl-GFAPcre compared to 

the control mice (M). Data are mean +SEM and calculated as a fold change over FAKfl/fl 

mice PBS group average (n=7, 8, 6 and 4 mice/group. * p<0.05, ** p<0.01, *** p<0.001, 

**** p<0.0001, Two-way ANOVA followed by post hoc Tukey multiple comparison test). 

N) Intrastriatal injection of rhVTN increased CNTF mRNA in the SVZ of FAKfl/fl but not 

FAKfl/fl-GFAPcre mice at 24 h, indicating that it acts via astroglial FAK to induce CNTF. 

Intrastriatal injection of rhVTN induced IL-6 O) and LIF P) in both control and cre-lox mice 

(n=8, 5, 4 and 5 mice/group. * p<0.05, ** p<0.01, Two-way ANOVA followed by post hoc 

Tukey multiple comparison test).

Jia et al. Page 29

Exp Neurol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Astrocyte-specific knockout of FAK increases SVZ neurogenesis.
A) Representative images of BrdU immunostaining in coronal sections through the 

dorsolateral SVZ of adult FAKfl/fl and FAKfl/fl-GFAPcre mice following 3 daily BrdU 

injections show an increase in proliferation in the SVZ of FAKfl/fl-GFAPcre mice. B) 

Unbiased stereological counting of BrdU-positive nuclei in the SVZ confirmed that FAKfl/fl-

GFAPcre mice had ~27% more cell proliferation than FAKfl/fl mice (n=9 and 7 mice, *** 

p<0.001, student’s t test). C) Representative images of BrdU (green) and DCX (red) 

immunostaining in the dorsolateral SVZ of adult FAKfl/fl and FAKfl/fl-GFAPcre mice show 

an increase in neurogenesis in the SVZ of FAKfl/fl-GFAPcre mice. LV=lateral ventricle, 

STR=striatum and CC=corpus callosum. D) Quantification of BrdU-DCX co-labeled cells in 

the SVZ confirmed that FAKfl/fl-GFAPcre mice had ~2 fold more neurogenesis than FAKfl/fl 

mice (n=9 and 7 mice, *** p<0.001, student’s t test).

Jia et al. Page 30

Exp Neurol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Summary of VTN-induced SVZ neurogenesis through CNTF.
VTN is uniquely expressed in the pericytes located on the abluminal surface of a capillary. 

Released VTN binds integrins on the astrocytes which leads to FAK inhibition and 

subsequent CNTF induction which promotes neurogenesis in the SVZ. LIF is increased in 

part though FAK inhibition in astrocytes and IL-6 is produced by another cell type, possibly 

microglial. CNTF promotes neurogenesis, while LIF and IL-6 inhibits neurogenesis by 

promoting neural stem cell self-renewal and/or inhibiting production of neural progenitor 

cells.
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