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Observation of dissociative quasi-free electron
attachment to nucleoside via excited anion radical
in solution
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Damage to DNA via dissociative electron attachment has been well-studied in both the gas
and condensed phases; however, understanding this process in bulk solution at a funda-
mental level is still a challenge. Here, we use a picosecond pulse of a high energy electron
beam to generate electrons in liquid diethylene glycol and observe the electron attachment
dynamics to ribothymidine at different stages of electron relaxation. Our transient spectro-
scopic results reveal that the quasi-free electron with energy near the conduction band
effectively attaches to ribothymidine leading to a new absorbing species that is characterized
in the UV-visible region. This species exhibits a nearly concentration-independent decay with
a time constant of ~350 ps. From time-resolved studies under different conditions, combined
with data analysis and theoretical calculations, we assign this intermediate to an excited
anion radical that undergoes N1-C1’ glycosidic bond dissociation rather than relaxation to its
ground state.
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adiation-induced cellular DNA damage stems not only

from the impact (i.e. direct effect) of primary high-energy

photons and charged particles, but also from secondary
species (excited molecules, free radicals, and free electrons) that
are produced via radiolysis of cell components along the radiation
tracks):2. Secondary electrons are ubiquitous in an irradiated
medium with an estimated quantity of ~4 x 10* electrons per 1
MeV energy deposited®. They cause cascades of additional ioni-
zations and excitations through inelastic scattering with mole-
cules. As a result, low-energy electrons (LEEs) are generated with
an excess kinetic energy of 0-20 eV4.

DNA strand breaks, especially double strand breaks (DSBs), are
the most important DNA damage that has been shown to lead to
cell death and neoplastic transformation!>. It is known that fully
solvated electrons (ey,") are ineffective at triggering DNA bond
cleavage because they generally reside on biomolecules as stable
anions®. For this reason, the conventional notion of electron-
induced damage to the genome is mainly due to those electrons
with sufficient energy to ionize or excite DNA, thereby leading to
the formation of electron-loss radicals (holes) and excited states that
cause subsequent molecular fragmentation’. In 2000 and onwards,
the experimental observations from Sanche and coworkers showed
that LEEs were able to cause single strand breaks (SSBs), as well as
DSBs via dissociative electron attachment (DEA)3°. This observa-
tion motivated a great number of mechanistic studies on the
interaction of LEEs with DNA and its components in both the gas
and condensed phases!®-15, The low-energy resonance features in
the yield of DSBs, SSBs, and anions produced by the impact of LEEs
on model pyrimidine bases suggested that the initial step involves
electron capture into the unoccupied molecular orbitals that are
above the lowest unoccupied molecular orbitals (LUMOs) of the
parent nucleobase, creating excited transient negative ions (TNIs*).
Once the TNIs* are formed, they are shown to decay very rapidly
leading either to a SSB via phosphate-sugar C-O ¢ bond
cleavage!?13 or result in unaltered base release via N1-C1’ glyco-
sidic bond breakage!41°. Studies of DEA using various DNA
models (monomers, oligomers with defined sequences, plasmid
DNA) were often carried out under vacuum conditions; these
experiments were limited to gas phase and condensed phase or
micro-hydrated molecular targets!0-1°.

In a polar medium (e.g. water), as shown in Fig. 1, LEEs suc-
cessively lose energy to become quasi-free electrons (eq) and
they can undergo multistep solvation prior to their complete
localization as ey >!®17. The transition from eg to ey is
accompanied by the appearance of a strong optical absorption as
the electron acquires a stable quantum state of binding energy,
which was evidenced by time-resolved techniques, typically using
a short pulse of high-energy electrons or a laser beam!6-18. From
the viewpoint of the action of LEEs, it is appropriate to suggest
that a thorough understanding of the role played by short-lived
non-equilibrated electrons would lead to a clearer picture of the
basic mechanisms underlying the biological consequences of
radiation. Therefore, a detailed knowledge of electron attachment
to DNA/RNA in solution leading to the formation of the TNI"
and the subsequent pathways of reactions that the TNT" under-
goes, are of fundamental importance. However, these studies,
even at a monomeric DNA-subunit (e.g., nucleosides, nucleo-
tides) level, have been lacking. This may be due to challenges
encountered in femtosecond laser spectroscopic investigations on
the formation of TNT" and its reaction channels!®. In contrast, the
accelerator technique delivers a high-energy electron pulse to the
solvent, and hence generates LEEs in accord with those in
radiation biology and allows us to investigate the chemistry
induced by radiation-produced electrons in liquids!®.

Unfortunately, under ambient conditions, as the solvation of
LEEs in water is fast (<1 ps), and the limitation of current high-
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Fig. 1 A schematic diagram of energy level showing different states of
electrons during trapping and relaxation. These processes take place in a
polar medium following ionizing radiation in the presence of ribothymidine
(rT). An excess electron in the conduction band (CB), representing a quasi-
free electron (eqs), eventually becomes trapped (eso ) in the solvent cage.
The excited state of ey, is considered as a "presolvated” electron, ep”.
Electrons captured by solute molecules produce transient negative ions
(TNI or rT*). The TNl in its excited state (TNI") can either liberate the
excess energy to the solvent (relaxation) or undergo bond breaking
(dissociation)

energy electron pulse (7 ps) radiolysis system!® prevents investi-
gation of the complete time resolution of the ey,.” solvation versus
its attachment processes. Relaxation of the electron (i.e. from ey
to epr.” and ultimately to ey, Fig. 1) can be viewed as a multistep
transition from the delocalized conduction band with p-like
excited states to s-like ground states>16-20; however, experimental
characterization of the specific state of electron that is required
for the DEA processes still remains elusive. In addition, formation
of the excited states of DNA anion radicals via electron attach-
ment has been suggested but has never been observed!1°.

It is known that the time of solvation of electrons in alcohols is
of the order of several ps!820, Here, we observe that electron
solvation events in diethylene glycol (DEG) are relatively slow
and occur on the order of tens of picoseconds. As the value of the
dielectric constant (e, = 31.69) of DEG is much closer to that of a
biological cell?, it allows us to investigate the reactions of elec-
trons that are more relevant to biological system. Also, DNA can
retain its native double-stranded structure and biological activity
in glycol solutions?2. We solely find that ribothymidine (rT), a
DNA/RNA model, can be sufficiently dissolved in DEG (up to
0.5 M) to scavenge electrons on a short time scale. We conduct
picosecond pulse radiolysis studies of rT solutions in DEG at
different concentrations (0-0.5M) under ambient conditions,
that allow us to observe real-time dynamics of the electron
attachment to DNA-components at certain stages of electron
relaxation. Our pulse radiolysis technique?? is based on a pico-
second laser-triggered electron accelerator coupled with transient
UV-Vis/IR absorption spectroscopy (Supplementary Figure 1).
The key transient species (epre’s €501’ and TNI" of rT*™*) can be
directly observed by the probe light covering a broad wavelength
range from 370 to 1100 nm. In addition, theoretical calculations
using density functional theory (DFT) show that rT*™* undergoes
N1-Cl1’ glycosidic bond dissociation rather than relaxation to its
ground state.

Results

Electron solvation in liquid DEG. The transient absorption
spectra of neat DEG is shown in Fig. 2a. A significant fraction of
electrons formed in DEG immediately after the electron pulse
have undergone relaxation. A transient feature absorbing above
900 nm rapidly diminishes, and a broad intense signal with a
maximum at around 750 nm undergoes a continuous blue shift of
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Fig. 2 Transient absorption profiles of pure diethylene glycol and ribothymidine solutions under ambient conditions. Spectra (a, €) and kinetics (b, d) for
neat DEG and 0.3 M ribothymidine (rT) solutions, respectively. The region at 780 nm is filtered out. The duration of the electron pulse is ~7 ps. The dose

per electron pulse is 25.3 Gy

ca.120 nm, accompanied with a growing amplitude of about
hundreds of picoseconds (e.g. 250 ps, Fig. 2a). At the end of the
spectral evolution (Fig. 2a), a broad and featureless absorption
band builds up with a peak at 630 nm. Based on previous studies
in various alcohols24, this band is assigned to the spectrum of ey,”
. Quenching of the signals by adding acetone (an electron sca-
venger) confirms this assignment and nanosecond pulse radi-
olysis measurements indicated that the lifetime of ey,  in neat
DEG is around 5 ps. Alcohol radicals are formed by ionization,
but they absorb only in the UV region below 300 nm. As a result,
the time-dependent spectral changes in Fig. 2a clearly show that
the electron solvation essentially consists of at least two distinct
states, one absorbing in the near-infrared, and one in the visible
range.

Figure 2b presents kinetic traces of the transient electrons in
DEG at various wavelengths (390-1000 nm) with a non-
monotonic kinetics and with no isosbestic point. Figure 2b
clearly shows that the signals at 390 and 600 nm rise fast, then
remain almost constant for the next hundreds of ps, and the one
at 900-1000 nm follows a continuous decrease. The overall
behavior of transient spectra and kinetics show a stepwise
transition between the two above-mentioned states (7;) along
with simultaneous blue shift of visible state (7,). To gain further
insights into the dynamics, the best multi-exponential global fits
to transients at a variety of wavelengths find two components, a
fast component with a time constant of 7, = (45+ 15) ps and a
slow component with 7, =(80+30)ps. Our results are in
agreement with the previously reported spectral behaviors of
electrons in liquid water?>26, methanol?’-?$, ethylene glycol??,
and polyols3? observed by femtosecond laser spectroscopy.

In alcohols, the formation time of ey,” was reported to be much
slower than in water and it is determined by many factors, such as
the size of alcohol, the number of the hydroxyl group and dielectric
relaxation time for molecular rotation. Our model that uses multi-

exponential global fits to account for transients involved in
electron solvation processes, agrees well with the hybrid model
proposed by Pépin et al.2>27 and Barbara et al.2628, According to
this model and theoretical simulations®!-33, the faster relaxation
component, 7;, can be assigned to the transition of the weakly
bound p-like states, and the slower continuously shifting
component, T, is attributed to p > s radiationless decay or cooling
of a vibrationally excited s-state. Recent liquid-jet photoelectron
spectroscopy results supported the latter view?43°. For instance,
angular-resolved photoemission measurements showed the photo-
electrons generated from the state of the slow component is
associated with an isotropic character, revealing the existence of
the “hot” ground state3. Therefore, our results on the precursors
of ey, and their equilibration process in DEG represent a starting
point for further investigation of the electron transfer process to
DNA constituents.

Electron attachment to rT leading to TNI" formation. To
investigate the electron attachment to rT and the consequent
formation of rT*™*, picosecond pulse radiolysis studies were
performed in rT solutions (50-500 mM) in DEG. In these solu-
tions, direct ionization or excitation of solute itself is not sig-
nificant. As an example, the transient spectra and the kinetics at
different wavelengths are reported for the concentration of
300 mM in Fig. 2¢, d, and the effect of the 1T concentration on the
kinetics are shown in Fig. 3. Rapid electron capture by rT gen-
erates a new transient signal that is immediately and clearly
visualized in the UV-visible regions shown in Fig. 2c. In contrast
to the slight increase in neat DEG, the transient kinetics in the
UV-visible region (370-600 nm) shown in Fig. 2d and Fig. 3a, b
of rT solutions display an obvious decay. From Fig. 3¢, d, we
observe a substantial decrease of the initial near-infrared absor-
bance that correlates exponentially with increasing rT
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Fig. 3 Transient absorption kinetics at various ribothymidine concentrations. Kinetics at wavelengths: a 390 nm, b 500 nm, and ¢ 900 nm. The inset shows
the normalized kinetics at 900 nm at different concentration of ribothymidine (rT). Electron solvation is shown to be complete within about 300 ps and the
geminate recombination between the electron and hole can be neglected at this timescale. d Relative electron yield in the presence of rT

concentrations. These results clearly show that rT has scavenged a
significant fraction of the electrons prior to their being trapped in
DEG. For instance, about 12% and as high as 75% of electrons are
captured by rT molecules at the concentration of 0.05 and 0.5 M,
respectively. Analyses of normalized kinetics at the infrared
region from 720 to 1000 nm, at which the absorptions are only
associated with e, are found to be nearly identical (Fig. 3d,
inset) with those observed in neat DEG (Fig. 2b). Also, the global
fitting for the transient in each rT solution at the higher wave-
length (>720 nm) shows that the characteristic times of two
components (7; and 7,) remain almost unchanged. Therefore,
these results establish that even such a significant extent of
electron scavenging takes place before electron localization in pre-
existing traps, the presence of r'T does not affect significantly the
subsequent electron solvation process in DEG (Fig. 3); also, rT
does not react with e,..” on the time scale of hundreds of ps.
Based upon our assignments of the states of e, and ey, we
conclude that the electrons captured by rT within the pulse
duration (<7 ps) are most likely attributed to ey at or above the
conduction band. Because energy levels of trapped electrons in a
solvent strongly correlate with time of electron solvation30-38, it is
emphasized that a small but non-negligible energy barrier pre-
vents the ultrafast attachment by electrons lying at lower energy
trapping sites, such as p-like states (component 1), vibrationally
excited s-like state (component 1), and ground s-like state (es;-).
Indeed, the complete relaxation of electrons starts from deloca-
lization of excess electrons possessing a high mobility (>1 cm?
V~1s71)20, In water and alcohols, the vertical binding energy
(VDE) of a conduction band electron is much lower than that of
its weakly bound states and ground states3”-40, Moreover, first-
principle molecular dynamics simulations predicted that excess
electrons attach rapidly (<15 fs) to solvated DNA nucleotides*!,
which supports our experimental results. Therefore, based on
these studies and on our results (Figs. 2 and 3), the higher che-
mical reactivity of ey relative to that of trapped electrons is
justified. In addition, our findings establish the quantum states of
electrons that are involved in formation of TNI" via ultrafast
electron attachment to DNA-components in solution.

As described above, the presence of rT has only changed the
initial absorbance of e,..” and the observed IR spectra of ey, are
identical with that in DEG. Consequently, the transient profiles of
rT intermediates were obtained as shown in Fig. 4, via a
combination of a multivariate curve resolution alternating least
squares (MCR-ALS) analysis of a data matrix (Supplementary
Figure 2) previously described*? and via simply subtracting the
€pre’ absorption in neat DEG (Supplementary Figure 3). In
studied wavelength range, the spectra of this species are
characterized as a mono-peak absorption band extending to the
UV (Fig. 4a) and it does not evolve with the delay time
(Supplementary Figure 3). Figure 4a inset also showed that this
species undergoes a decay that is nearly independent of the
concentration. The lifetime of this species is estimated to be ~350
ps based on the lineally fitting of the kinetic in logarithm, as well
as the half-life of TNI" shown in Fig. 4b, which agrees with
previously measured rates of charge-induced dissociation®3.

In the liquid phase, electron attachment to rT results in the
formation of excited rT*™* (i.e., TNI") or ground state, rT*7, ie,
TNL rT*™ will subsequently, either dissociate to a neutral radical
(R*) and an anion when the energy is accessible or relax to a
stable anion radical by liberating energy to the solvent. This latter
species, r'T*7, is essentially, identical in nature with that from the
reaction of the fully ey,- (see Fig. 1). It is less likely that the
transient kinetics correspond to the decay of fragment radicals R°.
This is because in DEG (viscosity = 35.7 cP; 25 °C), R* should
react with other radicals through nearly diffusion-limited
reactions on timescale of tens of nanoseconds. In addition, the
decay rate should be affected by the concentration of R*. More
importantly, the initial absorbance of the new species at various
concentrations is linearly correlated with the number of electrons
captured (Supplementary Figure 4). After ruling out this
possibility, the key question now is whether it corresponds to
the excited anion radicals or fully solvated anion radicals or both.
To answer this question, the MCR-ALS analysis of a data matrix
showed several important features of species involved as
displayed in Fig. 4: (i) only two absorbing species (¢~ and rT*™)
exist at the early time. rT*™ is formed within the pulse and not

| (2019)10:102 | https://doi.org/10.1038/541467-018-08005-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

[

4 i T ™
i i) ]
L 3y 5 s ]
— o) 1
X | i
— 0 B
e 2B N 0 100 200 300 ]
‘l_O e Time delay (ps) i
s 1} ) .
: =
Ob o b v
400 450 500 550 600
Wavelength (nm)
b g
> 4 1
@ ]
c
S ]
E A
2 4
° ]
i (it W
0 [ n nu_di i T IS
0 2000 4000 6000 8000

Time delay (ps)

Fig. 4 Deconvolution of absorbing species in a data matrix. a Spectra of
excited and ground states of ribothymidine anion radicals, rT*~* and rT",
respectively The inset shows the kinetics of rT** at different
concentrations. b Deconvolution of transient data using a multivariate curve
resolution alternating least squares (MCR-ALS) method representing the
kinetics of rT"*, rT"~, and the solvated electron (e.-)

after the electron pulse (ii). rT** decays in a few 100 ps and the
decay of the electron during this time is almost negligible
(Fig. 4b). (iii) The decay of the rT*™ does not form the rT*"
because the formation of the latter only correlates with the decay
of ey at longer time (Fig. 4b). Besides, to compare the spectral
difference (the band shape, lifetime, and extinction coefficient)
between rT*™ and rT*", we performed additional measurements
of DEG solution at low concentrations (1-10 mM), in which e4¢
and ep,,.” are not scavenged by rT at long range and all of them are
converted into rT*” (Fig. 1). The resulting anion radicals rT*~ at
microsecond timescale show a distinct transient spectrum (blue
curve in Fig. 4a) and remain stable over a long period of time
(lifetime >10 ps, see Supplementary Figure 5). These results
conclude that the transient signals are attributed to the excited
anion radical rT*™ formed from egs attachment to rT in liquid
DEG.

In contrast to the results obtained in DEG solutions, studies
using aqueous rT did not provide any evidence of the bond
breaking. All TNIs* relaxed to rT*~ (Fig. 1), which is in the
agreement with our previous work!®. For a given rT concentra-
tion, e.g., 0.5 M, the scavenging time of e, is about 400 fs both
in water and in DEG as the rate constant of e,,.” scavenging by rT
is found to be similar, ~5x 1012M™! s*f. However, as the
solvation dynamics in water is much faster, the time for excess
electrons reaching into the pre-existing traps of liquid water is on
the order of tens of fs and the lifetime of p-like states of electron
was around 300 fs. Thus, rT in liquid water cannot react with the
higher electronic states of electrons, such as p-like states or
conduction states, which, in turn, do not offer enough energy for
the bond rupture of TNIs*. Thus, our results clearly point out the
energy states of a single electron and pre-existing traps in the
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Fig. 5 Potential energy surface profiles for N1-C1” bond cleavage. Shown for
the ground and vertical excited states of rT anions (TNI"). The energies
were scaled by adding —1.6 eV to the actual calculated values
(Supplementary Figure 8) to match with the theoretical adiabatic electron
affinity (2.1eV) of rT. The light blue solid line is the proposed path leading
to barrierless fast N1-C1’ bond dissociation

solvent medium are the decisive factor for the occurrence of
TNIs* fragmentation.

LEEs-induced decomposition of thymidine was first studied by
analysis of irradiated products at the molecular level in the
condensed phase!4. These experiments showed the effective
excision of the thymine base from low-energy electron-irradiated
DNA oligomers of defined sequences through N1-C1’ glycosidic
bond cleavage. In the mechanistic study, Ptasinska et al.l?
suggested that the resonant localization of an electron with an
energy as low as 1.2 eV on the sugar moiety in the gas-phase can
cause bond cleavage. KotiSek and co-workers** recently provided
better insight into the role of water played in DEA using a
“bottom-up” approach in a molecular beam, by progressively
micro-hydrating the target molecule. This study highlights the
suppression of dissociation of N1-Cl’ glycosidic bond by
increasing the hydration degree of thymine and uracil. Thus,
the decay of rT*™ observed in our time-resolved experiments that
we have assigned to a dissociative process could be associated
with the dynamics of glycosidic bond cleavage!.

Modeling of excited TNI surfaces leading to N1-C1’ bond
breakage. It is well-known that LEEs on interacting with a
molecule create TNI resonances which are equivalent to vertical
excited states of the electron adduct of the parent molecule>-4°,
Based on this understanding, calculations of the transition ener-
gies to vertical excited states of a TNI can predict the specific
resonance energies available for direct capture of LEEs. In this
work, the transition energies of TNI of rT in DEG (e, = 31.69) are
calculated using the time-dependent DFT (TD-DFT) imple-
mented in Gaussian 16°0. The complete methodology is abbre-
viated as TD-wB97XD-PCM/6-31G**. Use of a compact basis set
(6-31G*) in these calculations avoids mixing of resonances with
the continuum?#6-481,

From the nature of the TNI potential energy surface (PES)
(>mrn Fig. 5), we see that as the N1-C1’ bond elongates the
energy of ground state of the TNI (2rrpy;) surface increases until it
crosses the dissociative 20* surface with a barrier of 1.6 eV. The
energy of the first excited state 2 > 2no* (2no* surface) also
increases as N1-C1’ bond elongates and at 1.8 A it crosses the
dissociative 20* surface having a barrier of ca. 1eV. We also
optimized the 2no* excited state (The 2mo*OPT was not fully
optimized because during optimization this excited state switches
to another excited state after few cycles of the optimization steps.
Thus, we use the energy of 2n6*OPT state just before the switch
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to the other excited state.) designated as *no*opr in Fig. 5. As
expected, the adiabatic state, 26*opr, lies lower than the vertical
2nio* surface and after surpassing a small barrier of ca. 0.6 eV, the
N1-Cl’ bond dissociates. The light blue solid line in Fig. 5,
denotes a proposed barrier-free dissociation path which occurs on
capture of a quasi-free electron into the vertical mo-MO of rT
(®n0*) which upon extension of the N1-C1’ bond, relaxes from
the vertical to the adiabatic surface.

The ground state adiabatic PES of rT anion radical (Crioprs
Fig. 5) shows that the N1-Cl’ bond dissociation involves a
substantial barrier ca. 1 eV as reported earlier®. From the overall
nature of the PESs, we inferred that the energy of the lowest
excited state of the TNI is located at —0.3 eV (2r0*) and provides
the most likely path for immediate dissociation of rT via electron
attachment. To mimic the experiment, we scaled the energy in
Fig. 5 by adding —1.6 eV to the calculated values for matching the
adiabatic electron affinity (AEA) (2.1eV) of rT that were
calculated using the wB97XD-PCM/6-314++G** method with
actual energy values presented in the supporting information
(Supplementary Figures 6-9). From Fig. 5, it is evident that the
vertical 2no* excited state of TNI has energy of —0.3 eV which lies
within the conduction band energy range. An overview of the
energies of the electron and TNI of rT in DEG is shown in Fig. 1
and Supplementary Figure 9. Thus, electrons generated in the
conduction band should be efficiently captured into the excited
state 10*-MO of the r'T TNI and proceed via gradual relaxation of
the structure on bond elongation to a barrier-free N1-Cl’
glycosidic bond cleavage leading to thymine release.

Discussion

Our spectroscopic observations in DEG establish that the quasi-
free electrons form two localized electron-solvent configuration
states (in the infrared region and in the visible region within the
timescale of the electron pulse (<7 ps)); the former is character-
ized as a p-like state and the latter is assigned to a vibrationally
hot ground state which gradually relaxes to form a solvated
electron ey, . In the presence of rT, our results show that dis-
sociative electron transfer occurs only by the quasi-free electrons
at or above the conduction band rather than via e, and ey
The resulting excited rT anion radical rT*™ observed on a pico-
second timescale has been fully characterized, and it exhibits a
spectrum that is different from the spectrum of the stable anion
radical rT*~ which is observed on the microsecond timescale in
dilute DEG solutions at room temperature. The combination of
time-resolved results and DFT calculations establishes that the
observed transients rT*™ can be attributed to the excited state
no*-MO of the TNI of rT, and its dissociation proceeds via
gradual relaxation of the structure on bond elongation through a
barrier-free N1-C1’ glycosidic bond cleavage. Our results further
imply the generation of biomolecular damage does not necessarily
require electrons carrying kinetic energy. In cellular systems the
water molecules have inherently long relaxation times. Conduc-
tion band electrons (eqf) formed in cells should have longer
lifetimes than those found in water or in DEG; as a result, these
longer-lived eq would contribute to biomolecular damage. Thus,
the insights gained in our present study could pave the way to
directly investigate the long-standing mystery of electron-driven
reactions in radiation chemistry and biology.

Methods

Pulse radiolysis experiment. The chemical compounds (rT and DEG; purity,
>99%) were purchased from Sigma-Aldrich and used without further purification.
The 7 ps pulse radiolysis coupled with transient absorption measurements were
performed at the electron facility LINAC (Tokyo University) coupled to a transient
absorption broadband probe spectroscopy (380-1050 nm) instrument. Additional
time-resolved radiolysis results were also carried out at ELYSE facility (Paris-Saclay
University) for comparison. The experimental data matrices were analyzed by a

MCR-ALS approach as previously described2. Details about experimental appara-
tus, methodologies, and data analysis are provided in Supplementary Notes 1 and 2.

TD-DFT calculations. In this study, the ®B97XD density functional and 6-31G**
basis set were used and the effect of bulk solvent with dielectric constant of DEG
(e =31.69) was incorporated via the use of the integral equation formalism
polarized continuum model (IEF-PCM). Details about the TD-DFT calculations
are provided in Supplementary Note 3.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon request.
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