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Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by 
highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the 
extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. 
We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed 
extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exception-
ally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts 
for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Muta-
tions/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic 
interactions influence high levels of variation in circadian phenotypes.

Keywords  Drosophila melanogaster · Circadian rhythms · Genome-wide association · Period · Rhythmicity index

Background

Circadian rhythms are endogenous cycles present in almost 
all living organisms. They affect myriads of biological pro-
cesses in humans, such as sleep/wake cycles, body tempera-
ture, hormone levels, heart rate, and even cognitive perfor-
mance (Van Dongen et al. 2004). Circadian rhythms may 
thus play a fundamental role in human health (Zee et al. 
2014). Disruption to circadian rhythms has been associated 
with detrimental neurobehavioral consequences. For exam-
ple, rotating shift workers, people experiencing chronic jet 
lag, and those living in areas with extreme long or short 
photoperiods have increased risk of psychiatric and mood 
disorders (Bunney and Bunney 2000; Boivin 2000; Grandin 
et al. 2006; Magnusson and Boivin 2003). Furthermore, cir-
cadian disruptions often precede the development of neuro-
degenerative disorders such as Alzheimer’s disease and Par-
kinson’s disease, though whether they have a causal role in 
these conditions is unknown (Mattis and Sehgal 2016; Vid-
enovic and Zee 2015). Disruption of circadian rhythms may 
also contribute to metabolic disease. For instance, circadian 
misalignment, often manifested as rotating or shifting work 
schedules, has been associated with increased hyperten-
sion, Type 2 diabetes, total cholesterol, and cardiovascular 
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disease (Reutrakul and Knutson 2015; McHill and Wright 
2017; Reutrakul and Van Cauter 2014). Profound effects on 
metabolic processes such as glucose tolerance, body mass 
index (BMI) and cortisol levels result from the disruption 
of sleep and circadian cycles combined with poor dietary 
choices (Shi and Zheng 2013; McHill et al. 2014). Thus, 
disrupted circadian rhythms are an important consideration 
in the etiology of disease.

The circadian period in humans is tightly regulated and 
close to 24 h (Czeisler et al. 1999). Human clocks have a 
built-in mechanism to adjust endogenous period and phase 
in response to a moderate light stimulus (Scheer et al. 2007). 
Human studies focus on chronotype, which is the prefer-
ence for morning or evening activity (Kalmbach et al. 2016). 
Chronotype has been shown to have a genetic component 
(Jones et al. 2016; Lane et al. 2016; Kalmbach et al. 2016; 
Toomey et al. 2015). Candidate gene studies show associa-
tions between core canonical clock genes and chronotype 
(Kalmbach et al. 2016). For instance, a hereditary form of 
delayed sleep phase disorder (DSPD) is associated with 
a dominant coding variation in the core circadian clock 
gene CRY1 (Patke et al. 2017). Recently, three large-scale 
genome-wide association studies in humans revealed that, in 
addition to canonical clock genes, novel genes may contrib-
ute to differences in human chronotype (Jones et al. 2016; 
Lane et al. 2016; Hu et al. 2016).

Core clock mechanisms regulating circadian behavior are 
remarkably similar between mammals and Drosophila mela-
nogaster, even though they diverged approximately 600 mil-
lion years ago (Yu and Hardin 2006; Panda et al. 2002; Nitta 
et al. 2015). In fact, the genes and processes involved in 
complex mammalian circadian rhythms were first identi-
fied in flies (Konopka and Benzer 1971; Hardin et al. 1990). 
Rhythmic rest and activity behavior in Drosophila is one of 
the most reliable phenotypes for the identification of novel 
genes regulating circadian rhythms (Hardin 2011; Helfrich-
Forster et al. 2011). The use of flies for rest and activity 
studies offers several advantages over mammalian models. 
For example, the availability of an extensive collection of 
stocks with mapped mutations, chromosomal deletions, 
and transgenic constructs have facilitated forward genetics 
approaches in circadian rhythm studies. This approach has 
identified numerous genes of the circadian clock (Hardin 
et al. 1990; Takahashi 1993; Reppert and Weaver 2002; 
Sehgal et al. 1995; Dunlap et al. 2007).

Variability in circadian period and rhythmicity param-
eters among wild-derived isochromosomal lines of flies 
has previously been noted (Emery et al. 1994, 1995), and 
this variation has a genetic component (Emery et al. 1995). 
Heritability has been estimated at 0.14 for circadian period 
(Emery et al. 1995). Therefore, naturally occurring poly-
morphisms likely influence the fly’s circadian clock. His-
torically, most work has focused on polymorphic variation 

within the canonical clock genes in natural populations. 
Studies of a threonine-glycine-encoding repeat region in the 
period gene revealed a clinal distribution of these alleles in 
natural populations in Europe and Australia (Kyriacou et al. 
2008; Sawyer et al. 1997). Likewise, an insertion in the 5′ 
coding region of timeless varies with latitude in European 
flies (Kyriacou et al. 2008). Furthermore, a polymorphic 
variant in the genomic region containing shaggy is clinal in 
North America, though not in Australia (Rand et al. 2010). 
In contrast, a non-synonymous polymorphism in cryp-
tochrome does not vary with latitude but persists in nearly 
equal frequencies in European populations (Pegoraro et al. 
2014). These polymorphisms are associated with differences 
in temperature-compensated period length (Kyriacou et al. 
2008; Sawyer et al. 1997), the frequency of diapause (Kyri-
acou et al. 2008; Tauber et al. 2007), the timing of eclosion 
(Pegoraro et al. 2014), and thermal tolerance (Rand et al. 
2010; Sawyer et al. 1997). These experiments demonstrate 
the importance of polymorphic variation in canonical clock 
genes to circadian behavior in flies; however, the contribu-
tion of polymorphic variants in the rest of the genome to 
circadian behavior in natural populations remains largely 
unexplored.

Recently, several efforts have been made to study 
genomic differences for a variety of behaviors, diseases 
and life history traits using genetic reference populations 
of Drosophila (King et al. 2012a, b; Mackay et al. 2012; 
Huang et al. 2014; Grenier et al. 2015). Here, we performed 
a genome-wide association study (GWAS) using the D. 
melanogaster Genetic Reference Panel (DGRP), a unique 
resource created by mating full siblings of wild-caught iso-
female lines for 20 generations (Mackay et al. 2012; Huang 
et al. 2014), to explore the range of polymorphic variants 
contributing to genetic variation in Drosophila circadian 
phenotypes. Some of the salient features of the DGRP col-
lection are (i) availability of full sequence data, (ii) rapid 
decay in linkage disequilibrium (LD) with physical distance, 
(iii) and a lack of population structure (Mackay et al. 2012; 
Huang et al. 2014). Another important feature of the DGRP 
is the ability to perform screening of identical genotypes in 
a controlled environment, thus elucidating the role of genes 
in micro-environmental plasticity (Morgante et al. 2015; Lin 
et al. 2016a). Many studies ranging from natural variation 
in physiological processes (food intake and nutrient stores) 
(Garlapow et al. 2015; Unkless et al. 2015), to variation in 
behavior (olfactory avoidance and aggression) (Arya et al. 
2015; Shorter et al. 2015), to anatomical features (mush-
room body size and abdominal pigmentation) (Dembeck 
et al. 2015; Zwarts et al. 2015), and to environmental and 
drug responses (radiation resistance and paraquat) (Vaisnav 
et al. 2014; Weber et al. 2012) have exploited the DGRP.

In this study, we examined two circadian phenotypes, 
circadian period (Ʈ) and rhythmicity index (RI), a measure 
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of how consistent the fly’s daily activity patterns are, in 167 
DGRP lines. We observed high levels of sex-specific genetic 
variation for both Ʈ and RI. Several lines had sex-specific 
arrhythmic behavior and one line (DGRP_892) had a very 
long average circadian period of 31 h. The GWAS identified 
584 molecular polymorphisms in 268 candidate genes asso-
ciated with Ʈ and RI. Thus, the association mapping strategy 
enabled us to identify candidate genes affecting variation in 
circadian behavior.

Results

Quantitative genetic analyses

Circadian phenotypes were highly variable in the DGRP. We 
observed high levels of genetic variation among lines (all 
PLine(Block) < 0.0001, four-way nested ANOVA) for RI and for 
Ʈ, whether Ʈ was calculated using the Maximum Entropy 
Spectral Analysis method (MESA period) or by the Chi 
square Periodogram method (χ2 period) (Fig. 1; Table S1). 
These traits were also highly sexually dimorphic among 
lines (all PSex×Line(Block) < 0.001, four-way nested ANOVA). 
Broad-sense heritability was high for RI (H2 = 0.43), indi-
cating that the genetic contribution to this trait is relatively 
large (Fig. 1a). Heritability was relatively low for MESA 
period (H2 = 0.17), consistent with previous estimates of her-
itability in wild-derived populations (Emery et al. 1995), but 
higher for χ2 period (H2 = 0.39). We observed that ~ 12% of 
the flies were arrhythmic, a figure consistent with previous 
reports of rhythmicity in natural populations (Emery et al. 
1994; Kumar et al. 2005). Females tended to have a lower RI 
than males and were more likely than males to be arrhyth-
mic (Fig. 1b). Female RI averages for lines DGRP_42, 
DGRP_153, DGRP_375, DGRP_509, DGRP_810, and 
DGRP_908 were below the threshold value for rhythmic-
ity ( rk = 0.0772). Females from these lines were therefore 
classified as arrhythmic. Males of one line, DGRP_101, 
were also classified as arrhythmic. Representative examples 
of autocorrelation plots for rhythmic and arrhythmic flies 
are shown in Fig. 1c, d. The distributions of MESA and 
χ2 period across the DGRP were quite different from one 
another (Fig. 1e–h). The range of values for the period as 
calculated by Chi square periodogram was smaller than the 
range of values seen using MESA, particularly on the low 
end of the scale. Ʈ estimates of line means varied from 15 to 
31.3 h when calculated using MESA and from 23.2 to 31.3 h 
when calculated using the χ2 periodogram method. Interest-
ingly, both methods identified a single line with a very long 
period, line DGRP_892. This line had an average period of 
31.76 h in males and 30.92 h in females as calculated by 
the MESA and 31.78 (30.88) hours as calculated by χ2 for 

males (females) (Table S2; for a representative actogram, 
see Fig. S1A). DGRP_892 had long sleep in LD but was 
not an outlier (Harbison et al. 2013), nor was there a phase 
shift in the activity of these flies under LD conditions (Fig. 
S1B). Overall, circadian phenotypes were both variable and 
heritable in this natural population of flies.

We calculated the genetic correlations among all circa-
dian parameters (Table S3). It has been noted previously that 
rhythmicity index does not predict circadian period; rather, 
it is an indicator of strength or robustness of the circadian 
rhythm (Grierson et al. 2016; Dowse 2007). Not surpris-
ingly, the genetic correlation rG between RI and Ʈ was also 
low, though statistically significant, in the DGRP: rG was 
only 0.18 between RI and MESA period, and − 0.15 between 
RI and χ2 period. Thus, we expect that few genes will be 
common to RI and Ʈ. The genetic correlation between 
MESA period and χ2 period was 0.71 if line DGRP_892 
was included, and 0.61 without this line. A perfect overlap 
between the two period calculations would not be expected 
as the distributions of the two traits are quite distinct; many 
more estimates of period occur in the low range for MESA 
period than for χ2 period (Fig. 1e, g; see also “Discussion”). 
These correlations suggest that some, but not all genes will 
be common among circadian traits.

Sleep and circadian rhythm behaviors are related as the 
timing of sleep is regulated by the circadian clock (Bor-
bely 1982). We therefore correlated the circadian rhythm 
phenotypes with sleep phenotypes measured on the DGRP 
in a previous study (Harbison et al. 2013). The sleep study 
measured duration (minutes spent sleeping), bout number 
(number of naps), and average bout length (average nap 
length) during the day and night. It also measured waking 
activity, the number of activity counts per minute spent 
awake. In addition, the study measured the environmental 
sensitivity (coefficient of environmental variation, or CVE) 
(Mackay and Lyman 2005) for each sleep and activity trait 
(Harbison et al. 2013). Both MESA and χ2 period had sig-
nificant genetic correlations with night average bout length 
(rG = 0.27 and 0.28, respectively). However, only MESA 
period was significantly genetically correlated with night 
bout number (rG = − 0.25) and night bout number CVE 
(rG = 0.41) (Table S4). RI had significant genetic correlations 
night and day bout number (rG = − 0.32 and − 0.52, respec-
tively), night average bout length (rG = 0.32), night and day 
bout number CVE (rG = 0.37 and 0.28, respectively), and day 
average bout length CVE (rG = 0.26) (Table S4). While the 
genetic correlations between sleep and circadian phenotypes 
were statistically significant, inspection of Table S4 reveals 
that the correlations are not high. In addition, we computed 
sleep phenotypes from the rest and activity data collected in 
constant darkness in this study and used the data to calculate 
the phenotypic and genetic correlations with the circadian 
rhythm parameters. For RI, significant correlations were 
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observed in the same traits (day and night bout number, and 
night average bout length), but the magnitudes of the corre-
lations were higher (Table S4). A few additional sleep traits 
were correlated with the circadian rhythm phenotypes: day 
sleep duration and waking activity with RI, night bout num-
ber with MESA, and day average bout length and day sleep 
with χ2 period. Therefore, some common genetic architec-
ture exists between sleep and circadian phenotypes, but it is 
far from being a complete overlap.

Genotype–phenotype associations

The DGRP is fully sequenced (Mackay et al. 2012; Huang 
et  al. 2014), and all single nucleotide polymorphisms 
(SNPs), non-SNP variants (indels, tandem duplications, and 
complex variants), and chromosomal inversions have been 
mapped (Huang et al. 2014). We used the DGRP2 web-based 
analysis to associate these 1,920,276 genetic variants with 
the circadian phenotypes (Table S5) (Huang et al. 2014). 
Circadian phenotypes were not impacted by Wolbachia 
infection status, but some phenotypes were significantly 
associated with chromosomal inversions. RI in males was 
associated with In(2R)NS and In(3R)Mo; combined-sex RI 
was associated with In(2R)NS. In addition, the unusually 
long period observed in DGRP_892 was likely to impact the 
results of genome-wide association on circadian period as 
its inclusion would violate the assumption of independently 
and identically distributed residuals (Mackay et al. 2012). 
We therefore conducted the genome-wide analyses for cir-
cadian period without DGRP_892. We found 142 significant 
polymorphisms in 73 genes for RI; and 292 polymorphisms 
in 139 genes for MESA and 150 in 65 genes for χ2 period 
(Table S5) at a threshold P-value of 1 × 10−5. This thresh-
old P-value is consistent with previous studies of quantita-
tive traits in the DGRP (Arya et al. 2015; Dembeck et al. 
2015a, b; Garlapow et al. 2015; Hunter et al. 2016; Shorter 
et al. 2015; Zwarts et al. 2015). Quantile–quantile (Q–Q) 
plots showed an excess of P-values below 10−5 for all traits, 
suggesting that variants below this threshold are enriched 
for true positive associations (Fig. S2–S4). At this thresh-
old, the false-discovery rates range from 0.0092 to 0.52 for 
RI, 0.0033–0.25 for MESA period; and < 0.0001–0.28 for 
χ2 period (Table S5). A total of thirty-nine variants had 

P-values that were less than a Bonferroni-corrected P-value 
of 1.6 × 10− 8. Variants associated with larger effect sizes 
had lower minor allele frequencies, consistent with previ-
ous observations of complex traits in the DGRP (Fig. S5) 
(Jordan et al. 2012; Weber et al. 2012). We hypothesized 
that polymorphisms lying within a gene or ± 1000 bp from 
a gene affect that gene as linkage disequilibrium decays over 
an average 30–200 bp in the DGRP (Mackay et al. 2012).

Plots of significant variants for each trait plotted against 
minor allele frequency, − log10(P-value), and normalized 
effect size reveal the complex genetic architecture of circa-
dian behavior. Both low-frequency and common polymor-
phisms affect RI (Fig. 2a and S4). Effect sizes were relatively 
small, and virtually no linkage disequilibrium was observed 
between the top variants. In contrast, significant polymor-
phisms for period tended to have low minor allele frequen-
cies, higher P-values, and larger effect sizes (Fig. 2b, c). 
Some linkage disequilibrium is present on chromosomes 2L 
and 2R among variants associated with MESA period, and 
on chromosomes X and 2L among variants associated with 
χ2 period. Five genes overlapped between the two period 
measures: CG31676, Mob2, nAcRalpha-30D, Oamb, and 
shep. Variants in canonical clock genes were not implicated 
in circadian period, but a single intronic SNP in Pdp1 was 
significantly associated with RI. Several other candidate 
genes or their homologs in other species have known or pre-
dicted effects on circadian behavior: 5-HT1A (Yuan et al. 
2006), CG14618 (Ueda et al. 2002), CG42321 (Abruzzi 
et al. 2011), Gga (Hughes et al. 2010), Rh5 (Szular et al. 
2012), slo (Ceriani et al. 2002; Fernandez et al. 2007), Tep4 
(Hughes et al. 2010; Hu et al. 2016), tinc (Mizrak et al. 
2012), tnc (Hughes et al. 2010), and wap (Wu et al. 2008). 
Overall, we identified 584 unique polymorphisms that impli-
cated 268 genes in circadian behavior.

Epistatic associations

To search for epistatic interactions between pairs of vari-
ants that are associated with the traits, we performed a 
full genome-wide pair-wise search for all variants with a 
minor allele frequency (MAF) greater than 0.15. Variants 
in linkage disequilibrium (r2 ≥ 0.8) were pruned. We found 
2,295,186 epistatic interactions for circadian period at a 
nominal P-value ≤ 1 × 10− 7 or less. For χ2 period, there 
were 285,470 interactions for males and 38,411 for females. 
For MESA period, there were 100,701 interactions for males 
and 1,960,053 for females. The large differences in the num-
ber of interactions found for the two measures of circadian 
period are likely due to the differences in their distribution; 
χ2 period had a much lower range of values for period than 
MESA, particularly for the lower values of circadian period 
(Fig. 1). For RI, there were 29,465 interactions for males 
and 23,422 interactions for females. A total of 6401 unique 

Fig. 1   Distribution of circadian rhythm phenotypes in the DGRP. 
Male line means are shown in dark blue; female line means are 
shown in pink. The difference in line means (male–female) is shown 
by purple bars. a Rhythmicity index. b Difference in rhythmicity 
index. c Autocorrelation plot for a representative male of a rhythmic 
line (DGRP_383; RI = 0.667) and an arrhythmic line (DGRP_101; 
RI = 0.066). d Autocorrelation plot for a representative female of 
a rhythmic line (DGRP_861; RI = 0.748) and an arrhythmic line 
(DGRP_375; RI = 0.037). e MESA period. f Difference in MESA 
period. g χ2 period. h Difference in χ2 period

◂
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Fig. 2   Genome-wide association results for circadian rhythm phe-
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epistatic interactions for χ2 and MESA period were within 
or within ± 1 kb of the core circadian clock genes: per, tim, 
Clk, cyc, Pdp1, vri, and sgg (Table S6). These previously 
unappreciated interactions suggested that circadian period 
could be modified by numerous interactions with the molec-
ular circadian clock. Likewise, 189 epistatic interactions 
for RI contained canonical clock genes (Table S6). Despite 
pruning the data to a relatively high MAF and accounting 
for potential linkage disequilibrium, these large numbers 
of epistatic interactions were likely to have numerous false 
positives. We therefore followed up a subset of these interac-
tions with further testing (see below).

Comparison with sleep genome‑wide association

The circadian clock is thought to control the timing of sleep 
(Borbely 1982). We examined the degree of overlap between 
the variants we identified for circadian behavior with a pre-
vious genome-wide association study of sleep (Harbison 
et al. 2013). Only one variant overlapped between MESA 
period and a single sleep trait, average day bout length; two 
variants overlapped between χ2 period and waking activity 
CVE. However, if we considered the overlap among genes, 
48 putative circadian genes overlapped with mean night 
sleep, night and day average bout length, and waking activ-
ity; 100 candidate circadian genes overlapped with meas-
ures of environmental sensitivity for night sleep, day sleep, 
day bout number, night average bout length, and waking 
activity (Table S7). Two of these genes were implicated in 
sleep and its regulation in other studies: Sh (Cirelli et al. 
2005) and 5-HT1A (Yuan et  al. 2006). Thus, while the 
overlap among polymorphic variants was low, the overlap 
between candidate genes in the sleep and circadian studies 
was moderate. Interestingly, of the 4440 genes predicted to 
interact epistatically with canonical clock genes, 991 genes 
were also implicated in sleep and waking activity (Harbison 
et al. 2013), 9.4% more than would be expected by random 
chance (Table S8).

Candidate genes potentially contributing to long 
circadian periods in DGRP_892

None of the significant polymorphisms we identified as 
associated with circadian period were in coding or known 
non-coding regulatory regions of the canonical clock genes. 
Furthermore, none of the DGRP variants predicted to alter 
coding sequence are found in canonical clock genes (per, 
tim, vri, Pdp1, Clk, sgg, cyc, and dbt) (Huang et al. 2014), 
nor did we find any naturally-occurring polymorphisms 
known to produce a long circadian period that were pri-
vate to DGRP_892 (Konopka and Benzer 1971; Kloss et al. 
1998). This suggests that the extreme circadian period seen 
in DGRP_892 may be due to the action of regulatory genes 

on core clock genes (Ray and Reddy 2016). Polymorphisms 
within or in close proximity to such regulatory genes may 
influence the extremely long Ʈ in DGRP_892 by changing 
transcript abundance (Albert and Kruglyak 2015), mRNA 
secondary structure (Nackley et al. 2006; Wang et al. 2007), 
or protein structure (Kimchi-Sarfaty et al. 2007). Thus, we 
examined transcript abundance over time of three canonical 
clock genes in DGRP_892: per, tim, and Pdp1, as well as 
26 candidate genes from this study whose transcripts were 
previously reported to be either cycling and/or regulated by 
the circadian clock (Table S9). Six of these candidate genes 
came from the main effect analyses, while the remaining 
genes came from the epistatic analysis. Genes from the epi-
static analysis interacted with either canonical clock genes 
or other genes identified in the GWA (Table S9). In addition, 
six candidate genes had intergenic variants proximal to pre-
dicted circadian regulatory motifs (i.e., E-boxes) that may 
influence promoter or terminator activity, messenger RNA 
(mRNA) conformation (stability), and subcellular localiza-
tion of mRNAs and/or proteins (Komar et al. 1999; Komar 
2007). Transcript levels for each gene were compared to 
Canton-S B, an isogenic line with a normal circadian period 
(23.81 ± 0.03 h in males; 24.05 ± 0.18 h in females). If these 
genes affect period in DGRP_892, we would expect to see 
differences in the magnitude of gene expression and/or 
cycling between the two lines.

Canonical circadian clock transcript levels

We examined transcript levels of per, tim, and Pdp1 at six 
circadian timepoints under both standard (LD) and constant 
dark (DD) lighting conditions. We first analyzed the changes 
in gene expression over time within each line (Table S10). 
As anticipated, transcripts of per were significantly dif-
ferent across time in Canton-S B, whether in DD or LD 
(FDR = 0.0001 and 0.0127, respectively), with a peak of 
expression around CT10 in DD and ZT10-14 in LD (post-
hoc Tukey P ≤ 0.05). Likewise, tim expression was signifi-
cantly different in Canton-S B across time for both light-
ing conditions (FDR = 0.0013 for DD and 0.0273 for LD); 
expression peaked at CT10 in DD and ZT10-14 in LD (post-
hoc Tukey P ≤ 0.05). However, Pdp1 showed marginally 
non-significant differences in gene expression across time in 
Canton-S B under both lighting conditions (FDR = 0.0868 in 
DD and 0.0922 in LD), though there was a significant peak 
of expression in LD as ZT14 was higher than the other time 
points (post-hoc Tukey P ≤ 0.05). We used the JTK_CYCLE 
program to determine whether these genes were cycling 
rhythmically. Both per and tim cycled robustly in both LD 
and DD lighting conditions (FDR = 0.0002 and 0.0019 for 
per, respectively, and FDR = 0.0007 and 0.0488 for tim, 
respectively). Pdp1 exhibited significant cycling only in LD 
(FDR = 0.001). Thus, Canton-S B had the expected pattern 
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of cycling gene expression for per and tim; Pdp1 appeared 
slightly damped.

In contrast to the canonical clock transcripts observed in 
Canton-S B, gene expression patterns differed in DGRP_892 
(Table S10). per transcriptional cycling appeared damped in 
DGRP_892, particularly in DD (FDR = 0.0922 in DD and 
0.0681 in LD). JTK_CYCLE analysis confirmed that per 
was not cycling in a 24-h period in LD or in DD. In LD, 
there was a peak of per expression at approximately ZT14 
(post-hoc Tukey P ≤ 0.05). tim appeared to cycle robustly 
in DGRP_892 under both lighting conditions as expression 
changed across time (FDR = 0.0050 for DD and 0.0273 for 
LD) with a peak of expression at CT10 in constant darkness 
(post-hoc Tukey P ≤ 0.05). Analysis with JTK_CYCLE con-
firmed that tim had rhythmic expression in LD, while rhyth-
micity in DD was not formally significant (FDR = 0.0210 
and 0.0735, respectively). Pdp1 transcripts were not differ-
entially expressed across time in DGRP_892 under either 
lighting condition, but JTK_CYCLE analysis indicated that 
the transcripts were cycling in LD (P = 0.0430). Transcrip-
tional cycling may therefore be impaired in both per and 
Pdp1 in DGRP_892.

We next asked whether there were significant differences 
in gene expression between Canton-S B and DGRP_892 in 
these canonical clock genes (Table S11). per expression was 
significantly different between the two lines (FDR = 0.0482), 
with DGRP_892 having higher levels in DD (FDR < 0.0001) 
(Fig. 3a). Gene expression between the two lines was not 
significantly different in LD (Fig.  3b). DGRP_892 had 
higher levels of tim than Canton-S B, whether gene expres-
sion was measured in LD or in DD (FDR < 0.0001) (Fig. 3c, 
d). tim expression levels in DGRP_892 were much higher 
than Canton-S B at CT14 in DD (FDR = 0.0387), and at 
ZT10 in LD (FDR = 0.0019) (Table  S11). Pdp1 levels 
were higher in DGRP_892 than Canton-S B across time 
and lighting condition (FDR = 0.0388) (Fig. 3e, f), but the 
contrast between the two lines was only different in DD 
(FDR = 0.0360) when times or lighting conditions were 
considered separately. Given the wealth of reports of differ-
ences in transcript abundance in either sex (Jin et al. 2001; 
Arbeitman et al. 2002; Parisi et al. 2003; Ranz et al. 2003; 
Harbison et al. 2005; Wayne et al. 2007; Zhang et al. 2007; 
Ayroles et al. 2009; Huylmans and Parsch 2014; Huang et al. 
2015), we expected to see differences in males and females. 
Only per and tim exhibited significant sex differences 
[PTreatment×Line×Sex = 0.0064 (FDR = 0.0482) and < 0.0001 
(FDR = 0.0017), respectively]. Thus, transcriptional abun-
dance differs in canonical clock genes in the DGRP_892 
long period line relative to Canton-S B, but these differ-
ences are predominantly within genes controlling the nega-
tive feedback loop of the clock (i.e., per and tim), rather than 
the positive feedback loop (Pdp1).

Candidate gene transcript levels

We assayed expression levels of 26 additional candidate 
genes predicted by the GWAS as described above. If some 
of these transcripts are changing in abundance over the 
24-h day, that would suggest involvement in the circadian 
clock. As with the canonical clock genes, we examined 
reduced ANOVA models for each line separately to deter-
mine whether gene expression changed over time, which is 
one indication that the transcripts are potentially cycling. 
Rae1 and Cpr62Ba were differentially expressed across 
time in DGRP_892 in LD (FDR = 0.0433 and 0.0478, 
respectively), but the differences were confined to one 
sex only (Table S10). Post-hoc Tukey tests indicated that 
these genes may be fluctuating in females with a peak at 
ZT14 and in males with a peak at ZT10-14, respectively 
(Table S10). JTK_CYCLE analysis indicated that Rae1 
may be rhythmic in females (P = 0.0269) but did not find 
rhythmicity in Cpr62Ba in males.

We were particularly interested in those genes 
with differential gene expression between Canton-S 
B and DGRP_892 (Table  S11 and S12). Nine genes 
had differences in gene expression between Canton-
S B and DGRP_892 across sexes, times, and light-
ing conditions: AGO2 (FDR = 0.0705; marginally sig-
nificant, but see below), CG42321 (FDR < 0.0001), 
Dop1R2 (FDR = 0.0442), GlcT-1 (FDR = 0.0450), 
GluRIIA (FDR = 0.0141), Mdr65 (FDR = 0.0263), 
Rae1 (FDR = 0.0206), Tep4 (FDR = 0.0029), and tnc 
(FDR = 0.0198) (Fig. 4a–h; Fig. S6). Three genes had 
significant differences in expression between Canton-S 
B and DGRP_892 that were specific to lighting condi-
tions: AGO2 (FDR = 0.0016), GlcT-1 (FDR = 0.0055), 
and tnc (FDR = 0.0353) (Table S11). The expression of 
CG42321 tended to be higher in DGRP_892 than Canton-
S B under all conditions; CT06, CT14, and CT18 were 
significantly different in DD (FDR = 0.0269, 0.0193, and 
0.0374, respectively) (Table S13). When gene expres-
sion for Dop1R2 and GluRIIA was averaged across all 
timepoints, there were significant differences in gene 
expression between Canton-S B and DGRP_892. For 
Dop1R2, DGRP_892 had higher average expression 
(Fig. 4e, f), while for GluRIIA, Canton-S B had higher 
average expression (Fig. S6A and B). Canton-S B had 
higher GlcT-1 expression than DGRP_892 at CT14 in DD 
(PTime = 0.0003; FDR = 0.0348) (Fig. 4g, h). tnc transcript 
levels were higher in Canton-S B at all timepoints in LD. 
The remaining genes showed more complex patterns of 
expression across time. These line-specific differences in 
gene expression potentially contribute to the long period 
in DGRP_892.

Thus, nine candidate genes from the GWAS had dif-
ferential expression between Canton-S B and DGRP_892, 
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seven of which were predicted to have epistatic effects 
with other candidate genes or the canonical circadian clock 
genes (Table S9). Whether these genes are causal in the 
long period of DGRP_892 remains to be elucidated, but 
differences in gene expression indicate that they may have 
a role.

Behavioral tests of candidate genes with gene 
expression differences

We tested candidate genes with differences in gene expres-
sion for their role in circadian period and rhythmicity index 
using available mutations and RNAi knockdowns. We tested 
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Fig. 3   Canonical clock gene expression profile of Canton-S B and 
DGRP_892. Normalized transcript levels are plotted against time for 
constant darkness (DD) and standard 12-h light:dark (LD) conditions. 
Canton-S B transcript levels are white; DGRP_892 transcript levels 
are gray. a, b per. c, d tim. e, f Pdp1. CT circadian time, ZT zeitgeber 
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ences between Canton-S B and DGRP_892 at a given time point are 
indicated by asterisks. *FDR < 0.05; ***FDR < 0.001. Source data is 
provided in Table S12
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CG42321, Cpr62Ba, and tnc using Minos {ET1} element 
lines (Bellen et al. 2011).The Minos lines have an control 
line with an identical genetic background, which makes 
them ideal for candidate gene tests. However, the Cpr62Ba 

and tnc stocks had been maintained via crosses to a differ-
ent strain, which altered the genetic background. Therefore, 
for these two mutants, we tested flies that were heterozy-
gous as well as homozygous for the Minos element. Minos 
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Table 1   Differences in circadian 
phenotypes from control

The table shows the mean difference in circadian phenotype from control for each mutant/RNAi knock-
down tested. A negative difference indicates that the mutant/RNAi knockdown was higher than the control, 
while a positive difference indicates that the mutant/RNAi knockdown was lower. Significant differences 
from controls (P < 0.05) are indicated in bold. Table S14 lists genotypes and control lines tested. Control 
lines used for each allele and control line phenotypes can be found in Tables S15, S16, and S17

Gene Allele Change in χ2 period 
(h)

Change in RI Construct type

CG42321 MB05800 − 0.3697 0.0117 Minos ET1
Cpr62Ba MB12091 0.0408 − 0.0101 Minos ET1
Cpr62Ba heterozygote MB12091 0.3890 − 0.0440 Minos ET1
tnc MB04464 0.0013 − 0.0762 Minos ET1
tnc heterozygote MB04464 0.2877 − 0.0508 Minos ET1
AGO2 321 0.2111 0.0223 Deletion
CG42321 MI06777 − 0.0963 − 0.1030 MIMIC
CG42321 heterozygote MI06777 − 0.1301 − 0.1463 MIMIC
CG42321 MI08838 − 1.1054 − 0.0340 MIMIC
Cpr62Ba MI03734 − 0.7054 − 0.0555 MIMIC
Cpr62Ba heterozygote MI03734 − 0.5270 − 0.0405 MIMIC
Cpr62Ba MI12486 − 0.6312 − 0.0569 MIMIC
Dop1R2 MI08664 − 0.0756 − 0.0843 MIMIC
GlcT-1 G5974 − 0.7315 − 0.0439 EP
GlcT-1 heterozygote G5974 − 0.4749 − 0.1120 EP
GlcT-1 MI06082 − 0.1935 − 0.0375 MIMIC
GluRIIA AD9 0.3397 − 0.0425 Null
Mdr65 KG08723 0.0019 − 0.0588 P
Tep4 MI13472 − 0.5409 − 0.1329 MIMIC
Tep4 heterozygote MI13472 − 0.7067 − 0.0628 MIMIC
Tep4 EY04656 − 1.2226 0.0509 EPgy
tnc EY16369 − 0.4067 − 0.0174 EPgy
AGO2 HMC03828 0.6828 − 0.0336 TRiP RNAi
Dop1R2 JF02043 − 0.0744 − 0.0248 TRiP RNAi
Dop1R2 HMC06293 − 0.4868 0.0445 TRiP RNAi
GlcT-1 HMC06408 0.9155 − 0.1050 TRiP RNAi
GluRIIA JF02647 − 0.4564 − 0.0418 TRiP RNAi
Mdr65 JF03079 − 0.1019 0.0183 TRiP RNAi
Mdr65 HMS01449 − 0.6712 0.0077 TRiP RNAi
Rae1 HMJ21842 0.2046 0.0081 TRiP RNAi
Tep4 HMC06319 0.4025 − 0.0334 TRiP RNAi
tnc HMC05051 0.8658 − 0.0735 TRiP RNAi
bru1 MB05908 0.0876 − 0.0838 Minos ET1
CG11073 MB07687 − 0.0266 − 0.0438 Minos ET1
CG13243 MB09929 0.0018 − 0.0496 Minos ET1
CG17839 MB08271 0.1560 − 0.0148 Minos ET1
CG32052 MB02409 − 3.5153 0.0278 Minos ET1
CG34355 MB03916 − 0.0531 − 0.0431 Minos ET1
CG42672 MB05883 − 0.0018 − 0.0357 Minos ET1
CG6123 MB02356 − 1.6312 − 0.0113 Minos ET1
flw MB01707 0.2584 − 0.0342 Minos ET1
Mp MB08228 0.0561 − 0.0556 Minos ET1
Prosap MB03234 0.0363 − 0.1054 Minos ET1
Ptp99A MB04947 0.0328 − 0.0278 Minos ET1
sano MB03560 0.0643 0.0022 Minos ET1
Sh MB00560 0.1888 − 0.0294 Minos ET1
SKIP MB04854 − 0.0250 − 0.0594 Minos ET1
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allele CG42321MB05800 had a significant effect on χ2 period 
(Table 1 and Table S15). tncMB04464 mutants had signifi-
cantly altered rhythmicity index (Table 1).

Furthermore, we tested several genes having Minos 
{y[+mDint2]=MIC} insertions available in CG42321, 
Cpr62Ba, Dop1R2, GlcT-1, Mdr65, Tep4, and tnc. (Venken 
et al. 2011). In addition, we tested available deletions in 
AGO2 and GluRIIA, a P{w[+mC]=EP1} insertion in GlcT-
1, P{w[+mC] y[+mDint2]=EPgy2} insertions in Tep4 and 
tnc, and a P{y[+mDint2] w[BR.E.BR]=SUPor-P} insertion 
in Mdr65. One mutant allele of CG42321, CG42321MI08838, 
affected χ2 period, but a second allele, CG42321MI06777, 
did not (Table 2). Additionally, the CG42321MI06777 allele 
affected RI, but only as a heterozygote (Table 1). Both of the 
Cpr62BaMI12486 and Cpr62BaMI03734 alleles tested affected 
χ2 when homozygous. The Cpr62BaM12486 allele only tar-
gets the first intron of the -RB isoform of Cpr62Ba, while 
the Cpr62BaMI03734 and Cpr62BaMB12091 alleles putatively 
affect both isoforms (Table S14). The Dop1R2MI08664 allele 
affected RI in males only, with a difference of – 0.1297 from 
the control; no other effects of this mutation were observed 
(Table 1). The GlcT-1MI06082 allele had no effect on circadian 
traits; however, the GlcT-1G5974 allele did, impacting both χ2 
and RI. Both GlcT-1 insertions target the transcribed por-
tion of the gene; however, the GlcT-1G5974 is upstream of the 
coding region of the gene, while the GlcT-1MI06082 allele is 
just downstream of it. Two alleles of Tep4, Tep4MI13472 and 
Tep4EY04656, affected circadian period and the Tep4MI13472 

allele affected RI as well. In addition, male-specific effects 
on χ2 were observed in the tncEY16369 allele.

Finally, we tested AGO2, Dop1R2, GlcT-1, GluRIIA, 
Mdr65, Rae1, Tep4, and tnc via RNAi knockdown (Table 1 
and S16). These genes are expressed in adult male and 
female heads (Brown et al. 2014); thus, it is possible that 
gene expression occurs in clock neural cells. To test the 
potential effect of these genes on the circadian clock, we 
drove expression in circadian clock neural cells by cross-
ing these RNAi constructs to Pdf-GAL4 and tim-GAL4. 
Pdf-GAL4 expression is confined to 4 of 5 small ventral 
lateral neurons and the large ventral lateral neurons (Renn 
et al. 1999) while tim-GAL4 is expressed more broadly, 
targeting the ventral lateral neurons as well as the dor-
sal neurons (groups 1–3) and the dorsal lateral neurons 
(Kaneko and Hall 2000). We first tested whether RNAi 
knockdown using both GAL4 drivers would affect circa-
dian phenotypes. χ2 period was affected in AGO2, GlcT-1, 
Tep4, and tnc knockdown animals, while RI was affected 
in Dop1R2 and GluRIIA knockdowns (Table 1). Closer 
inspection revealed that the effect on χ2 period was due 
to differences between the RNAi knockdowns and the 
y[1] v[1]; P{y[+t7.7]=CaryP}attP40 control line crossed 
to tim-GAL4; the χ2 period of crosses to Pdf-GAL4 were 
in the same direction, but not statistically significant. 
This raised the interesting possibility that the effects of 
these genes on circadian period require the larger group of 
clock-related neurons. Alternatively, the tim-GAL4 driver 

Table 2   Candidate genes from this study with human homologs identified for sleep or chronotype

a The DIOPT (Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool) Score indicates the number of data bases the homolog 
was found in, with a maximum score of 9. (Hu et al. 2011)

FlyBaseID Fly gene symbol Human gene symbol DIOPT 
scorea

Disease/trait Refs.

FBgn0051678 CG31678 SUCO 8 Daytime sleep Spada et al. (2016)
FBgn0029890 CG4095 FH 8 Daytime sleep Spada et al. (2016)
FBgn0016694 Pdp1 HLF 8 Night sleep Spada et al. (2016)
FBgn0262614 pyd TJP2 8 Night sleep Spada et al. (2016)
FBgn0032886 CG9328 FAM107B 7 Night sleep Spada et al. (2016)
FBgn0052423 shep RBMS3 7 Night sleep Spada et al. (2016)
FBgn0004369 Ptp99A PTPRG 6 Daytime sleep Spada et al. (2016)
FBgn0003975 vg VGLL2 6 Night sleep Spada et al. (2016)
FBgn0054056 CG34056 C1GALT1 5 Daytime sleep Spada et al. (2016)
FBgn0054056 CG34056 C1GALT1 5 Night sleep Spada et al. (2016)
FBgn0052683 CG32683 ARRB1 4 Obstructive sleep apnea Cade et al. (2016)
FBgn0085354 CG34325 FHL5 3 Night sleep Spada et al. (2016)
FBgn0031573 CG3407 ZNF311 1 Daytime sleep Spada et al. (2016)
FBgn0017590 klg F11R 1 Night sleep Spada et al. (2016)
FBgn0003209 raw RNASEL 1 Chronotype Hu et al. (2016), Jones 

et al. (2016), Lane et al. 
(2016)
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might have been more efficient at reducing gene expression 
than the Pdf-GAL4 driver.

In summary, tests of mutants and RNAi knockdown flies 
further implicated our candidate genes as affecting circa-
dian rhythms. The strongest evidence was for CG42321, 
Cpr62Ba, GlcT-1, and Tep4 affecting χ2 period. Multiple 
constructs of these genes in varied genetic backgrounds 
affected circadian behavior. Effects on RI were more fleet-
ing, but evidence suggests that Dop1R2, Tep4, and tnc alter 
RI.

Behavioral tests of candidate genes predicted 
to have large effect sizes

We also conducted tests on candidate genes predicted to 
have the largest effect sizes on χ2 period and rhythmicity 
index. We tested available Minos insertions in CG11073, 
CG13243, CG34355, CG42672, Mp, Prosap, Ptp99A, sano, 
and SKIP, which were predicted to have large effects on χ2 
period (Table S5); bru1, CG32052, CG6123, flw, and Sh 
were predicted to have large effects on rhythmicity index. 
Although they were predicted to affect rhythmicity index, 
CG32052 and CG6123 had effects on χ2 period, with an 
increase of 3.52 and 1.63 h over the control period, respec-
tively (Table 1 and Table S17). An attempt to excise the 
Minos element from CG32052 revealed that the long-period 
phenotype did not map to this gene. bru1 had a significant 
effect on rhythmicity index, differing − 0.0831 from the con-
trol. Prosap and SKIP altered rhythmicity index, though they 
were predicted to affect circadian period. Thus, mutations in 
four additional candidate genes impacted circadian period 
and rhythmicity index.

Discussion

Here we assessed circadian period (Ʈ) and rhythmicity index 
(RI) in a natural population of flies. The Ʈ estimates calcu-
lated by MESA were derived from the highest peak in the 
power spectral density for each fly, and the low range of Ʈ 
estimated with MESA did not agree with the low range of 
χ2 period calculations (see Fig. 1). Low periods of ~ 15 h are 
rare but have been observed in an ultrafast allele of period 
in flies (Konopka et al. 1994). It has been suggested the 
low period values calculated using MESA may reflect ultra-
dian rhythms (Dowse and Ringo 1987, 1989); alternatively, 
recent work proposes that high peaks in the power spectral 
density corresponding to low circadian periods may actu-
ally be harmonics of the true circadian period (Lazopulo 
and Syed 2016). However, both of these methods enabled 
us to identify candidate genes that could be verified with 
further testing.

If we considered the more narrowly distributed χ2 to rep-
resent the true extent of the variation in the DGRP, it would 
still be far more variable than estimates of circadian period 
in humans using a forced desynchrony protocol, which have 
coefficients of variation in the range of 0.54–0.58% (Czeisler 
et al. 1999). However, chronotype, a related measure, has a 
heritability of 0.12–0.47 in humans [reviewed in (Kalmbach 
et al. 2016)] (Toomey et al. 2015; Jones et al. 2016; Lane 
et al. 2016); bed time, a similar measure, has a heritability 
of 0.22 (Gottlieb et al. 2007). Furthermore, heritability for 
circadian period in mice ranges from 0.21 to 0.55 (Hofstet-
ter et al. 1995, 1999). These studies indicate a strong influ-
ence of both genetic and environmental factors on circadian 
period. Similarly, we found relatively low heritability esti-
mates for circadian period in this study of flies, as observed 
previously (Emery et al. 1995).

Surveys of natural populations of Drosophila have identi-
fied latitudinal clines (Kyriacou et al. 2008; Rand et al. 2010; 
Sawyer et al. 1997) in polymorphic variants of canonical 
clock genes. These variants are associated with other traits 
that have a clear link to environmental conditions, particu-
larly temperature: diapause, thermal tolerance, and eclosion 
(Sawyer et al. 1997; Rand et al. 2010; Kyriacou et al. 2008; 
Pegoraro et al. 2014; Tauber et al. 2007). Thus, polymor-
phisms influencing circadian period may be maintained as 
the result of acclimatization (Kyriacou et al. 2008).

In addition to circadian period, RI was highly variable, 
ranging from 0.05 to 0.55 in the DGRP. Interestingly, seven 
lines were classified as arrhythmic in one sex: one line had 
arrhythmic males, while six lines had arrhythmic females. 
For the most part, the RI in the opposite sex of these lines 
was not high (≤ 0.17), indicating that both sexes were at 
best weakly rhythmic. Given the importance of the circa-
dian clock in regulating biological processes, it is puzzling 
why arrhythmicity would be maintained in nature. It may be 
that less robust (i.e., more variable) circadian behavior gives 
these animals an adaptive advantage. Such an advantage has 
been observed explicitly in cyanobacteria, where arrhythmic 
strains had higher growth in constant conditions compared 
to strains with a functional clock (Woelfle et al. 2004). How-
ever, strains with functional clocks were more fit in changing 
circadian conditions than arrhythmic strains (Woelfle et al. 
2004; Ouyang et al. 1998). Wildtype flies produced more 
eggs in constant light conditions, which produce arrhythmic 
activity patterns; but constant light also reduced lifespan 
(Sheeba et al. 2000). Thus, the fitness advantage of variable 
circadian behavior depends heavily on the environmental 
conditions encountered. Future work will focus on the dis-
covery of trade-offs between these circadian behaviors and 
other traits as pleiotropic gene action may be the basis for 
the maintenance of these differences (Carbone et al. 2006).

Our GWAS identified new candidate genes for circa-
dian behavior. Interestingly, no canonical clock genes were 
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identified for Ʈ, while only one polymorphism in Pdp1 was 
associated with RI. Only ten of the genes we identified here 
had been associated with circadian rhythms previously. This 
is analogous to linkage and genome-wide association stud-
ies in chronotype and sleep in humans (Pagani et al. 2016; 
Jones et al. 2016; Lane et al. 2016; Hu et al. 2016) and in 
circadian behavior in mice (Shimomura et al. 2001), where 
few canonical clock genes were implicated. Further, 24.7% 
of the associated polymorphisms were intergenic, suggest-
ing that circadian rhythms may be modified via transcrip-
tional regulation, if the polymorphisms fall in enhancer or 
promoter regions (Massouras et al. 2012; Heap et al. 2009). 
Comparison of this study to a previous study of sleep in 
the same population showed some overlap between genes 
associated with both suites of traits, and these comparisons 
revealed genes largely involved in developmental processes, 
including neuronal development. Interestingly, a single can-
didate gene, raw, overlaps with a homolog (RNASEL) identi-
fied in human GWAS studies of chronotype (Hu et al. 2016; 
Lane et al. 2016; Jones et al. 2016), and 16 additional genes 
have homologs identified in human GWAS studies of sleep 
(Spada et al. 2016; Cade et al. 2016) (Table 2). The homol-
ogy results should be interpreted with caution but suggest 
a conserved architecture between flies and humans. Thus, 
some of the genes we identified have been implicated in 
mammalian studies of related circadian traits and of sleep.

In this study, we identified a line with a very long circa-
dian period, DGRP_892. Both males and females of this line 
have circadian periods that average 31 h. Not many other 
observations of long circadian periods in this range in flies 
have been made. Konopka and Benzer described an allele of 
per that resulted in a 28.5-h circadian period (Konopka and 
Benzer 1971); Smith et al. (2008) found 33-h periods result-
ing from a dominant negative allele of the casein kinase 
α subunit; Rothenfluh et al. (2000) identified long-period 
mutations in timeless created via EMS mutagenesis; and 
Blau and Young noted a 28-h period when vrille expres-
sion was altered (Blau and Young 1999). We measured gene 
expression in this line for several candidate genes on the 
hypothesis that polymorphic variants in and around the can-
didate gene might alter gene expression (Heap et al. 2009; 
Massouras et al. 2012). per transcript levels are known to 
be delayed in perL mutants (Hardin et al. 1990), which have 
a long circadian period. We did not find the amino acid sub-
stitution of per reported to cause the long period (Baylies 
et al. 1987) in DGRP_892. Nor were there any obvious vari-
ants private to DGRP_892 that could affect the clock; yet 
gene expression in per was altered in these animals. Pdp1 
also had altered transcriptional oscillations in DGRP_892, 
though the effects were smaller. Delays in Pdp1 expres-
sion are positively correlated with altered circadian period 
(Hardin et al. 1990; Muskus et al. 2007; Chen et al. 2013). 
These observations suggest differential regulation of both 

the positive and the negative feedback loop of the circadian 
clock in DGRP_892, though the effect on the negative feed-
back loop was more pronounced.

We examined gene expression in 26 candidate genes iden-
tified in this study as possible mediators of canonical clock 
gene expression differences in DGRP_892. We selected 
genes with candidate polymorphisms in coding as well as 
non-coding regions. We observed altered gene expression in 
nine candidate genes (AGO2, CG42321, Dop1R2, GlcT-1, 
GluRIIA, Mdr65, Rae1, Tep4, and tnc). With the exception 
of Rae1 and Mdr65, we also observed changes in circadian 
behavior in mutants and RNAi knockdowns of these genes. 
We describe the functions of these genes briefly here. A 
role for AGO2 in mammalian circadian rhythms has been 
reported (Lee et al. 2013). CG42321 is a predicted gene with 
an unknown function but is a strong candidate for circadian 
period in this study. Previous work identified CG42321 as 
a target of Clk (Abruzzi et al. 2011). A Translating Ribo-
some Affinity Purification study in fly clock cells identi-
fied Cpr62Ba as cycling (Huang et al. 2013). Dop1R2 has 
a role in neuronal inhibition of sleep-promoting neurons in 
the dorsal fan-shaped body (Pimentel et al. 2016); here we 
found that Dop1R2 affected rhythmicity index. GlcT-1 has a 
role in developmental apoptosis (Kohyama-Koganeya et al. 
2004), and is predicted to be cycling in mammals (Hughes 
et al. 2010). Four of the candidate genes—GluRIIA, Mdr65, 
Rae1 and Tep4—have mammalian homologs which have 
been reported to be cycling in the SCN and other specific 
mammalian organs (Hughes et al. 2010). GluRIIA encodes 
a glutamate receptor capable of calcium ion transfer (Han 
et al. 2015) predicted to cycle in peripheral mouse organs 
(Hughes et al. 2010). Mdr65 is a gene involved in the trans-
port of xenobiotic substances across the fly’s neural pro-
tective barrier (Mayer et al. 2009). Rae1 functions to limit 
synaptic growth (Tian et al. 2011). In addition to cycling in 
mammals, Tep4 is a Drosophila immune response gene that 
has been previously shown to be regulated in a circadian 
manner (Ceriani et al. 2002). Though a direct role of tenec-
tin (tnc) in circadian rhythms is unknown in Drosophila, its 
mammalian homolog RTN3 (reticulon 3) is reported to cycle 
in the mouse liver (Hughes et al. 2010) and SCN (Panda 
et al. 2002). tnc expression is regulated by ecdysone and it 
encodes an integrin ligand involved in wing morphogen-
esis; it is also expressed in Drosophila CNS (Fraichard et al. 
2006, 2010).

Nine genes had differential gene expression in DGRP_892 
relative to Canton-S B, and several of these (GlcT-1, Mdr65, 
and Tep4; see Table S9) were predicted to interact with 
canonical circadian clock genes. Yet few of the genes we 
tested had significant differences in transcript abundance in 
a 24-h period. Rae1 was the only gene with significant dif-
ferences in gene expression at different times. One potential 
reason for this is that we only assayed six timepoints over the 



74	 Behavior Genetics (2019) 49:60–82

1 3

circadian day; additional timepoints may help resolve these 
differences. In addition, more replication would improve 
these measures, as the statistical power for measurements of 
gene expression under different environmental conditions is 
low relative to differences detectable by genotype (Lin et al. 
2016b). Alternatively, transcriptional cycling of molecules 
may not be required to modify circadian behavior (Ray and 
Reddy 2016); the genotype-specific differences in expres-
sion would then be relevant to the phenotypic differences 
we observed. Finally, studies have reported that synonymous 
SNPs may lead to altered protein translation kinetics and 
thereby altered protein conformation rather than affect-
ing transcription (Kimchi-Sarfaty et al. 2007; Komar et al. 
1999). It would be worth exploring whether these unique 
synonymous variants affect protein functions which in turn 
result in aberrant circadian phenotypes in DGRP_892.

We also tested Minos mutants in 14 genes predicted to 
have large effect sizes on χ2 period and rhythmicity index. 
CG6123, a gene with unknown function, were predicted to 
affect rhythmicity index but instead increased period. Like-
wise, Prosap, which affects the number of synaptic bou-
tons in the neuro-muscular junction (Harris et al. 2016) and 
SKIP, a potassium-channel interacting protein with a role in 
olfaction (Tunstall et al. 2012), affected rhythmicity index; 
however, they were predicted to have effects on period. Only 
bru1 affected rhythmicity index as predicted. These pleio-
tropic mutational effects have been previously observed for 
sleep as well (Wu et al. 2018; Harbison et al. 2013). This 
may indicate that polymorphic variants have strong context-
dependent effects on sleep and circadian rhythms (Chandler 
et al. 2017). Alternatively, an improvement in phenotypic 
modeling may yield more accurate predictions.

In this study, we have identified candidate polymorphisms 
associated with circadian behavior. Although we have not 
yet established that these variants are causal, our future goal 
is to elucidate mechanisms leading to phenotypic variance. 
This work is part of a systems genetics approach (Ray and 
Reddy 2016) and has identified previously unappreciated 
polymorphisms for circadian behavior.

Materials and methods

Quantitative circadian rhythm phenotypes

We measured circadian phenotypes on 167 lines of the 
Drosophila Genetic Reference Panel (DGRP), a collection 
of inbred lines derived from wild-caught flies (Mackay 
et al. 2012; Huang et al. 2014). Flies were maintained on 
standard culture medium (http://flyst​ocks.bio.india​na.edu/
Fly_Work/media​-recip​es/bloom​food) at 25 °C and 60–65% 
relative humidity, under a 12-h light: dark (LD) cycle until 
circadian measurements were made. We recorded fourteen 

continuous days of activity in constant darkness (DD) 
using the Drosophila Activity Monitoring System (Triki-
netics, Waltham, MA). Activity counts were sampled in 
1-min intervals. Flies were placed on 5% sucrose, 1.5% 
agar food for the duration of the circadian measurements 
as standard culture medium becomes too dry for the flies to 
eat after 14 days. The DGRP lines were randomly divided 
into four equal blocks. We replicated circadian meas-
urements three times for each block of lines. Replicate 
measurements were conducted at 2-week intervals. Eight 
flies of each sex per line were measured in each replicate, 
resulting in circadian measurements for 24 flies per sex 
per line, or 48 flies per line. We assumed that we would be 
able to detect differences of 1 h (for MESA and χ2 period) 
and 0.1 for RI at 80% statistical power (in practice, we 
were able to detect differences in period as low as 0.765 
and 0.359 h for MESA and χ2 period, and differences 
as low as 0.045 for RI at 80% power) (Sokal and Rohlf 
1995). Eight male and eight female w1118; Canton-S B flies 
were measured in each replicate as a control. Although 
the effects of social exposure on circadian rhythms are 
not known, both social exposure and mating status affect 
sleep in flies (Ganguly-Fitzgerald et al. 2006; Isaac et al. 
2010); we therefore collected virgin males and females 
from each line and housed them at 30 flies per same-sex 
vial for 4 days prior to making the activity measurements. 
We discarded the measures from flies that did not live 
through the recording period; we also discarded the first 
day of recording as the flies were recovering from CO2 
exposure. All other measurements, including any outliers, 
were retained in the analysis.

We calculated the rhythmicity index (RI) and period 
length (Ʈ) for the DGRP population. To make these cal-
culations, we first summed the activity counts into 30-min 
bins, which reduces the potential for spurious patterns due 
solely to the choice of bin size (Dowse and Ringo 1994). 
To determine RI, we calculated the autocorrelelogram for 
each fly using the equation

where rk is the autocorrelation coefficient at lag k , xt is the 
activity level at time t , xt+k is the activity level at time t + k , 
and x is the mean activity level for the fly (Chatfield 2003). 
We defined RI as the correlation coefficient rk of the third 
highest peak in the autocorrelelogram (Levine et al. 2002). 
In addition to a sinusoidal component, the autocorrelelo-
grams of some flies exhibit a linear trend, which can skew 
the rhythmicity index (Levine et al. 2002). To account for 

rk =

N−k∑

t=1

(xt − x̄)(xt+k − x̄)

N∑

t=1

(xt − x)
2

http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood
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this linear trend, we first fitted a regression line to each auto-
correlelogram. If the autocorrelelogram had a nominally 
significant linear component (P < 0.05), we adjusted the RI 
for that trend by subtracting the calculated RI of the pre-
dicted regression line. We classified flies as rhythmic or 
arrhythmic using the 95% confidence interval 2

√
N

 , where N 

is the number of activity measurements (Levine et al. 2002; 
Chatfield 2003). Since we summed our activity measures 
into 30-min bins, N = 672 and the 95% confidence interval 
for the autocorrelation coefficient was rk = 0.0772. Flies with 
an RI below this value were classified as arrhythmic.

We used two methods to calculate Ʈ: Maximum Entropy 
Spectral Analysis (MESA) (Burg 1967), and the chi-squared 
periodogram (Enright 1965). MESA analysis assumes that the 
time series data is composed of an autoregressive function X(t) 
and a stochastic or noise function Zt (Levine et al. 2002; Burg 
1967). At a given time t , X(t) is

where the a coefficients are estimated from the data, n is 
number of terms, t is time, and Z is the stochastic function. 
A frequency-based spectrum S(�) can then be calculated via 
Fourier transform from the equation

where P is the output power or spectral density, p is the num-
ber of coefficients, and i =

√
−1 (Levine et al. 2002; Burg 

1967; Dowse 2007, 2009; Dowse and Ringo 1989). Circa-
dian period can then be estimated as the time at which the 
maximum spectral density peak occurs (Dowse and Ringo 
1989). We used BATCHMES, a freely available program, 
to implement MESA [H. Dowse, personal communication, 
and (Dowse 2007)].

Furthermore, power spectral density graphs were examined 
for each rhythmic fly; for most flies, the spectral density con-
tained a single dominant peak. In the graphs for some flies, we 
did not observe an interpretable peak. These calculations for 
these flies were removed from further analysis.

We also calculated period using the chi-squared peri-
odogram. This method first assumes a period P for the data. 
If the activity data are broken up into units of period P , then 
the differences between these units can be used to calculate a 
χ2 statistic to determine how well the assumed period fits the 
actual data. We used an in-house C# program (R. Sean Barnes) 
to estimate the Qp statistic using the equation

X(t) = a
1
Xt−1 + a

2
Xt−2 +⋯ anXt−n + Zt

S(�) =
P

���
1 −

∑p

k=1
ak e

−i�k���

2

Qp =
KN

∑P

h=1

�
Mh −M

�2

∑N

i=1

�
Xi −M

�2

where Xi is the activity counts for a given unit of time in 
a data set of N values, M is the mean of all N values, and 
Mh is the mean activity counts for each time unit for K val-
ues (Refinetti 2004; Enright 1965). We calculated Qp for 
a range of possible periodsP , from 12 h to 32 h (Refinetti 
2004; Enright 1965). Qp has a χ2 probability distribution 
with P − 1 degrees of freedom (Refinetti 2004). If Qpwas 
not significant according to the χ2 distribution, we did not 
estimate the period; if it was, we used the highest Qp value 
to estimate circadian period (Refinetti 2004). If we judged 
the fly to be arrhythmic using the rhythmicity index criteria, 
we did not estimate circadian period.

Quantitative genetic analyses

We partitioned the variance in each circadian parameter 
using the ANOVA model: Y = µ + B + S + L(B) + S × L(B) + 
R(B) + S × R(B) + R × L(B) + S × R × L(B) + ε, where L (line), 
B (block) and R (replicate) are random effects, S (sex) is a 
fixed effect, and ε is the error variance. We used reduced 
models to partition the variance for each sex separately. We 
estimated variance components using the restricted maxi-
mum likelihood (REML) method. We calculated broad sense 
heritability as H2 = (σ2

L + σ2
SL)/(σ2

L + σ2
SL + σ2

E) for sexes 
combined, where σ2

L is the variance component among 
lines, σ2

SL is the line-by-sex variance component, and σ2
E is 

the sum of all other sources of variation. We used H2 = σ2
L/

(σ2
L + σ2

E) to estimate broad-sense heritability for sexes 
separately. We calculated the cross-sex genetic correlation 
rMF as σ2

L/√(σ2
LM × σ2

LF), where σ2
L is the variance compo-

nent among lines for sexes combined, σ2
LM is the variance 

component among lines for males separately, and σ2
LF is 

the variance component among lines for females separately. 
We calculated the genetic correlation rG between circadian 
and sleep traits as rG = cov12/√(σL1

2 × σL2
2) (Falconer and 

Mackay 1996), where cov12 is the covariance between traits 
1 and 2, and σL1

2 and σL2
2 are the among-line variances for 

traits 1 and 2, respectively.

Genotype‑phenotype associations

We associated the line mean of each circadian rhythm 
parameter with all 1,920,276 segregating sites in the DGRP 
having a minor allele frequency of 0.05 or greater using the 
DGRP2 web-based analysis (http://dgrp2​.gnets​.ncsu.edu) 
(Huang et al. 2014), which implements the FaST-LMM 
algorithm (Lippert et al. 2011). This analysis first adjusts the 
phenotypic line means for the effects of Wolbachia pipientis 
infection and major chromosomal inversions [In(2L)t, In(2R)
NS, In(3R)P, In(3R)K, and In(3R)Mo] where present. The 
DGRP2 web-based analysis fits a linear mixed model that 
incorporates any cryptic genetic relatedness present in the 
lines. The linear mixed model is y = �b + �u + e , where y 

http://dgrp2.gnets.ncsu.edu
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is the phenotypic line mean adjusted for effects of Wolbachia 
infection and segregating polymorphic inversions, � repre-
sents the covariance relationship matrix for the fixed variant 
effect b , � is the incidence matrix for the random polygenic 
effect u , and e is the residual effect. False discovery rate 
(FDR) corrections for multiple tests were computed using 
the method of Benjamini and Hochberg (Benjamini and 
Hochberg 1995). As line DGRP_892 had a very long period, 
we removed DGRP_892 from the GWA of circadian period, 
as well as the epistatic analysis of circadian period described 
below since leaving it in would violate assumptions of nor-
mality (Mackay et al. 2012). The power to detect significant 
associations varies with normalized effect size (a/σG) and 
minor allele frequency. We expected to have the power to 
detect normalized effect sizes of 0.5 or greater where minor 
alleles were common, i.e., the frequency was close to 0.5 
(Mackay et al. 2009). We used DIOPT to identify human 
homologs of candidate genes identified in the genome-wide 
analysis (Hu et al. 2011).

Pairwise epistatic associations

All possible variant pairs having minor allele frequencies 
of 0.15 or greater were tested for epistatic interactions. 
Pairs were pruned for high linkage disequilibrium (r2 ≥ 0.8) 
in 100-bp windows shifted in 10-bp increments, leaving 
666,202 variants for the analysis. We applied the model 
Y = µ + M1 + M2 + M1 × M2 + ε, where M1 is the first marker 
considered, M2 is the second marker considered, and ε is 
the error term. Phenotypes were adjusted for the presence 
of Wolbachia and inversions as well as the top 11 genotypic 
principal components. We ran the model using FastEpistasis 
2.03 (Schupbach et al. 2010), refined the results and obtained 
P-values using the F distribution with appropriate degrees 
of freedom, and retained those interactions (i.e., M1 × M2 
terms) having a P-value of 1 × 10− 7 or less. These analyses 
were performed separately for males and females.

Assessment of selected candidate genes 
in a long‑period line

One of the lines, DGRP_892, had an unusually long circa-
dian period. We characterized gene expression over time in 
the heads of males and females (Hardin et al. 1990) from 
this line for 29 candidate genes implicated by the GWA, 
and under two lighting conditions. We also examined gene 
expression changes over time in this line for three canonical 
clock genes: per, tim, and Pdp1. w1118;Canton-S B (hereafter 
referred to as Canton-S B) was used as a control for com-
parison to DGRP_892 as it had normal circadian behavior 
(Fig. S7).

Sample preparation

DGRP_892 and Canton-S B control flies were maintained 
under standard culture medium, 25 °C, 60–75% relative 
humidity and lighting conditions (LD) as outlined above. 
After eclosion, 30 virgin males and 30 virgin females were 
collected and maintained in sex-separate vials for 3 days. 
Gene expression was measured in fly heads for two separate 
lighting conditions: constant darkness (DD), and LD. For 
the DD condition, flies were first entrained in an incubator 
in LD for 3 days and then transferred to DD. On the 3rd day 
of DD, flies were flash-frozen on dry ice every 4 h starting at 
circadian time (CT) CT02 and stored at -80 °C until further 
processing. For the LD assay flies were collected and flash-
frozen in − 80 °C every 4 h starting at Zeitgeber time (ZT) 
ZT02 after 6 days in LD. Frozen flies were then transferred 
to dry ice to remove the heads from the bodies. We repli-
cated this procedure three times to produce 144 samples (2 
conditions, LD and DD; 3 biological replicates, 2 sexes, 2 
genotypes, and 6 time points).

RNA extraction

Thirty flies per sample were decapitated on dry ice by gently 
tapping on the micro centrifuge tubes; heads were trans-
ferred to Omni-ruptor tubes (Omni International, Kennesaw, 
GA) with 4 RNase/DNase-free metal beads (Omni Interna-
tional, Kennesaw, GA) and homogenized in 125 µl of Trizol 
reagent (Thermo Fisher Scientific, Grand Island, NY) using 
the Omni-bead Ruptor (Omni International, Kennesaw, GA). 
The tubes were centrifuged briefly after homogenization 
and an additional 375 µl of Trizol was added to make the 
total volume of 500 µl; the mixture was incubated at room 
temperature for 5 min. Next, 100 µl of chloroform (Mall-
inckrodt Baker, Center Valley, PA) was added to each tube 
and mixed for 15 s by shaking. The tubes were incubated at 
room temperature for 3 min and then centrifuged at 4 °C, 
13,000 rpm for 15 min. The aqueous phase was transferred 
to new Eppendorf tubes and 20 µl of 3M sodium acetate 
(Quality Biological, Gaithersburg, MD) was added to each 
sample. Afterward, to eliminate proteins from nucleic acid 
samples, 250 µl of phenol–chloroform (Sigma, St. Louis, 
MO) was added and the samples were centrifuged at 4 °C, 
13,000 rpm for 15 min. The aqueous phase was transferred 
to new tubes and 3 µl glycogen (Qiagen, Valencia, CA) and 
300 µl of isopropanol (Mallinckrodt Baker, Center Val-
ley, PA) were added followed by centrifugation at 4 °C, 
13,000 rpm for 30 min. The supernatants were discarded 
while avoiding the pellet. The pellets were washed twice 
in 75% ethanol, centrifuging at 4 °C, 7500 rpm for 5 min. 
Pellets were air dried for 10–15 min and dissolved in 87.5 µl 
of RNase-free water (Quality Biological, Gaithersburg, 
MD). DNase treatment was performed on RNA samples 
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to eliminate any genomic DNA contamination using 10 µl 
Buffer RDD (Qiagen, Valencia, CA) and 2.5 µl DNase-I 
stock solution (Qiagen, Valencia, CA) followed by incuba-
tion at room temperature for 10 min. The RNA samples were 
stored at − 80 °C until further processing. RNA was puri-
fied using the RNAeasy Kit (Qiagen, Valencia, CA), per the 
manufacturer’s instructions.

Single-stranded cDNA was made from total RNA using 
the High-Capacity cDNA Reverse Transcription Kit per 
the manufacturer’s instructions (Thermo Fisher Scientific, 
Grand Island, NY). A total of 250 ng RNA was used for 
each 20 µl reaction. The reverse transcription reactions were 
performed on a PTC-250 thermocycler (MJ Research, Foster 
City, CA).

Real‑time quantitative PCR

The cDNA samples were diluted by 20 × for all unknown 
samples. To create a standard curve, equal portions of each 
sample were combined and diluted by 5 ×, 20 ×, 100 ×, and 
500 ×. PCR reactions were carried out in 384-well plates 
(Thermo Fisher Scientific, Grand Island, NY) using SYBR 
Green PCR Master Mix (Thermo Fisher Scientific, Grand 
Island, NY) according to the manufacturer’s instructions. 
The PCR reactions were performed on an Applied Bio-
systems QuantStudio™ 12K Flex Real-Time PCR System 
using the manufacturer’s protocol (Thermo-Fisher Scien-
tific, Grand Island, NY). All primers were designed using 
Oligo Analyzer Software 3.1 (Integrated DNA Technologies, 
Coralville, Iowa). Actin-5c was used as an internal control 
for the total RNA content in each sample. Primer sequence 
lengths ranged from 19 to 22 bases and were synthesized by 
IDTDNA (Integrated DNA technologies, Coralville, Iowa). 
All primer sequences assayed are provided in Table S9.

Quality control and normalization

Gene expression was estimated from the raw data obtained 
from QuantStudio™ 12K Flex Real-Time PCR System 
using standard curves. We first checked the r2 values of the 
standard curve by fitting the linear regression of the log 
transformation of the quantity and the cycle threshold (CT) 
values. Four different amounts of total RNA (1000, 200, 40 
and 8 ng) were used as the known quantities in the stand-
ard curve. We found that r2 value was low for some genes 
and could be improved after removing the smallest quantity 
of RNA. To be consistent, therefore, we used the highest 
three values for quantity in the standard curve for all genes. 
None of the samples were estimated to have quantities below 
40 ng.

Each plate had two technical replicates for each RNA 
sample under each light/sex/genotype/candidate gene 

condition. After fitting the standard curve, we averaged the 
two technical replicates for use in subsequent data analyses. 
As the samples were necessarily distributed across several 
plates, we used Quantile (Q) normalization (Bolstad et al. 
2003) to correct the bias caused by potential plate effects 
(Mar et al. 2009). In addition, we also normalized the data 
using the quantity of Actin-5c in each genotype/sex/rep/con-
dition as a reference (Ling and Salvaterra 2011; Ponton et al. 
2011) by dividing the Q-normalized quantities of the target 
genes by the Q-normalized quantities of Actin-5c, which did 
not significantly vary over time or genotype (Fig. S8). The 
resulting ratios were used in the data analysis detailed below.

Candidate gene expression analysis

We examined the differences in gene expression using the 
ANOVA model Y = µ + L + S + Tr + T + L × S + L × Tr + L × T 
+ S × Tr + S × T + Tr × T + L × S × Tr + L × S × T + L × Tr × T + 
S × Tr × T + L × Tr × S × T + ε, where Y is gene expression, L 
and S are as defined previously, Tr is lighting condition (LD 
or DD), T is time, and ε is the error term. We used reduced 
models to examine gene expression differences in Canton-S 
B and DGRP_892 by lighting condition, sex, and time. To 
determine whether the transcripts within a given line and 
lighting condition might be cycling over the circadian day, 
we applied the reduced model Y = µ + S + T + S + T × S + ε 
and used post-hoc Tukey analysis to determine which time 
points were significantly different from one another. To con-
trol for multiple tests, we calculated false-discovery rates 
using the method of Benjamini and Hochberg (Benjamini 
and Hochberg 1995). Genes having significant differential 
expression over time were then analyzed using JTK_CYCLE 
(Hughes et al. 2010). JTK_CYCLE applies the Jonckheere-
Terpstra-Kendall algorithm to a range of potential circadian 
period lengths assuming a symmetrical cosine distribution 
and reports the period of the data, if rhythmic, and a P-value 
(Hughes et al. 2010).

Verification of candidate genes

We tested circadian behavior in P-element mutants and 
RNAi knockdown flies in 10 candidate genes identified by 
the GWAS which either had significant differences in gene 
expression between DGRP_892 and Canton-S B or exhib-
ited evidence of transcriptional cycling. We tested AGO2, 
CG42321, Cpr62Ba, Dop1R2, GlcT-1, GluRIIA, Mdr65, 
Rae1, Tep4, and tnc (Table  S14). We tested available 
Minos elements (Mi{ET1}, Mi{y[+mDint2]=MIC}) (Bel-
len et al. 2011; Venken et al. 2011), P-element insertion 
lines (Bellen et al. 2011, 2004), imprecise excisions (Hain 
et al. 2010), null alleles (Petersen et al. 1997), and RNAi 
knockdown lines (Ni et al. 2011; Perkins et al. 2015). 
Lines with Mi{ET1} insertions were created in an isogenic 
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w1118 background (w1118[5905]) (Bellen et  al. 2011) ; 
hence we used this background as a control. We used a 
y[1] w[1] [1495] control with Mi{y[+mDint2]=MIC} and 
all other P-element insertions. We used w1118 [3605] as a 
control for the AGO2 and GluRIIA mutants; these dele-
tions were not viable as homozygotes and were tested as 
heterozygotes. The TRiP RNAi constructs were derived 
from two lines: y[1] v[1]; P{y[+t7.7]=CaryP}attP40 and 
y[1] v[1]; P{y[+t7.7]=CaryP}attP2. If the RNAi transgene 
was inserted on the 2nd chromosome attP40 site, we used 
y[1] v[1]; P{y[+t7.7]=CaryP}attP40 (36304) as a control. 
Likewise, if the RNAi transgene was inserted on the 3rd 
chromosome attP2 site, we used P{y[+t7.7]=CaryP}attP2 
(36303) as a control (Perkins et al. 2015). All RNAi lines 
and their respective controls were crossed with Pdf-GAL4 
and tim-GAL4 driver lines (Kaneko and Hall 2000). The 
Pdf-GAL4 line drives gene expression in the ventrolateral 
neurons of the brain (Renn et al. 1999). The tim-GAL4 
driver drives tim expression in the ventrolateral neurons as 
well as additional neuronal subsets (DN1, DN2, and DN3 
neurons as well as dorsolateral neurons) (Kaneko and Hall 
2000). Note that the cross between tim-GAL4 and UAS-
Rae1-RNAi was lethal.

We also tested available Minos elements Mi{ET1} for 
candidate genes having large predicted combined-sex effect 
sizes for χ2 period and RI: bru1, CG11073, CG13243, 
CG17839, CG32052, CG34355, CG42672, CG6123, flw, 
Mp, Prosap, Ptp99A, sano, Sh, and SKIP (Table S14). The 
w1118[5905] line was used as the control for all mutations. 
Note that the sano insertion was tested as a heterozygote bal-
anced over CyO as homozygous mutants were lethal.

Flies were maintained under standard culture (cornmeal-
molasses-agar medium, 25 °C, 60–75% relative humid-
ity) and lighting conditions (12-h light: dark cycle) (LD). 
Five virgin male and five females were used for setting up 
cultures in an LD incubator. For RNAi knockdowns, five 
male flies containing UAS-constructs were crossed with 
five GAL4 females. Twenty virgin males and twenty virgin 
females were collected and maintained in sex-separate vials 
for 3 days at LD. Individual flies were then transferred to 
DAM2 monitors (Trikinetics, Waltham, MA) for for 4 days 
in LD followed by 7 days in DD to assess the entrainment 
and free-running behavior. Flies were set up on 5% sucrose, 
2% agar food. Sixteen flies per sex per line were tested, for 
a total of 32 flies per line. We then calculated χ2 and RI as 
indicated above. For all Minos element, P-element, and dele-
tion mutants, we analyzed the data using the ANOVA model 
Y = µ + G + S + G × S + ε, where G is genotype and S is sex. 
For the RNAi knockdown flies, we used the model Y = µ + 
GAL4 + UAS + S + GAL4 × UAS + GAL4 × S + UAS × S + GA
L4 × UAS × S + ε, where GAL4 is the effect of the Pdf or tim 
GAL4 driver, UAS is the effect of the RNAi knockdown line, 

and S is sex. Mutant and RNAi knockdowns were compared 
to controls in a pairwise fashion using a post-hoc Tukey test.
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